

Coordinate Spaces & Transformations

Wrapup from Wednesday – References

- We can declare functions that automatically cast variables to ref on input and return
- This does not mean that the variable accepting the return must also be a reference. Consider how `h` is being assigned a reference even though it is not a reference type itself
- So then why bother returning a ref?
 - Sometimes we just want reassurance that we're always returning a reference to the same vertex halfedge in our call to `vert->halfedge()`, and that no duplicates are being created

```
class Vertex {  
public:  
    HalfedgeRef& halfedge() { return _halfedge; }  
    ...  
private:  
    ...  
    HalfedgeRef _halfedge;  
};  
  
float totalArea = 0.0f;  
// HalfedgeRef type accepts HalfedgeRef&  
HalfEdgeRef h = vert->halfedge(); do {  
    if(!h->face()->is_boundary()) {  
        totalArea += h->face()->area();  
    }  
    // because it isn't a ref, we can keep updating it  
    h = h->twin()->next();  
}  
while(h != vert->halfedge());
```

- The Rasterization Pipeline
- Transformations
- Homogeneous Coordinates
- 3D Rotations

The Goal Of Graphics

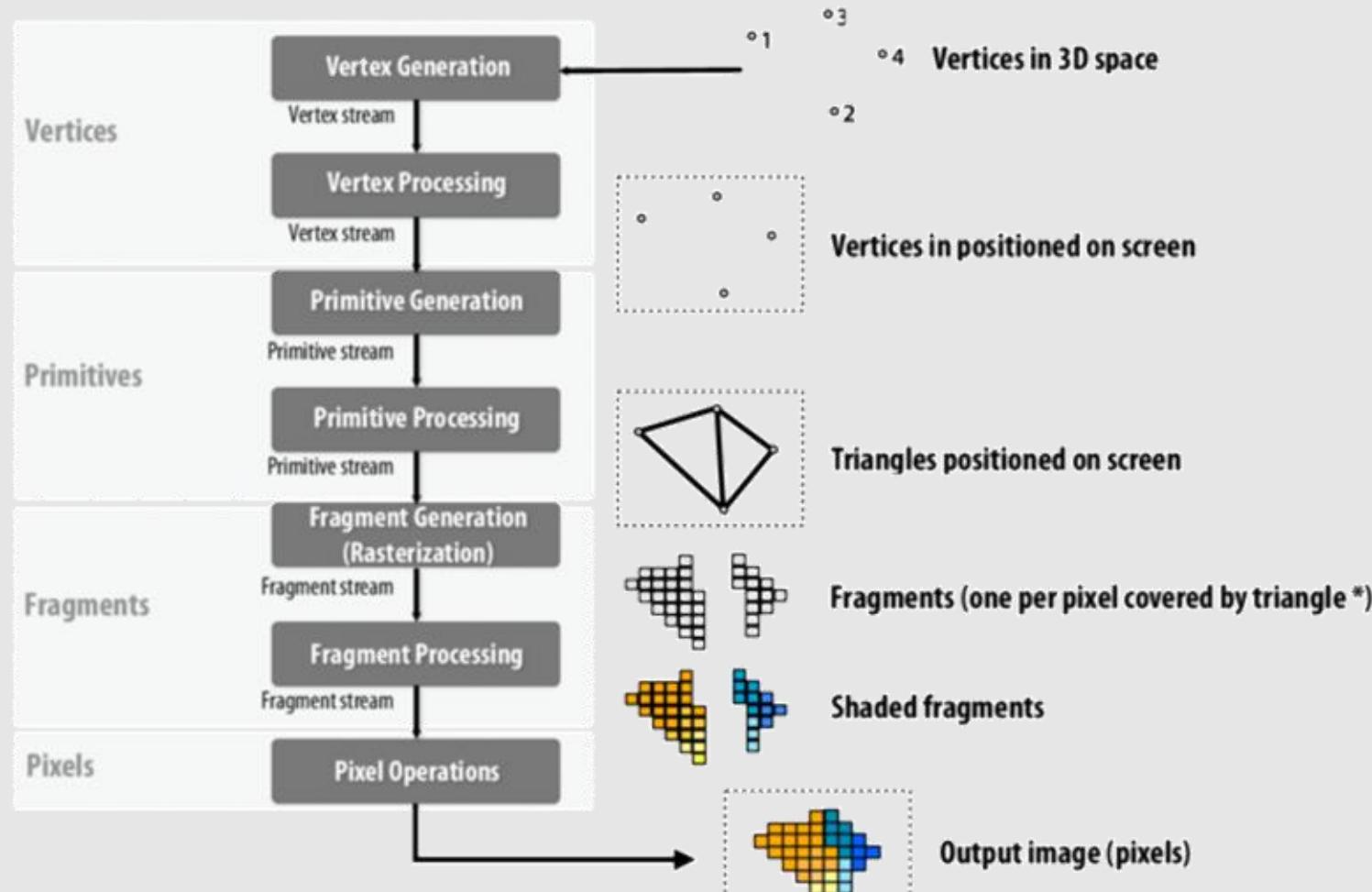
- Render very high complexity 3D scenes
 - Hundreds of thousands to millions to billions of triangles in a scene
 - Complex vertex and fragment shader computations
 - High resolution screen outputs (~10Mpixel + supersampling)
 - 30-120 fps
- Limited hardware resources
 - Can't always afford an RTX 4090
 - Be efficient enough to run on commercial hardware

Unreal Engine 5 Tech Demo (2020) Epic Games

Processing The Graphics Pipeline

- Modern real time image generation based on rasterization
- **INPUT:**
 - 3D “primitives”—essentially all triangles!
 - Colors
 - Textures
- **OUTPUT:**
 - Bitmap image (possibly w/ depth, alpha, ...)

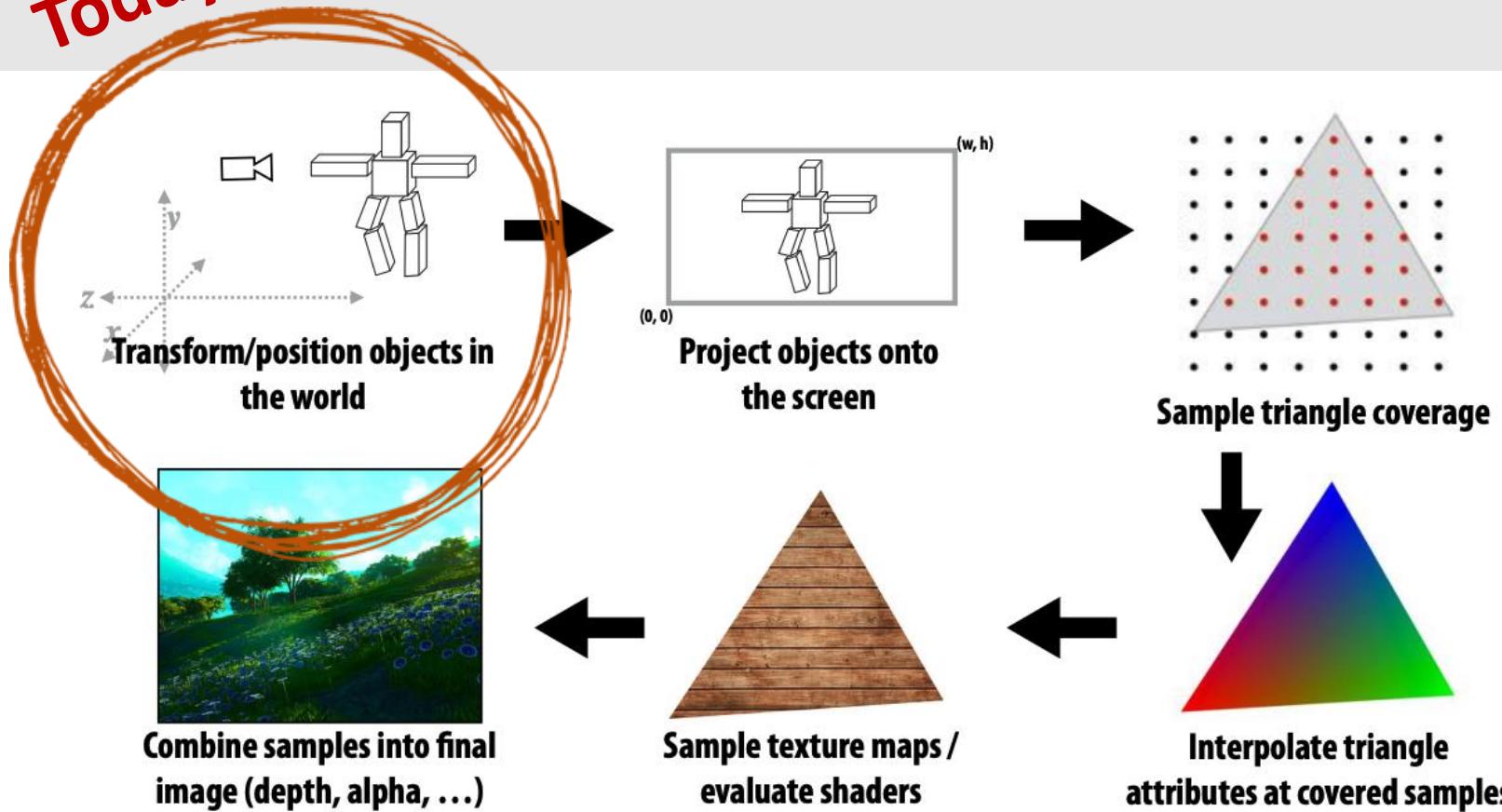
The First Week of Class -- The Graphics Pipeline



Let's simplify things a bit

The “Simpler” Graphics Pipeline

Today!



- ~~The Rasterization Pipeline~~

- Transformations
- Homogeneous Coordinates
- 3D Rotations

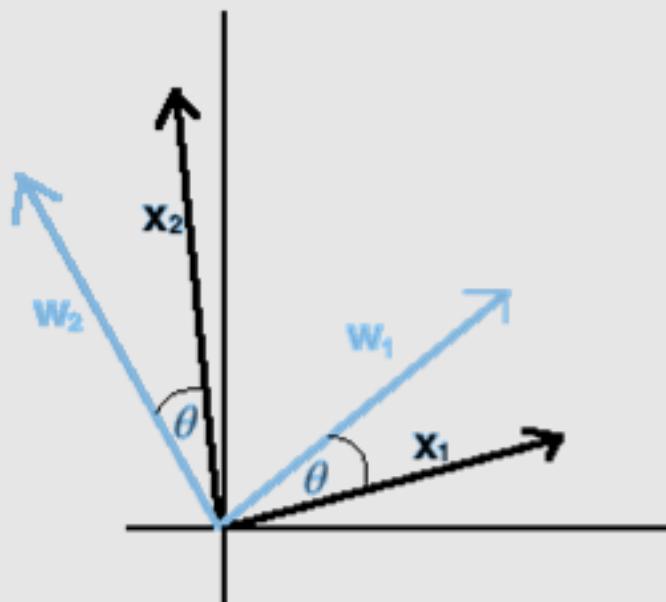
Transformations In Computer Graphics

- Common uses of linear transformations:
 - Position/deform objects in space
 - Camera movements
 - Animate objects over time
 - Project 3D objects onto 2D images
 - Map 2D textures onto 3D objects
 - Project shadows of objects onto other objects
- Today we'll focus on common transformations of space (rotation, scaling, etc.) encoded by linear maps

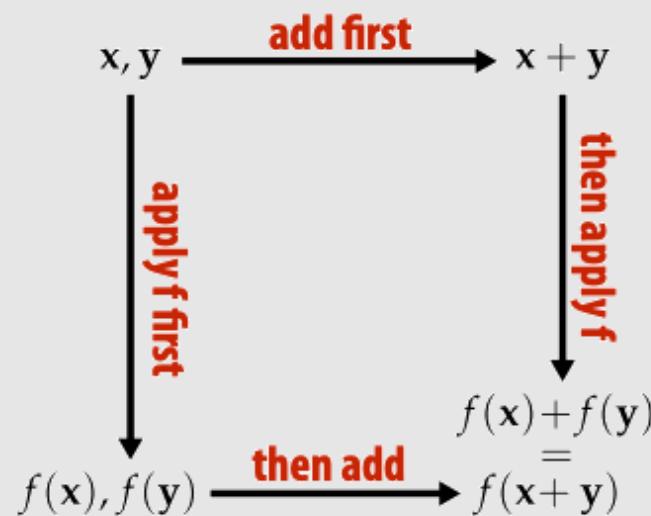
Super Mario 64: Camera Guy (1996) Nintendo

Review: Linear Maps

What does it mean for a map $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$ to be linear?



Geometrically it maps lines to lines, and preserves the origin

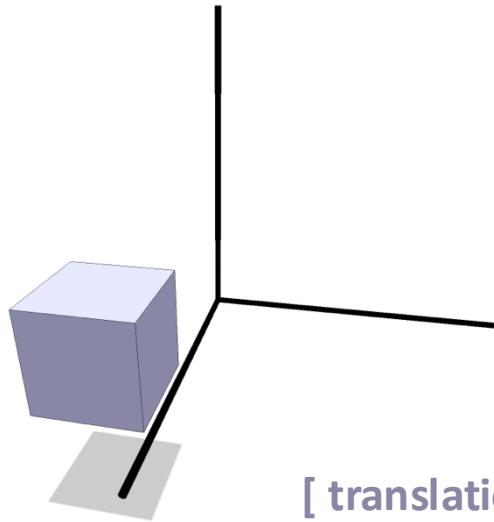
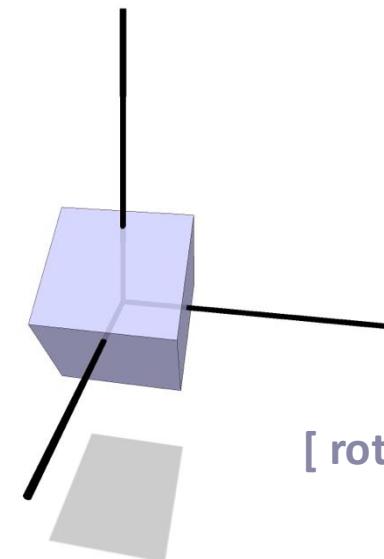
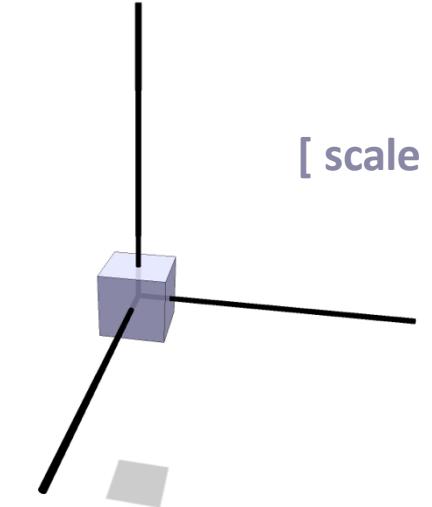
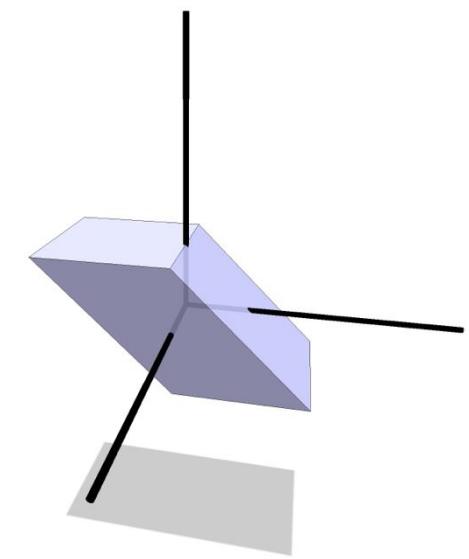


Algebraically it preserves vector space operations (addition & scaling)

Review: Linear Maps

- Why do we care about linear transformations?
 - Cheap to apply
 - Usually pretty easy to solve for (linear systems)
 - **Composition of linear transformations is linear**
 - Product of many matrices is a single matrix
 - Gives uniform representation of transformations
 - Simplifies graphics algorithms, systems

Types of Transformations

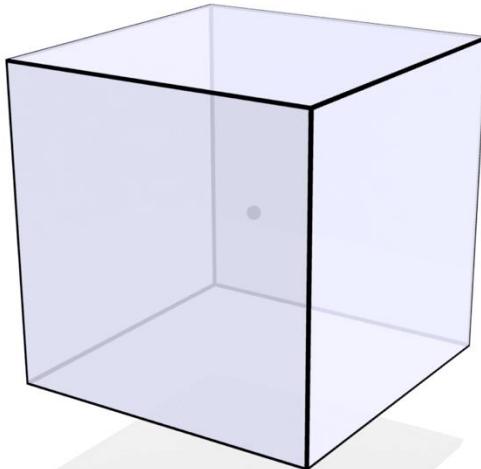


Invariants of Transformation

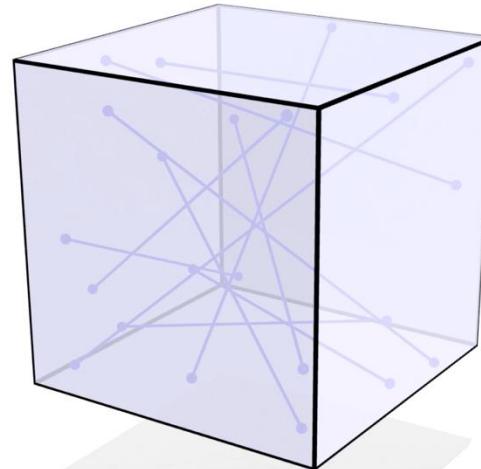
A transformation is determined by the **invariants** it preserves

transformation	invariants	algebraic description
linear	<i>straight lines / origin</i>	$f(a\mathbf{x}+\mathbf{y}) = af(\mathbf{x}) + f(\mathbf{y}),$ $f(0) = 0$
translation	<i>differences between pairs of points</i>	$f(\mathbf{x}-\mathbf{y}) = \mathbf{x}-\mathbf{y}$
scaling	<i>lines through the origin / direction of vectors</i>	$f(\mathbf{x})/ f(\mathbf{x}) = \mathbf{x}/ \mathbf{x} $
rotation	<i>origin / distances between points / orientation</i>	$ f(\mathbf{x})-f(\mathbf{y}) = \mathbf{x}-\mathbf{y} ,$ $\det(f) > 0$
...

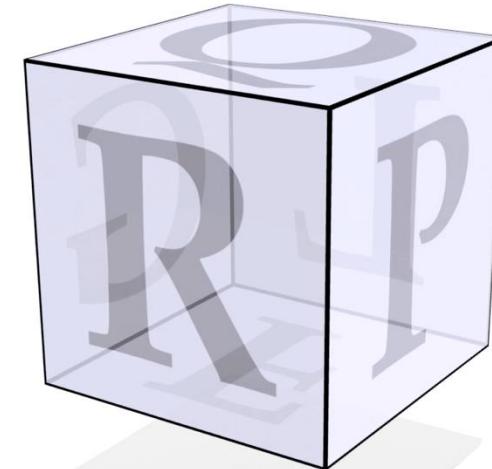
Rotation



[keeps origin fixed]



[preserves distance]



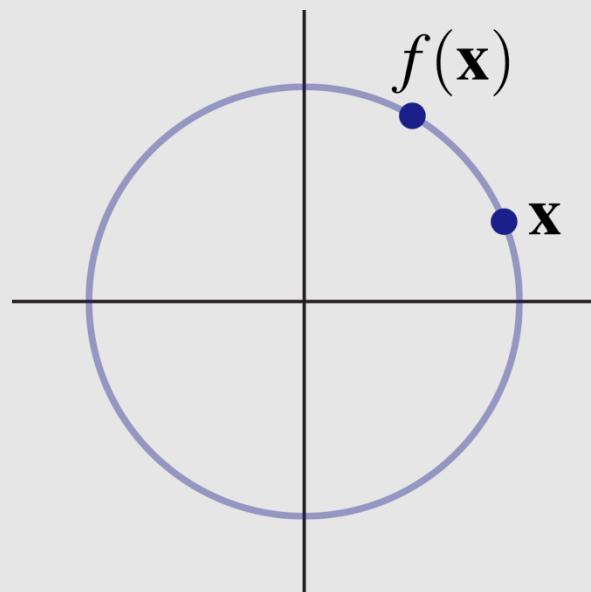
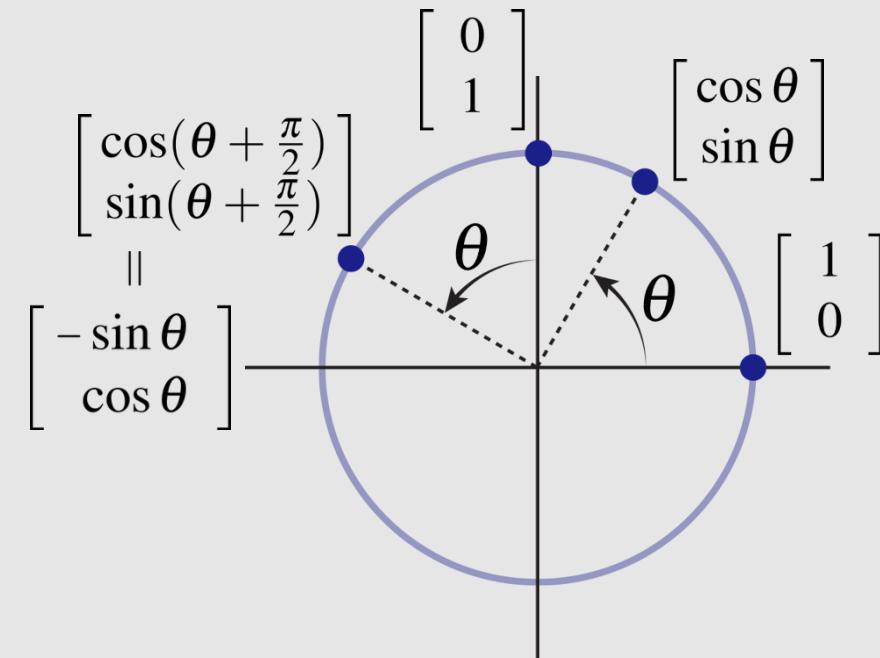
[preserves orientation]

First two properties imply rotations are **linear**

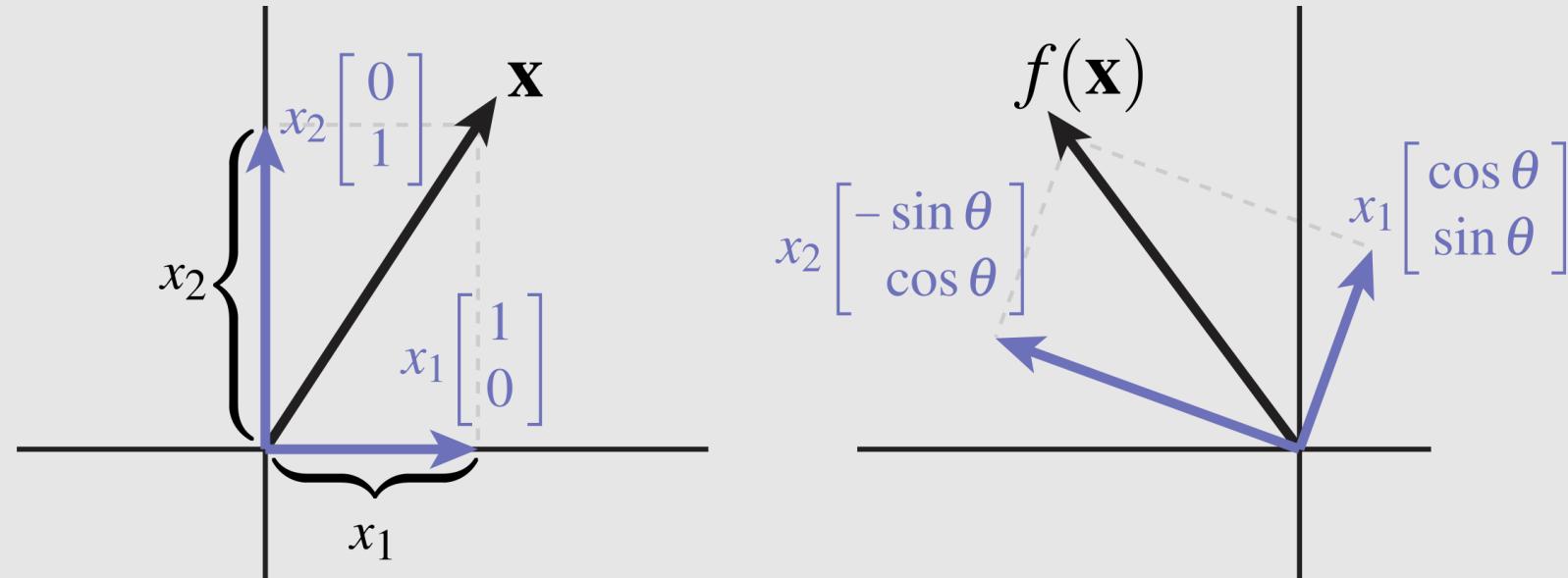
We say that a transform preserves orientation if $\det(T) > 0$

2D Rotations

Rotations preserve distances and the origin—hence, a 2D rotation by an angle θ maps each point x to a point $f(x)$ on the circle of radius $|x|$:



2D Rotations



$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$f(\mathbf{x}) = x_1 \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + x_2 \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

Rotations (like all transforms) are linear maps.
We can express the transform as a change of bases:

$$f_\theta(\mathbf{x}) = \begin{bmatrix} \cos \theta & -\sin(\theta) \\ \sin \theta & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

3D Rotations

In 3D, keep one axis fixed and rotate the other two:

[rotate around x_1]

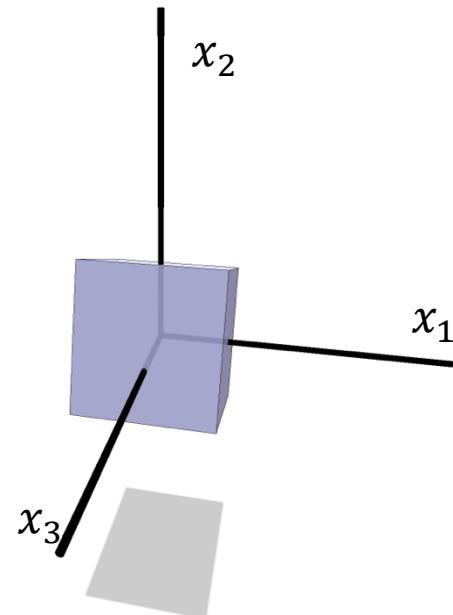
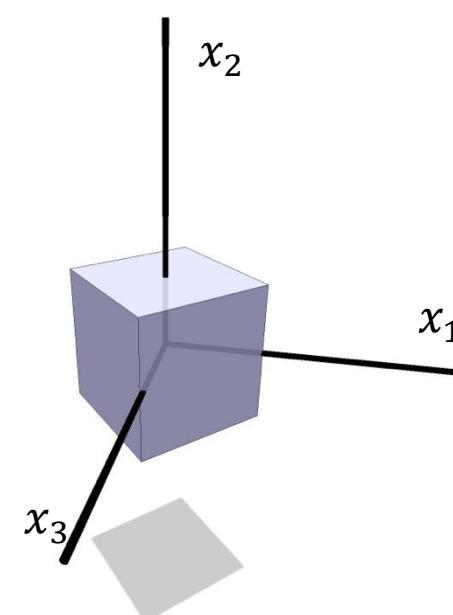
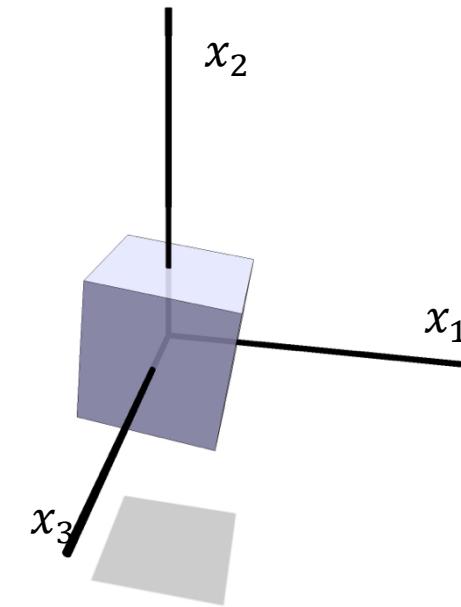
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin(\theta) \\ 0 & \sin \theta & \cos(\theta) \end{bmatrix}$$

[rotate around x_2]

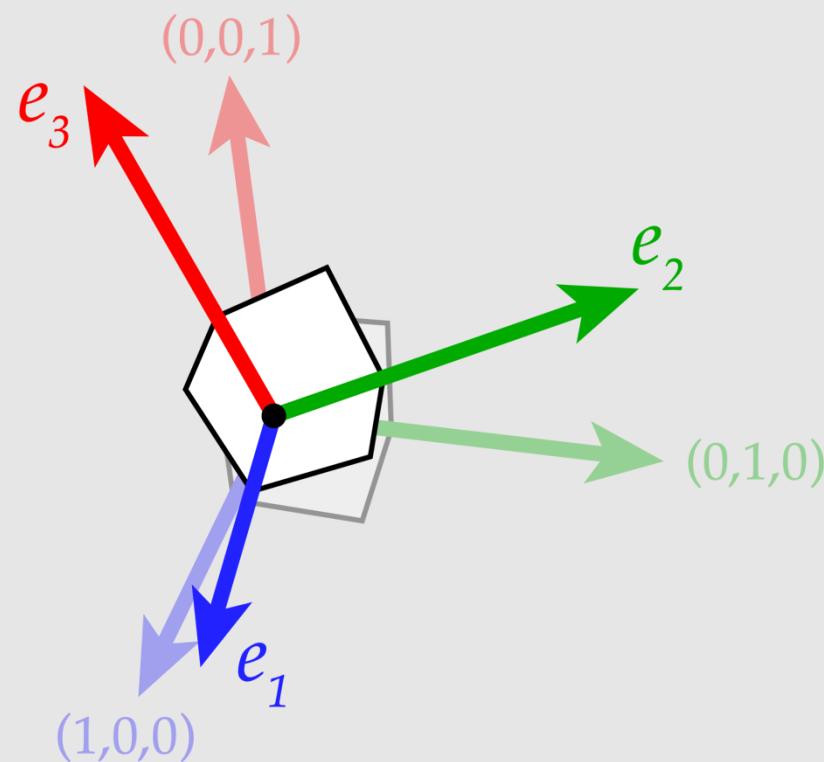
$$\begin{bmatrix} \cos \theta & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos(\theta) \end{bmatrix}$$

[rotate around x_3]

$$\begin{bmatrix} \cos \theta & -\sin(\theta) & 0 \\ \sin \theta & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



3D Inverse Rotations



$$R^T R = I \Rightarrow R^T = R^{-1}$$

$$\begin{aligned}
 & R^T = \begin{bmatrix} e_1^T & e_2^T & e_3^T \end{bmatrix} \quad R = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \\
 & = \begin{bmatrix} \downarrow & \downarrow & \downarrow \\ \text{cube} & \text{cube} & \text{cube} \\ \uparrow & \uparrow & \uparrow \end{bmatrix} = \begin{bmatrix} e_1^T e_1 & e_1^T e_2 & e_1^T e_3 \\ e_2^T e_1 & e_2^T e_2 & e_2^T e_3 \\ e_3^T e_1 & e_3^T e_2 & e_3^T e_3 \end{bmatrix} \\
 & = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
 \end{aligned}$$

Reflections

- Does every matrix $Q^T Q = I$ represent a rotation?

- Must preserve:

- Origin
 - Distance
 - Orientation

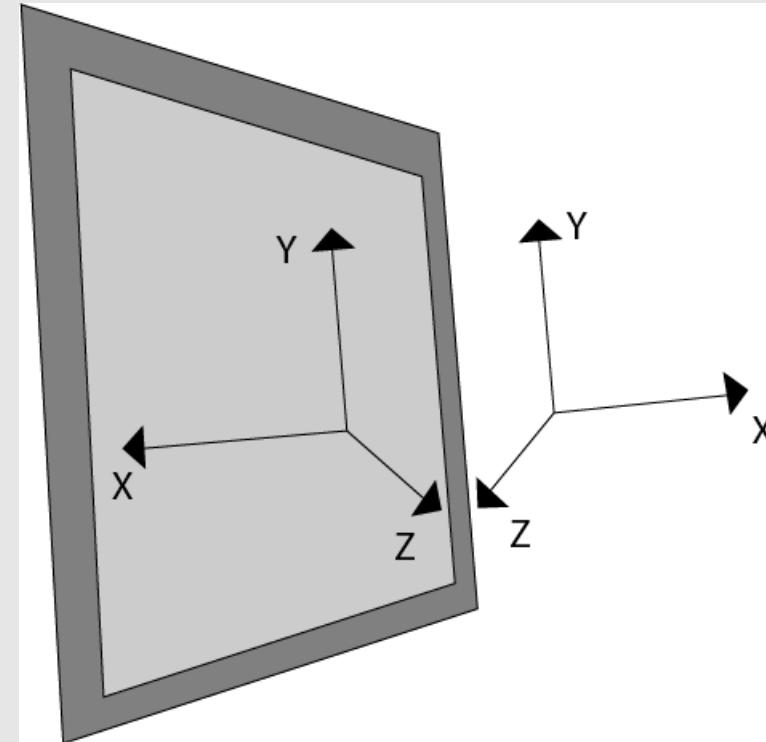
- Consider:

$$Q = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

- Just like rotations, Q has nice inverse properties:

$$Q^T Q = \begin{bmatrix} (-1)^2 & 0 \\ 0 & 1 \end{bmatrix} = I$$

- But the determinant is **negative!**
 - Not orientation preserving



Scaling

- Each vector u gets scaled by some scalar a

$$f(\mathbf{u}) = a\mathbf{u}, a \in \mathbb{R}$$

- Scaling is a linear transformation
 - Addition:

$$f(b\mathbf{u}) = ab\mathbf{u} = ba\mathbf{u} = b f(\mathbf{u})$$

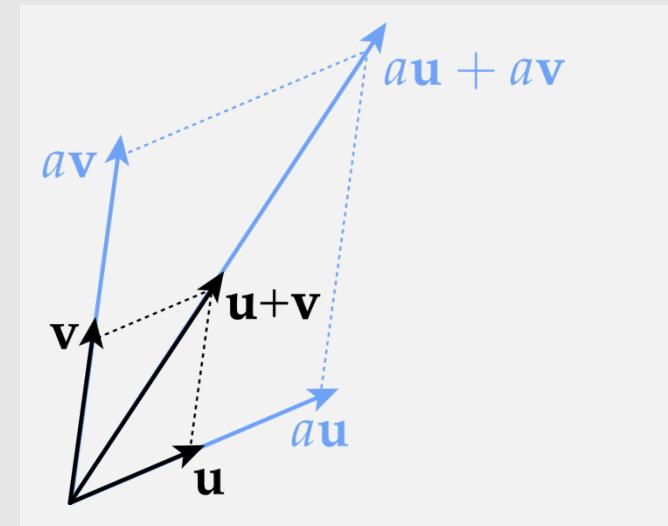
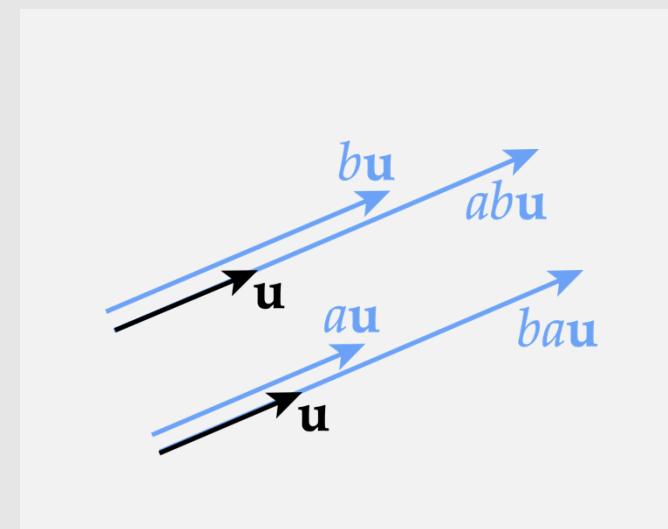
- Multiplication:

$$f(\mathbf{u} + \mathbf{v}) =$$

$$a(\mathbf{u} + \mathbf{v}) =$$

$$a\mathbf{u} + a\mathbf{v} =$$

$$f(\mathbf{u}) + f(\mathbf{v})$$



Negative Scaling

Can think of negative scaling as a series of reflections

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Also works in 3D:

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

[flip x]
[flip y]
[flip z]

In 2D, two reflections so resulting ($\det(T) > 0$)

In 3D, three reflections so resulting $(\det(T) < 0)$

Non-Uniform Scaling

- To scale a vector u by a non-uniform amount (a, b, c) :

$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} au_1 \\ bu_2 \\ cu_3 \end{bmatrix}$$

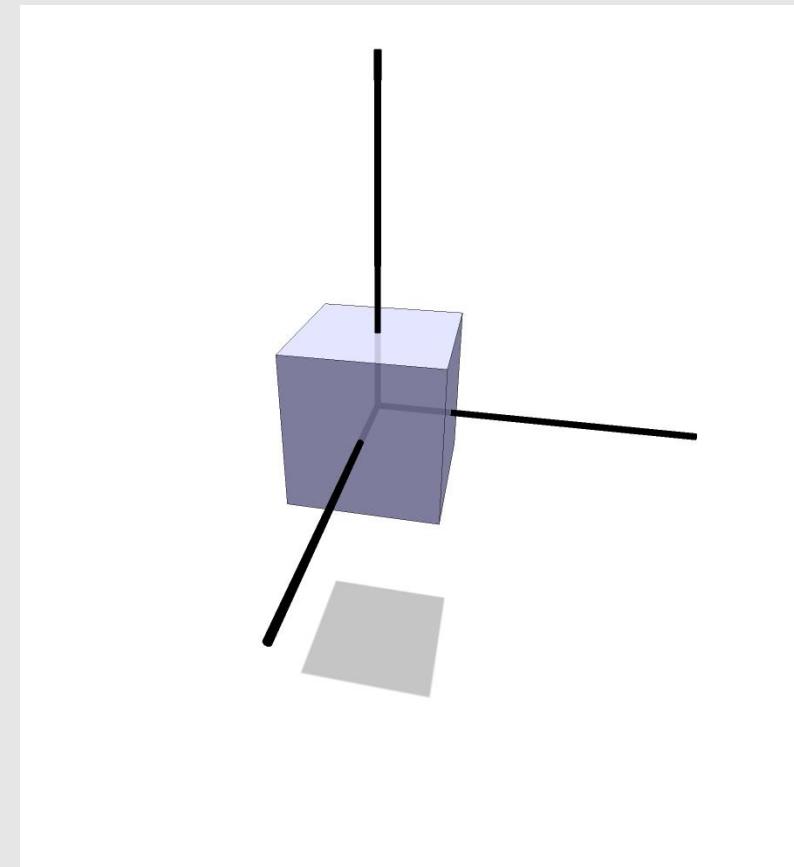
- The above works only if scaling is axis-aligned. What if it isn't?

- Idea:

- Rotate to a new axis R
- Perform axis-aligned scaling D
- Rotate back to original axis R^T

$$A := R^T D R$$

- Resulting transform A is a symmetric matrix
- **Q:** Do all symmetric matrices represent non-uniform scaling?

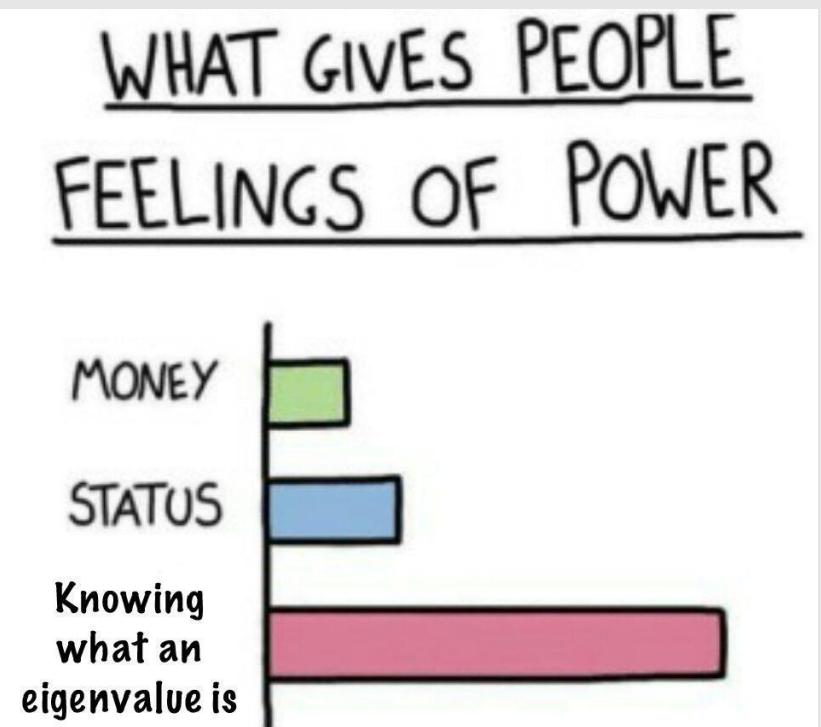


Spectral Theorem

- **Spectral theorem** says a symmetric matrix $A = A^T$ has:
 - Orthonormal eigenvectors $e_1, \dots, e_n \in \mathbb{R}^n$
 - Real eigenvalues $\lambda_1, \dots, \lambda_n \in \mathbb{R}$
- Eigenvalues represent the diagonals of the scalar transform
- Eigenvectors are axis which we are scaling about
 - Can be represented as a rotation transform

$$R = [e_1 \ \cdots \ e_n] \quad D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

- Can write the relationship as $AR = RD$
 - Equivalently, $A = RDR^T$
- Hence, every symmetric matrix performs a non-uniform scaling along some set of orthogonal axes



Shear

- A shear displaces each point x in a direction u according to its distance along a fixed vector v :

$$f_{\mathbf{u},\mathbf{v}}(\mathbf{x}) = \mathbf{x} + \langle \mathbf{v}, \mathbf{x} \rangle \mathbf{u}$$

- Still a linear transformation—can be rewritten as:

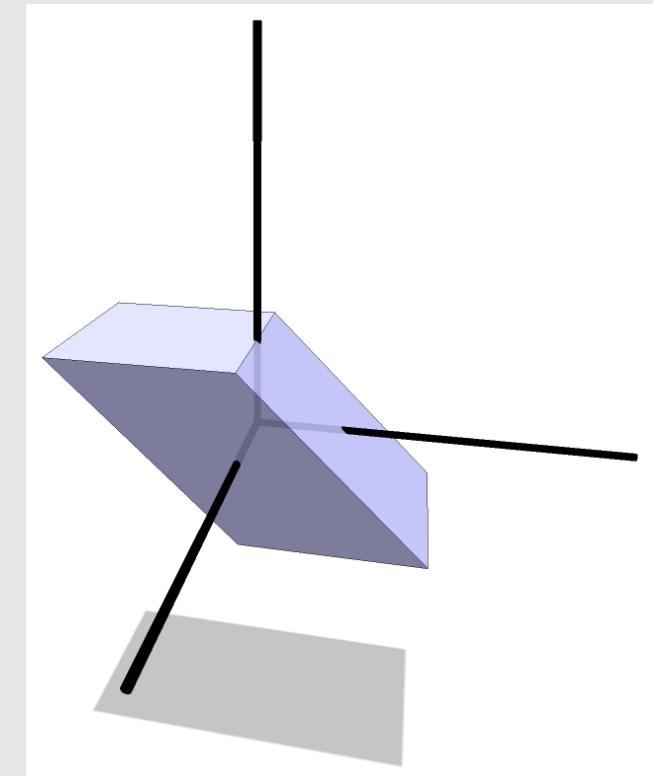
$$A_{\mathbf{u},\mathbf{v}} = I + \mathbf{u}\mathbf{v}^T$$

- Example:

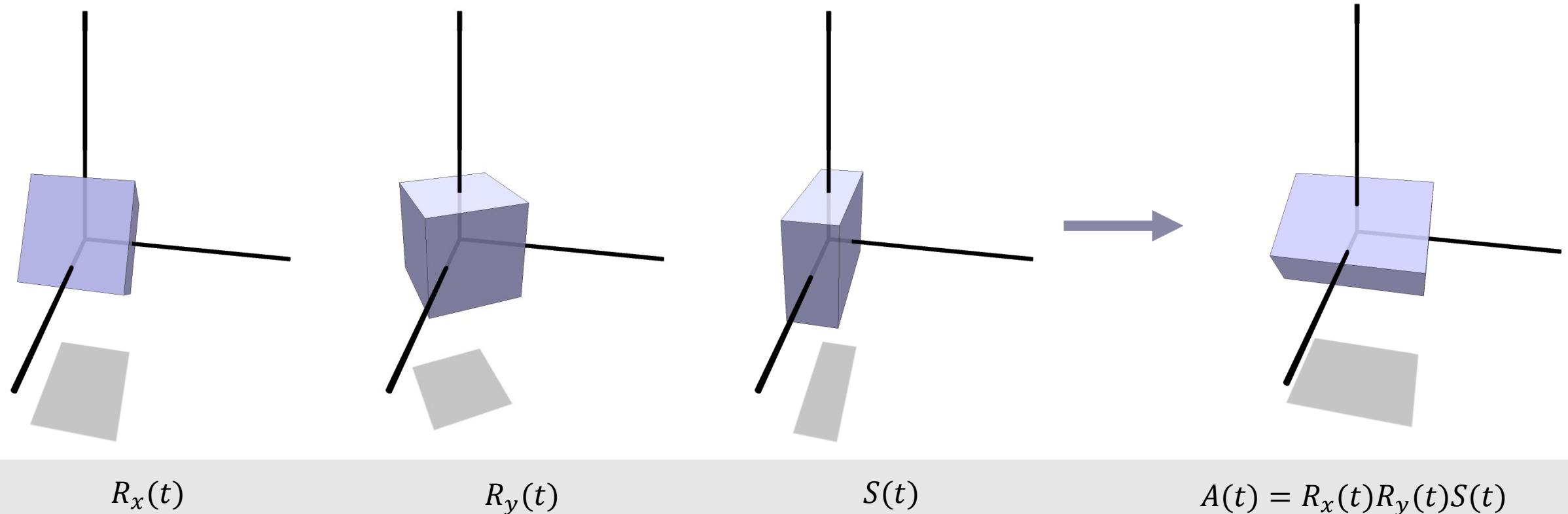
$$\mathbf{u} = (\cos(t), 0, 0)$$

$$\mathbf{v} = (0, 1, 0)$$

$$A_{\mathbf{u},\mathbf{v}} = \begin{bmatrix} 1 & \cos(t) & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



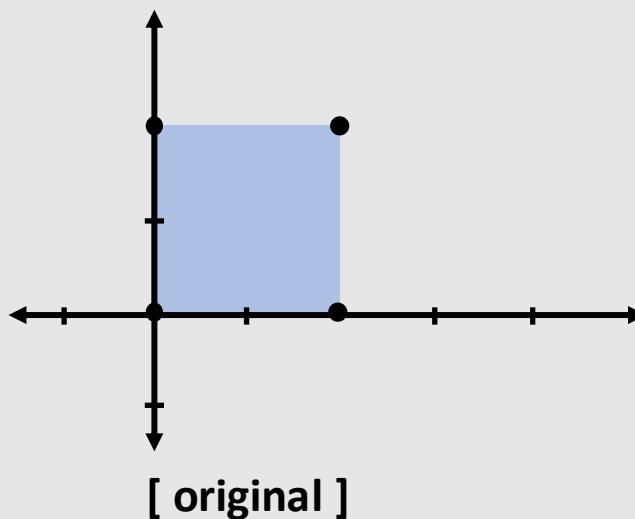
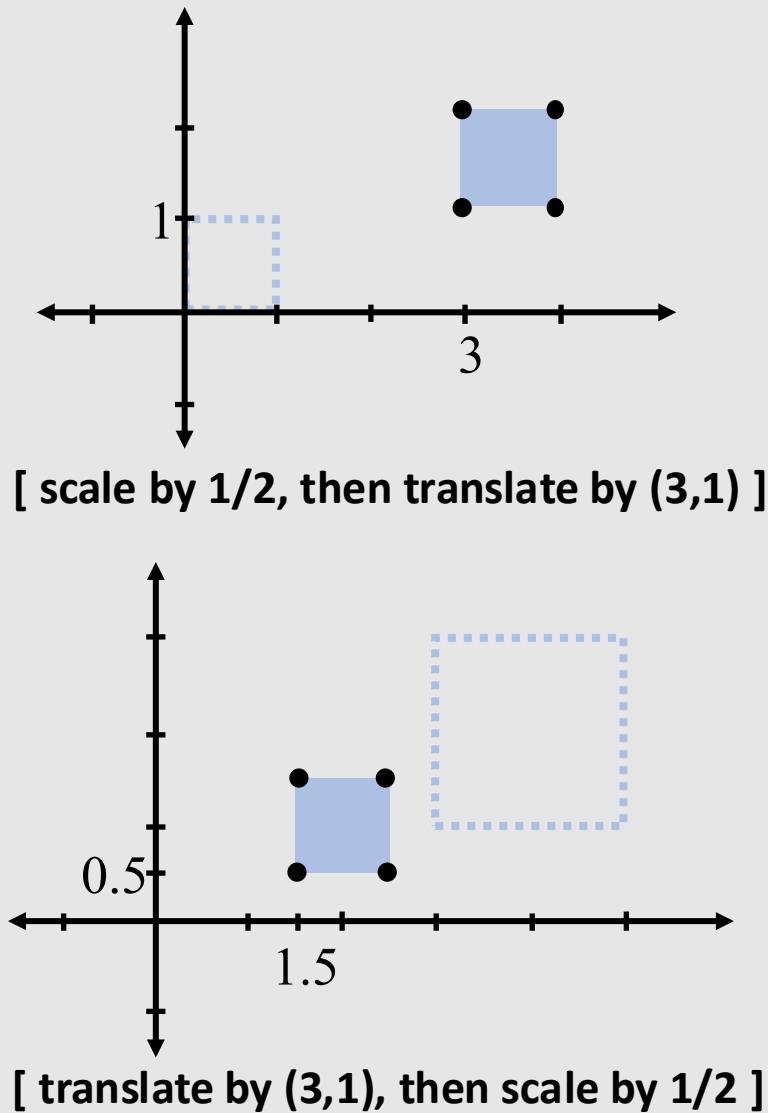
Composing Transforms



We can now build up composite transformations via matrix multiplication

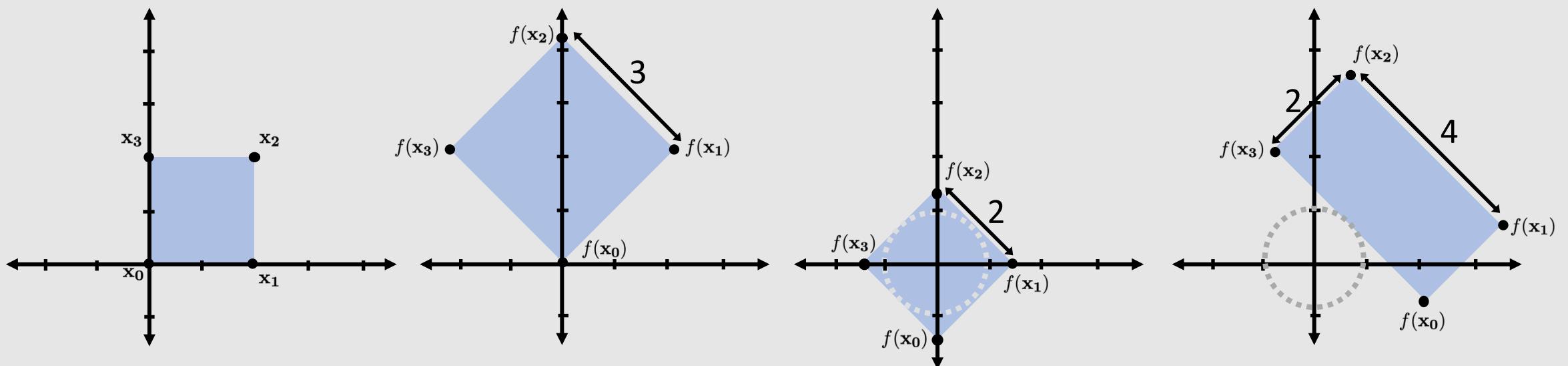
Composing Transforms

- Order matters when compositing transforms!



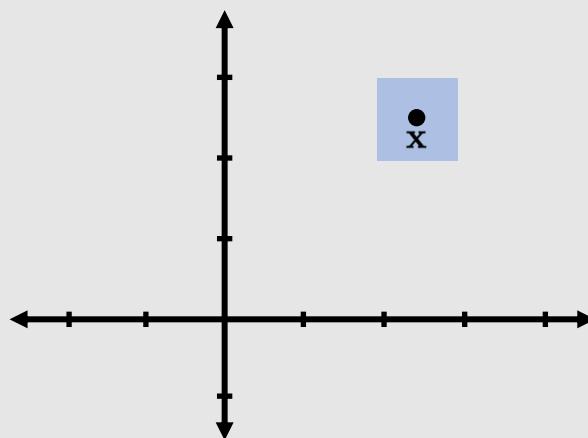
Composing Transforms

How would you perform these transformations?**

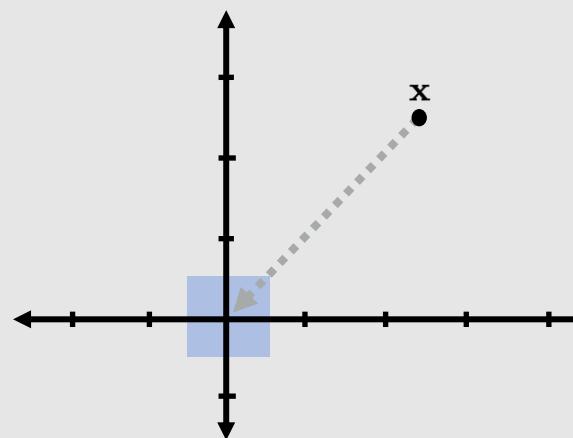


**remember there's always more than one way to do so

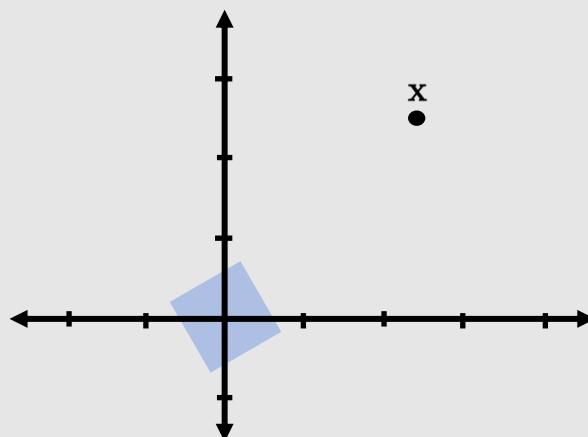
Rotating About A Point



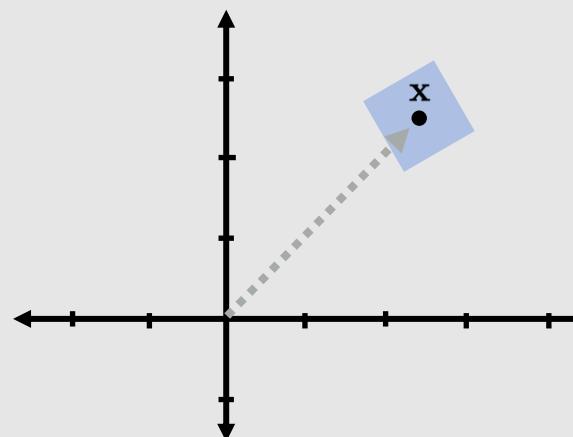
[Step 0] compute x (dist. from origin)



[Step 1] translate by $-x$



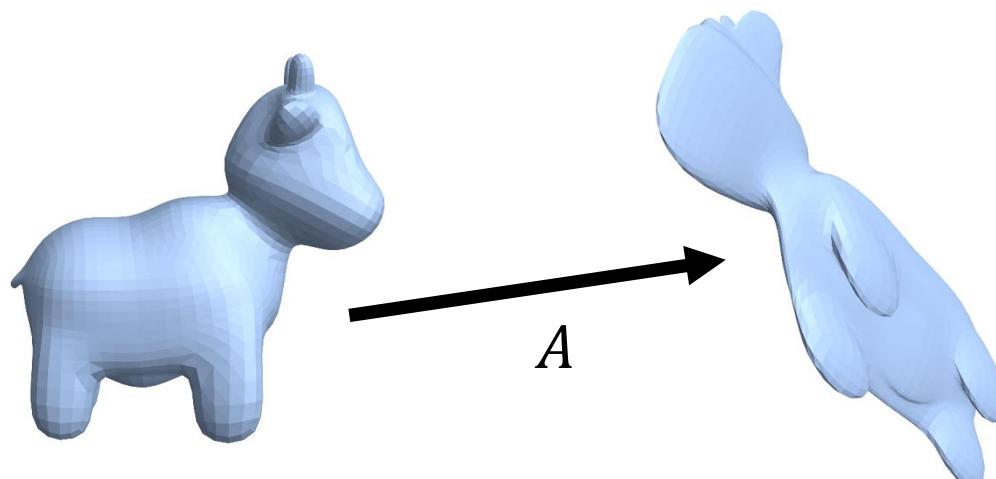
[Step 2] rotate



[Step 3] translate by x

Decomposing Transforms

- In general, no **unique** way to write a given linear transformation as a composition of basic transformations!
 - However, there are many useful decompositions:
 - **Singular value decomposition**
 - Good for signal processing
 - **LU factorization**
 - Good for solving linear systems
 - **Polar decomposition**
 - Good for spatial transformations



$$A = \begin{bmatrix} .34 & -.11 & -.89 \\ -.65 & .52 & -.70 \\ .25 & .23 & -.69 \end{bmatrix}$$

Polar & Single Value Decomposition

Polar decomposition decomposes any matrix A into orthogonal matrix Q and symmetric positive-semidefinite matrix P

$$A = QP$$

rotation/reflection **nonnegative
nonuniform scaling**

Since P is symmetric, can take this further via the spectral decomposition $P = VDV^T$ (V orthogonal, D diagonal):

$$A = \underbrace{QV}_{U} D V^T = U D V^T$$

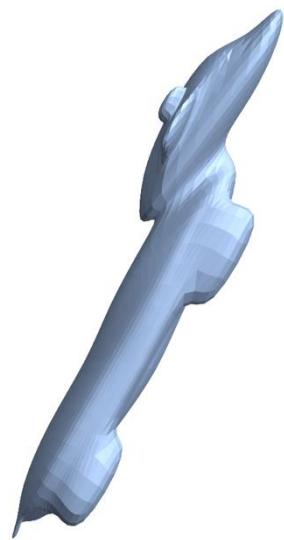
rotation **axis-aligned
scaling** **rotation**

Result UDV^T is called the **singular value decomposition**

Interpolating Transformations [Linear]

Consider interpolating between two linear transformations
 A_0, A_1 of some initial model

Idea: take a linear combination of the two matrices



$$A(t) = (1 - t)A_0 + tA_1$$

$$t \in [0,1]$$

Hits the right start/endpoints... but looks awful in between!

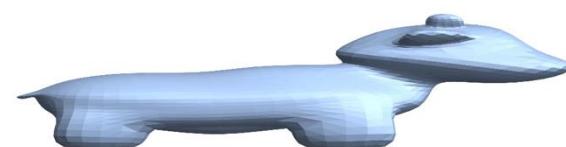
Interpolating Transformations [Polar]

Better idea: separately interpolate components of polar decomposition

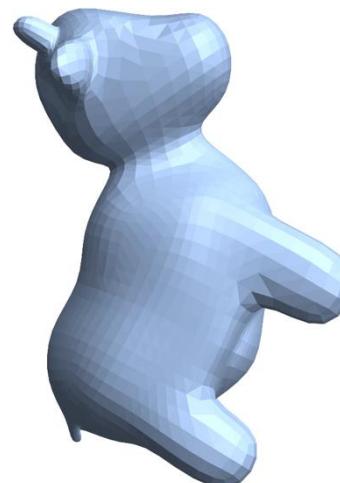
$$A_0 = Q_0 P_0$$

$$A_1 = Q_1 P_1$$

[scaling]



[rotation]



[composite]

$$P(t) = (1 - t)P_0 + tP_1$$

$$Q(t) = (1 - t)Q_0 + tQ_1$$

$$A(t) = Q(t)P(t)$$

Translation

- So far we've ignored a basic transformation—translations
 - A translation simply adds an offset \mathbf{u} to the given point \mathbf{x}

$$f_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} + \mathbf{u}$$

- Is this translation linear?
 - (certainly seems to move across a line...)

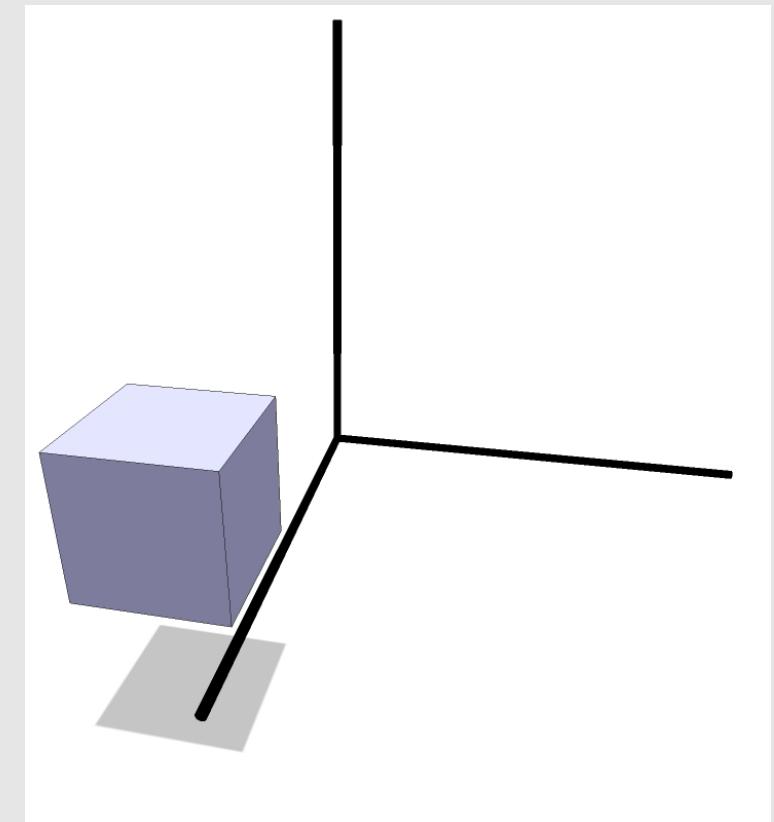
[additivity]

$$\begin{aligned}f_{\mathbf{u}}(\mathbf{x} + \mathbf{y}) &= \mathbf{x} + \mathbf{y} + \mathbf{u} \\f_{\mathbf{u}}(\mathbf{x}) + f_{\mathbf{u}}(\mathbf{y}) &= \mathbf{x} + \mathbf{y} + 2\mathbf{u}\end{aligned}$$

[homogeneity]

$$\begin{aligned}f_{\mathbf{u}}(a\mathbf{x}) &= a\mathbf{x} + \mathbf{u} \\af_{\mathbf{u}}(\mathbf{x}) &= a\mathbf{x} + a\mathbf{u}\end{aligned}$$

Translations are not linear!

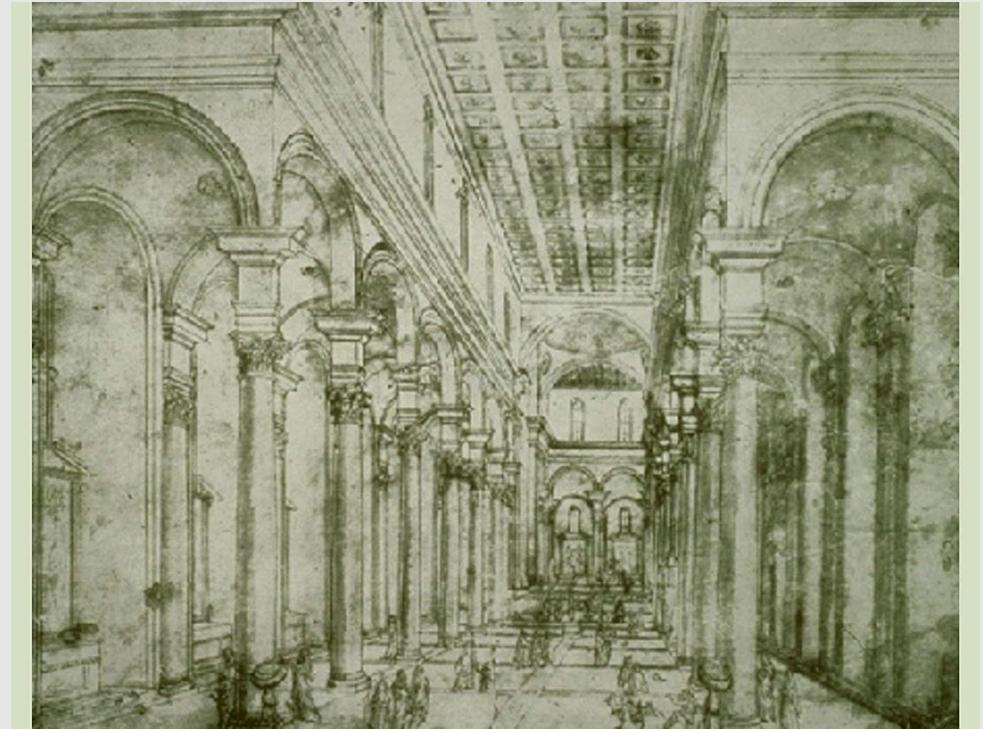


Maybe translations turn linear when we go into the
4th dimension...

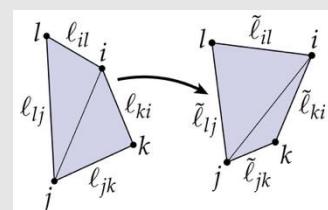
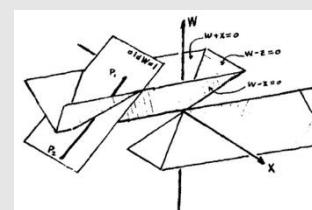
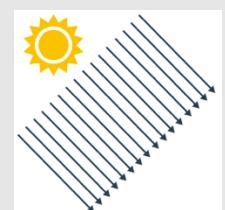
- ~~The Rasterization Pipeline~~
- ~~Transformations~~
- Homogeneous Coordinates
- 3D Rotations

Homogeneous Coordinates

- Came from efforts to study perspective
- Introduced by Möbius as a natural way of assigning coordinates to lines
- Show up naturally in a surprising large number of places in computer graphics:
 - 3D transformations
 - Perspective projection
 - Quadric error simplification
 - Premultiplied alpha
 - Shadow mapping
 - Projective texture mapping
 - Discrete conformal geometry
 - Hyperbolic geometry
 - Clipping
 - Directional lights
 - ...

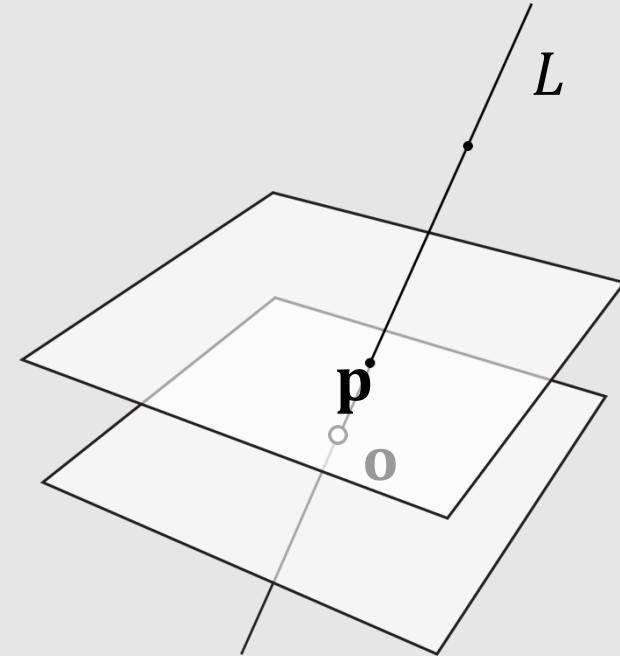
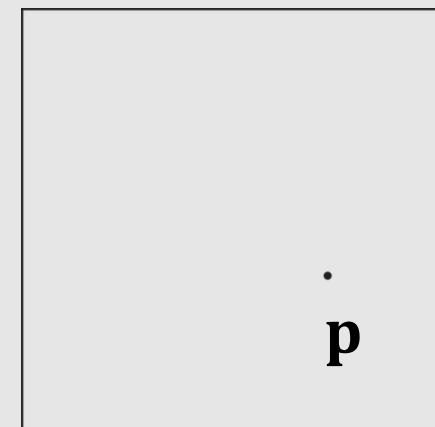


Church of Santo Spirito (1428) Filippo Brunelleschi



Homogeneous Coordinates in 2D

- Consider any 2D plane that does not pass through the origin o in 3D
 - Every line through the origin in 3D corresponds to a point in the 2D plane
 - Just find the point p where the line L pierces the plane
- Consider a point $p' = (x, y)$, and the plane $z = 1$ in 3D
 - Any three numbers $p = (a, b, c)$ such that $\left(\frac{a}{c}, \frac{b}{c}\right) = (x, y)$ are homogeneous coordinates for p
 - Example: $(x, y, 1)$
 - In general: (cx, cy, c) for $c \neq 0$
 - The c is commonly referred to as the homogeneous coordinate
 - Great, but how does this help us with transforms?



Translation in Homogeneous Coordinates

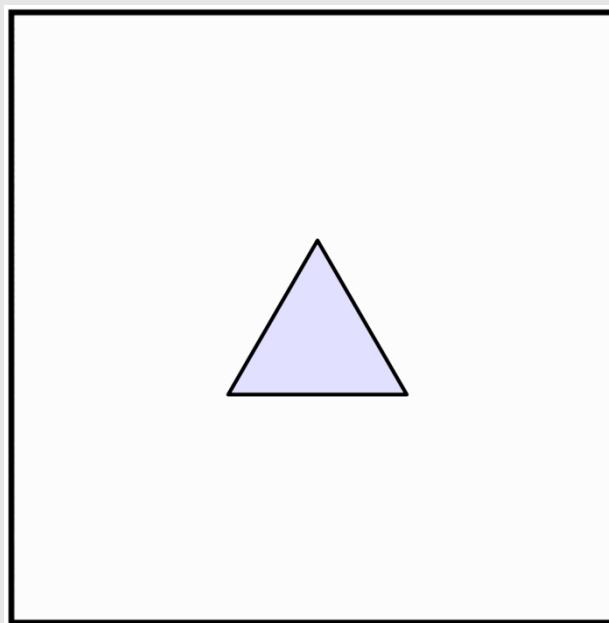
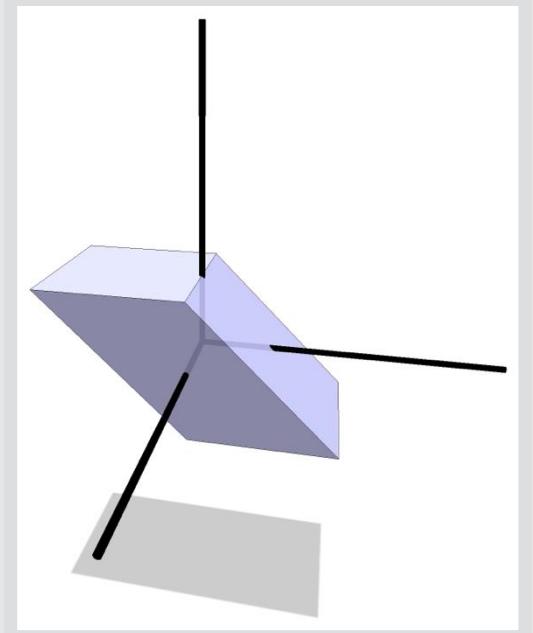
- A 2D translation is similar to a 3D shear
 - Moving a slice up/down the shear moves the shape
- Recall shear is written as:

$$f_{\mathbf{u},\mathbf{v}}(\mathbf{x}) = \mathbf{x} + \langle \mathbf{v}, \mathbf{x} \rangle \mathbf{u}$$

$$f_{\mathbf{u},\mathbf{v}}(\mathbf{x}) = (I + \mathbf{u}\mathbf{v}^T)\mathbf{x}$$

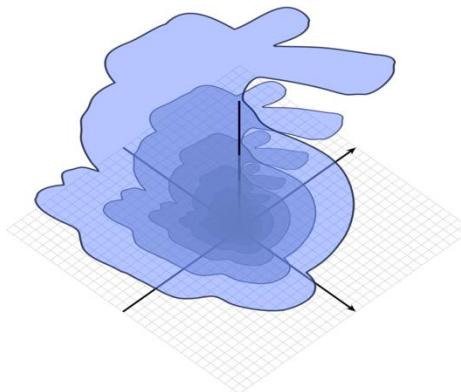
- In our case, $\mathbf{v} = (0, 0, 1)$, so**

$$\begin{bmatrix} 1 & 0 & u_1 \\ 0 & 1 & u_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} cp_1 \\ cp_2 \\ c \end{bmatrix} = \begin{bmatrix} c(p_1 + u_1) \\ c(p_2 + u_2) \\ c \end{bmatrix} \xrightarrow{1/c} \begin{bmatrix} p_1 + u_1 \\ p_2 + u_2 \\ 1 \end{bmatrix}$$



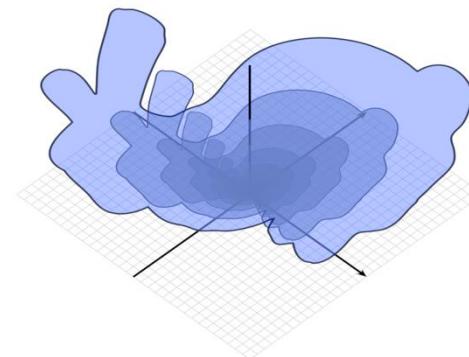
**most often in this class we will also use $c = 1$

2D Transforms in Homogeneous Coordinate



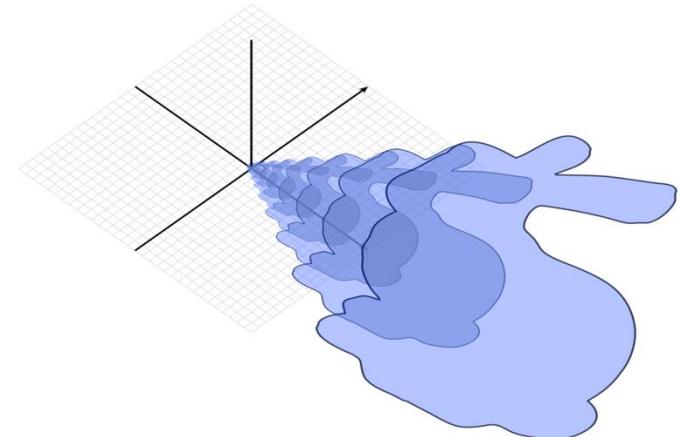
[original]

Original shape in 2D can be viewed as many copies along the z-axis



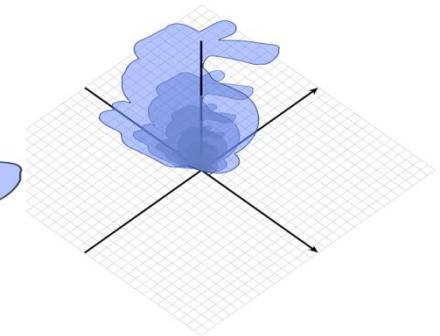
[2D rotation]

Rotate around the z-axis



[2D translate]

Shear in direction of translation



[2D scale]

Scale x-axis and y-axis, preserve z-axis

Q: What about 3D homogeneous coordinates?

3D Transforms in Homogeneous Coordinate

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

[point in 3D]

Matrix representations of 3D linear transformations just get an additional identity row/column:

$$\begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & s & 0 \\ 0 & 1 & t & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & w \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

[rotate around y by θ]

[shear by z in (s,t) direction]

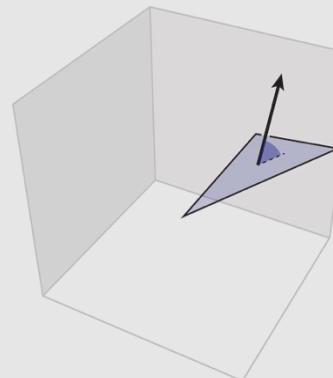
[scale by a,b,c]

[translate by (u,v,w)]

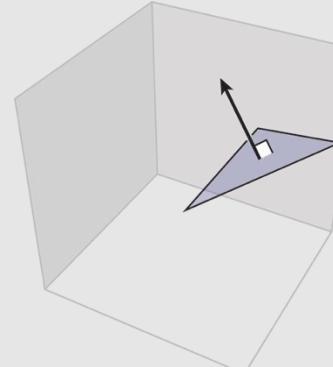
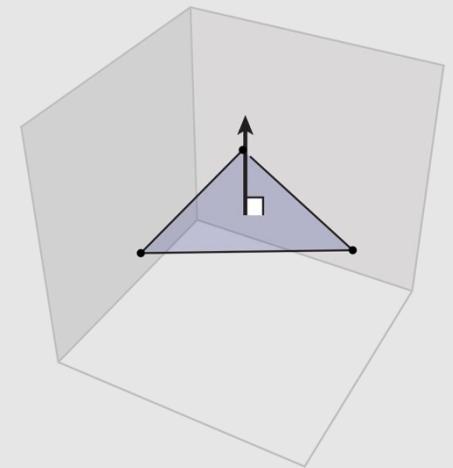
Points vs. Vectors

- Homogeneous coordinates should be used differently for points and vectors:
 - Triangle vertices are “points” and should be translated and rotated
 - But if we do the same for the normal, it no longer becomes a normal
- **Idea:** normal is a “vector” and should just rotate!**
 - Set homogeneous coordinate to 0

$$\begin{bmatrix} \cos \theta & 0 & \sin \theta & u \\ 0 & 1 & 0 & v \\ -\sin \theta & 0 & \cos \theta & w \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} n_1 \\ n_2 \\ n_3 \\ 0 \end{bmatrix}$$



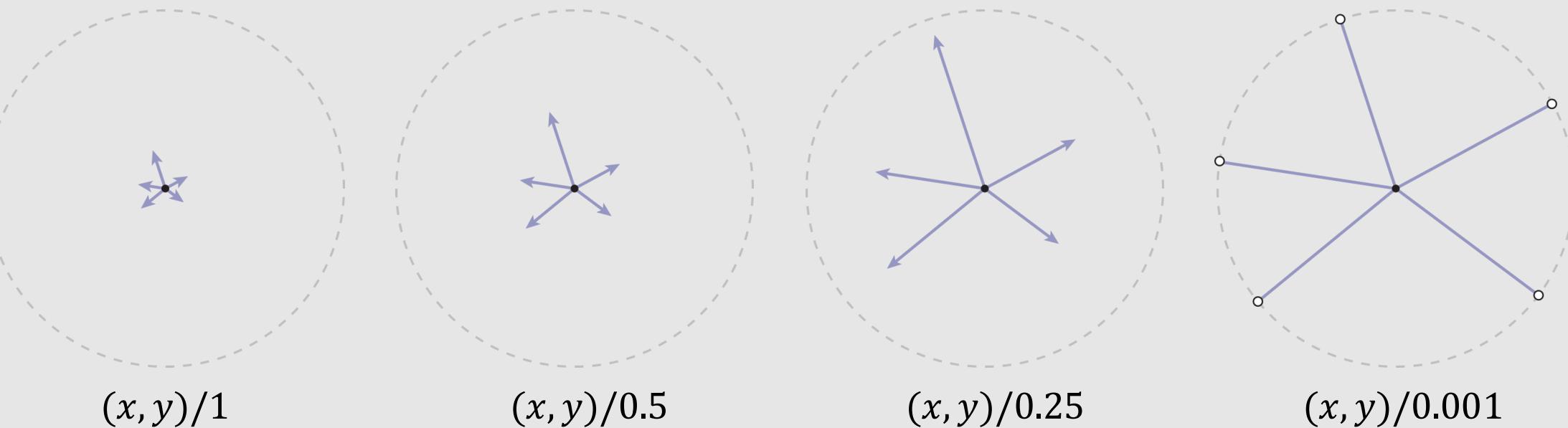
$$\begin{bmatrix} \cos \theta & 0 & \sin \theta & u \\ 0 & 1 & 0 & v \\ -\sin \theta & 0 & \cos \theta & w \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} n_1 \\ n_2 \\ n_3 \\ 1 \end{bmatrix}$$



**translating or scaling a triangle should never change the normal

Points vs. Vectors in Homogeneous Coordinates

- In general:
 - A point has a nonzero homogeneous coordinate ($c = 1$)
 - A vector has a zero homogeneous coordinate ($c = 0$)
- But wait... what division by c mean when it's equal to zero?
- Well consider what happens as c approaches 0...

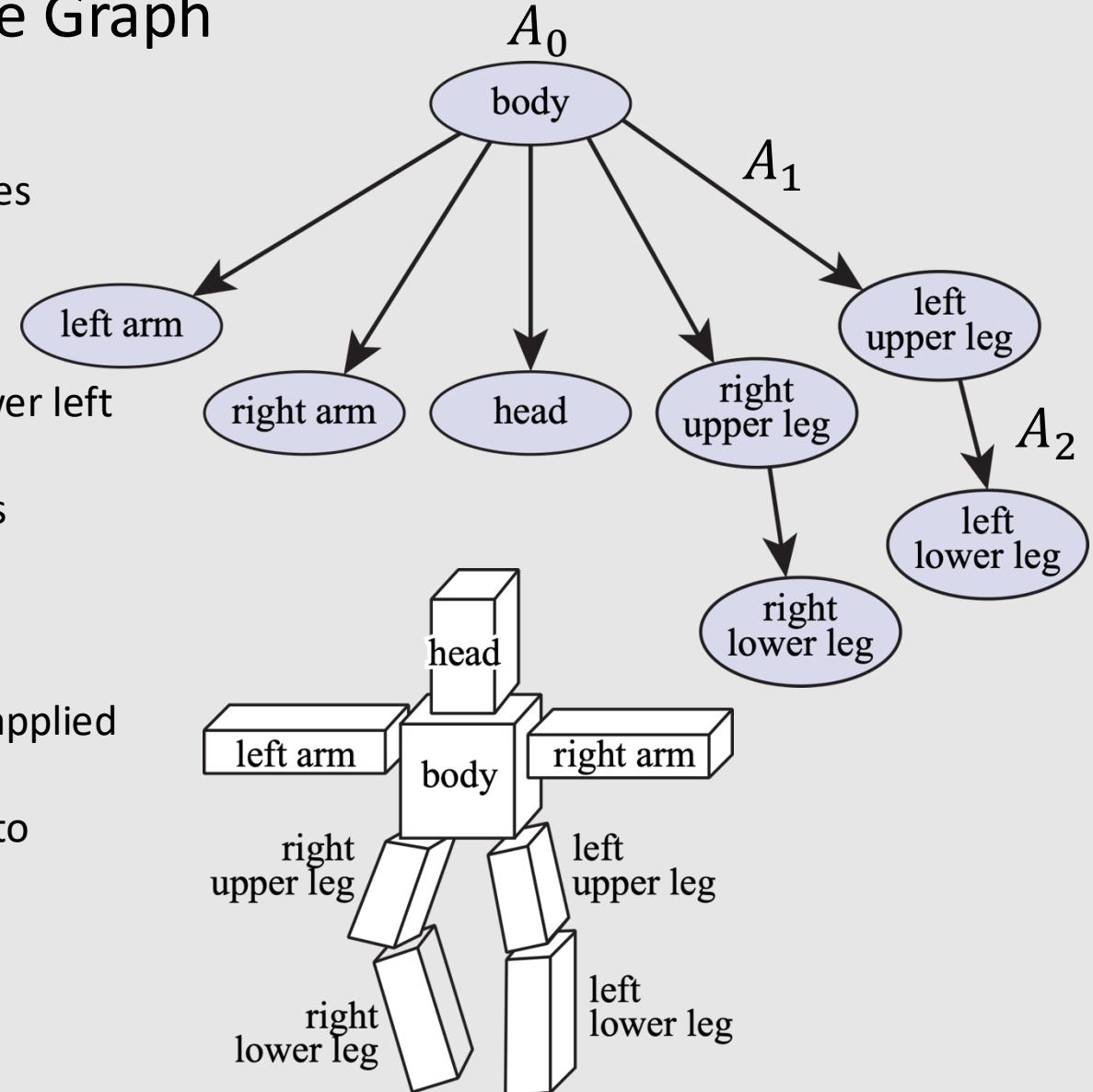


- Can think of vectors as “points at infinity” (sometimes called “ideal points”)
 - **But don’t actually go dividing by zero...**

Where can we use transforms?

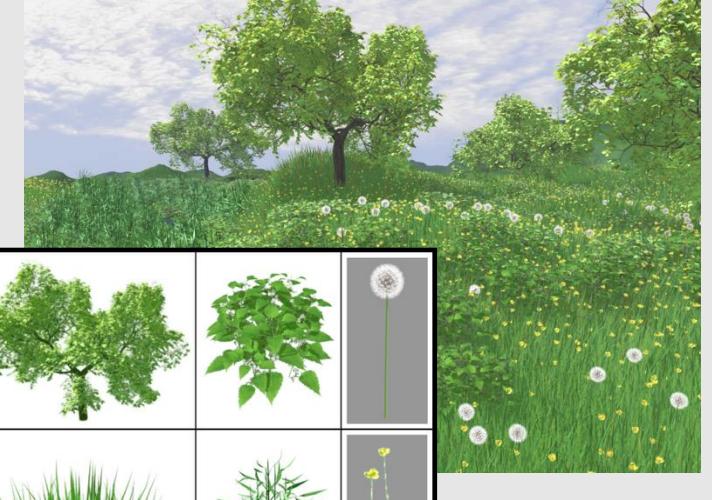
Scene Graph

- Suppose we want to build a skeleton out of cubes
 - **Idea:** transform cubes in world space
 - Store transform of each cube
- **Problem:** If we rotate the left upper leg, the lower left leg won't track with it
 - **Better Idea:** store a hierarchy of transforms
 - Known as a **scene graph**
 - Each edge (+root) stores a linear transformation
 - Composition of transformations gets applied to nodes
 - Keep transformations on a stack to reduce redundant multiplication
- **Lower left leg transform:** $A_0A_1A_2$

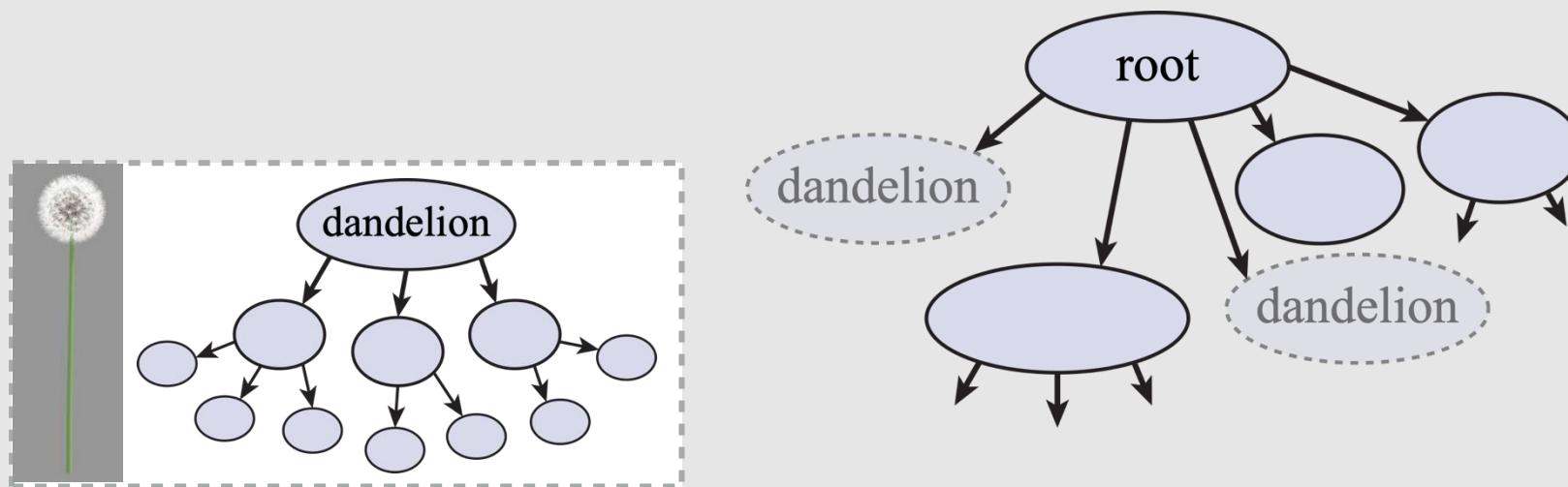


Instancing

- What if we want many copies of the same object in a scene?
 - Rather than have many copies of the geometry, scene graph, we can just put a “pointer” node in our scene graph
 - Saves a reference to a shared geometry
 - Specify a transform for each reference
 - **Careful!** Modifying the geometry will modify all references to it



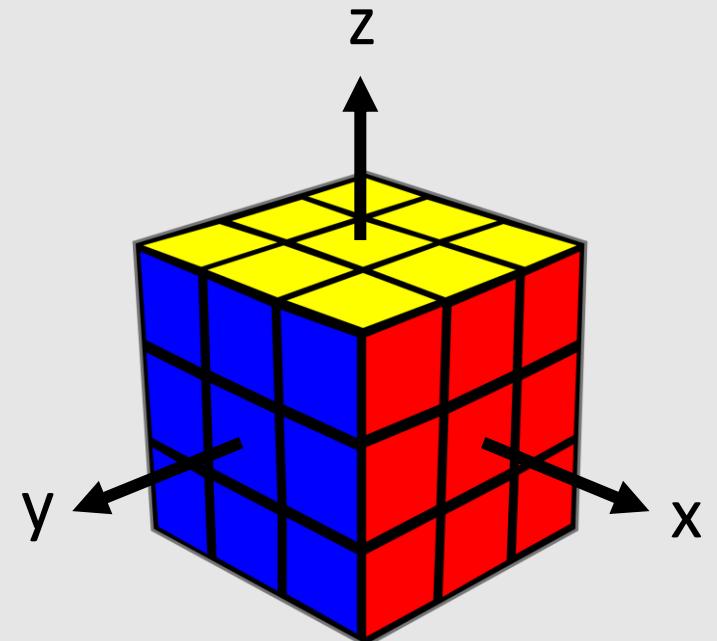
Realistic modeling and rendering of plant ecosystems
(1998) Deussen et al



- ~~The Rasterization Pipeline~~
- ~~Transformations~~
- ~~Homogeneous Coordinates~~
- 3D Rotations

3D Rotations

- Rotating in 2D is the same as rotating around the z-axis
- **Idea:** independently rotate around each (x,y,z)-axis for 3D rotations
- **Problem:** order of rotation matters!
 - Rotate a Rubik's cube 90deg around the y-axis and 90deg around the z-axis
 - Rotate a Rubik's cube 90deg around the z-axis and 90deg around the y-axis
 - They will not be the same!
 - Order of rotation must be specified



3D Rotations in Matrix Form

Idea: independently rotate around each (x,y,z)-axis for 3D rotations:

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & -\sin \theta_x \\ 0 & \sin \theta_x & \cos \theta_x \end{bmatrix} \quad R_y = \begin{bmatrix} \cos \theta_y & 0 & \sin \theta_y \\ 0 & 1 & 0 \\ -\sin \theta_y & 0 & \cos \theta_y \end{bmatrix} \quad R_z = \begin{bmatrix} \cos \theta_z & -\sin \theta_z & 0 \\ \sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Combining the matrices:

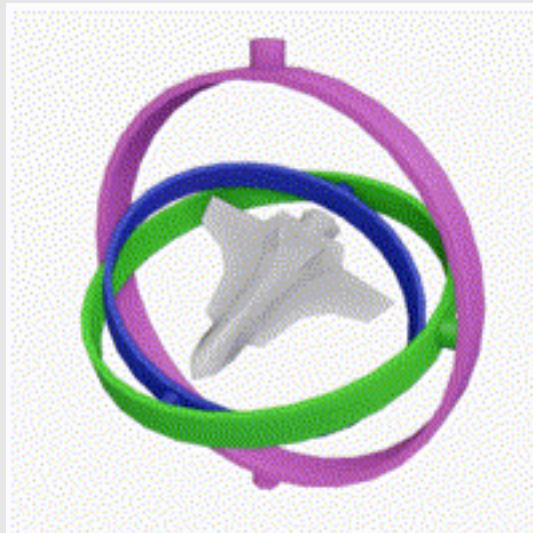
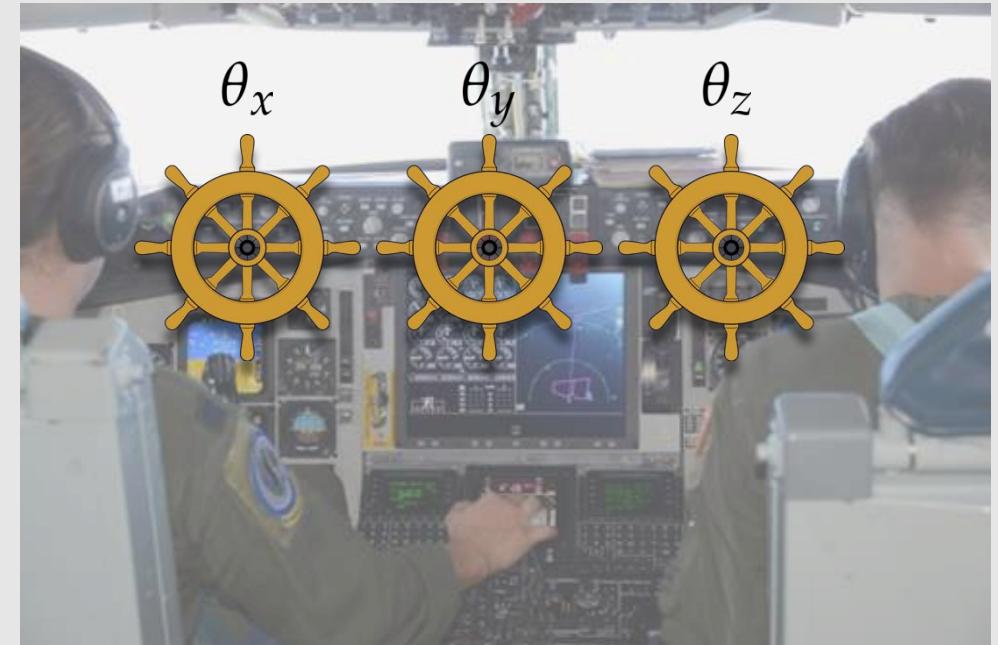
$$R_x R_y R_z = \begin{bmatrix} \cos \theta_y \cos \theta_z & -\cos \theta_y \sin \theta_z & \sin \theta_y \\ \cos \theta_z \sin \theta_x \sin \theta_y + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_y \sin \theta_z & -\cos \theta_y \sin \theta_x \\ -\cos \theta_x \cos \theta_z \sin \theta_y + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_y \sin \theta_z & \cos \theta_x \cos \theta_y \end{bmatrix}$$

Consider the special case $\theta_y = \pi/2$ (so, $\cos \theta_y = 0$, $\sin \theta_y = 1$):

$$\implies \begin{bmatrix} 0 & 0 & 1 \\ \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_z & 0 \\ -\cos \theta_x \cos \theta_z + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & 0 \end{bmatrix}$$

Gimbal Lock

- **No matter how we adjust θ_x , θ_z , can only rotate in one plane!**
- We are now “locked” into a single axis of rotation
 - Not a great design for airplane controls!



$$\Rightarrow \begin{bmatrix} 0 & 0 & 1 \\ \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_z & 0 \\ -\cos \theta_x \cos \theta_z + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & 0 \end{bmatrix}$$

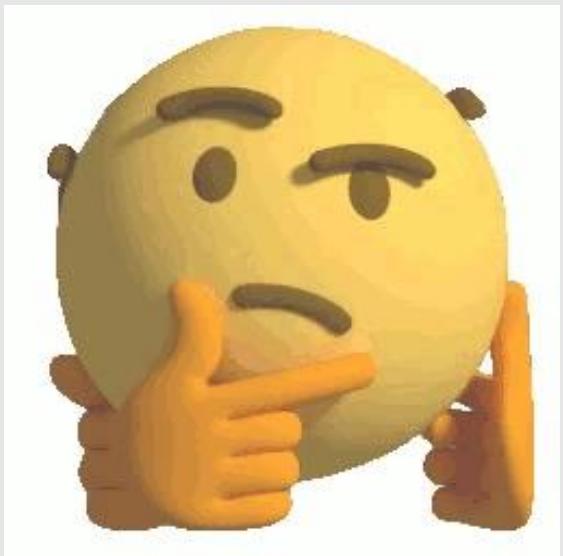
Rotation From Axis/Angle

Alternatively, there is a general expression for a matrix that performs a rotation around a given axis u by a given angle θ :

$$\begin{bmatrix} \cos \theta + u_x^2 (1 - \cos \theta) & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z (1 - \cos \theta) + u_y \sin \theta \\ u_y u_x (1 - \cos \theta) + u_z \sin \theta & \cos \theta + u_y^2 (1 - \cos \theta) & u_y u_z (1 - \cos \theta) - u_x \sin \theta \\ u_z u_x (1 - \cos \theta) - u_y \sin \theta & u_z u_y (1 - \cos \theta) + u_x \sin \theta & \cos \theta + u_z^2 (1 - \cos \theta) \end{bmatrix}$$

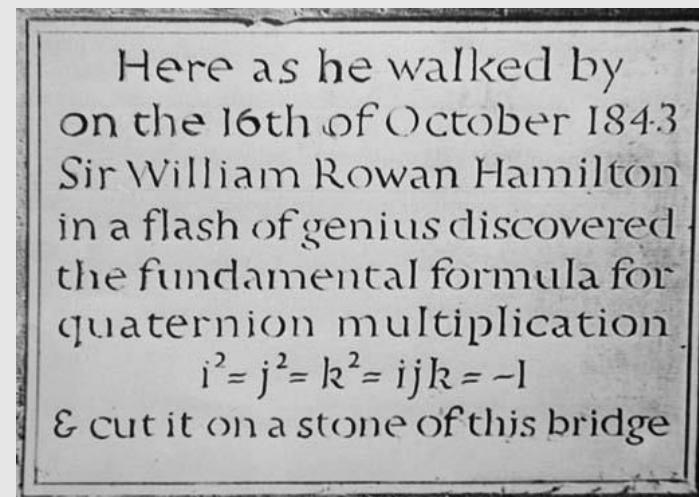
Just memorize this matrix! :)

Is there a better way to perform 3D rotations?



Bridging The Rotation Gap

- Hamilton wanted to make a 3D equivalent for complex numbers
 - One day, when crossing a bridge, he realized he needed 4 (not 3) coordinates to describe 3D complex number space
 - 1 real and 3 complex components
 - He carved his findings onto a bridge (still there in Dublin)
 - Later known as quaternions



William Rowan Hamilton
[1805 – 1865]

Quaternions For Math People

- 4 coordinates (1 real, 3 complex) comprise coordinates.
 - \mathbb{H} is known as the 'Hamilton Space'

$$\mathbb{H} := \text{span}(\{1, i, j, k\})$$

$$q = a + bi + cj + dk \in \mathbb{H}$$

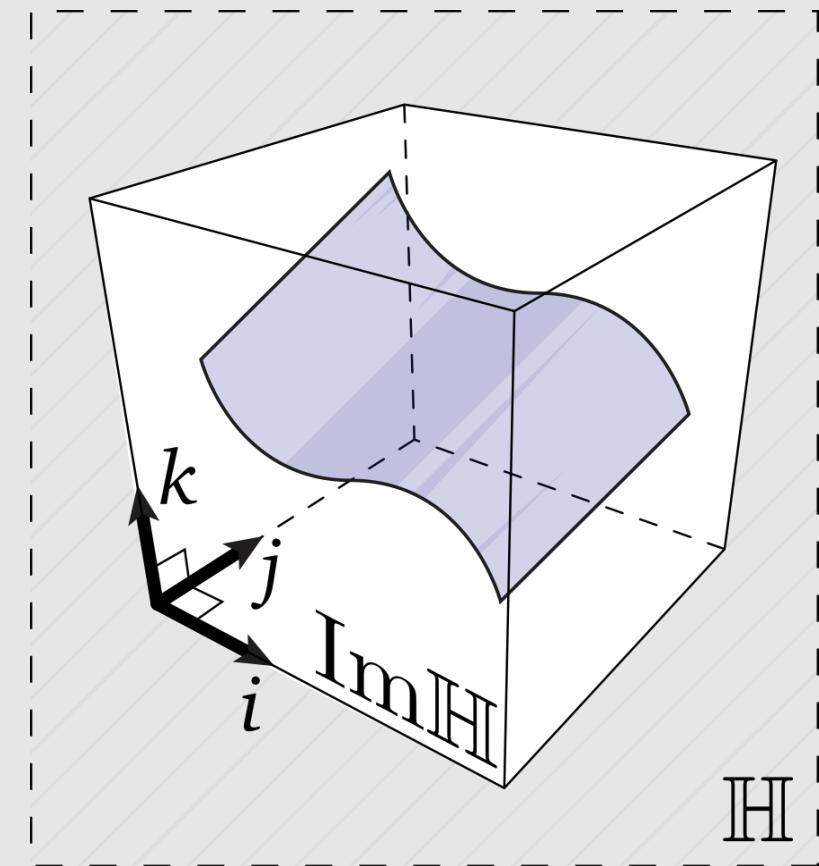
- Quaternion product determined by:

$$i^2 = j^2 = k^2 = ijk = -1$$

- **Warning:** product no longer commutes!

$$\text{For } q, p \in \mathbb{H}, \quad qp \neq pq$$

- With 3D rotations, order matters.



Quaternions For Non-Math People

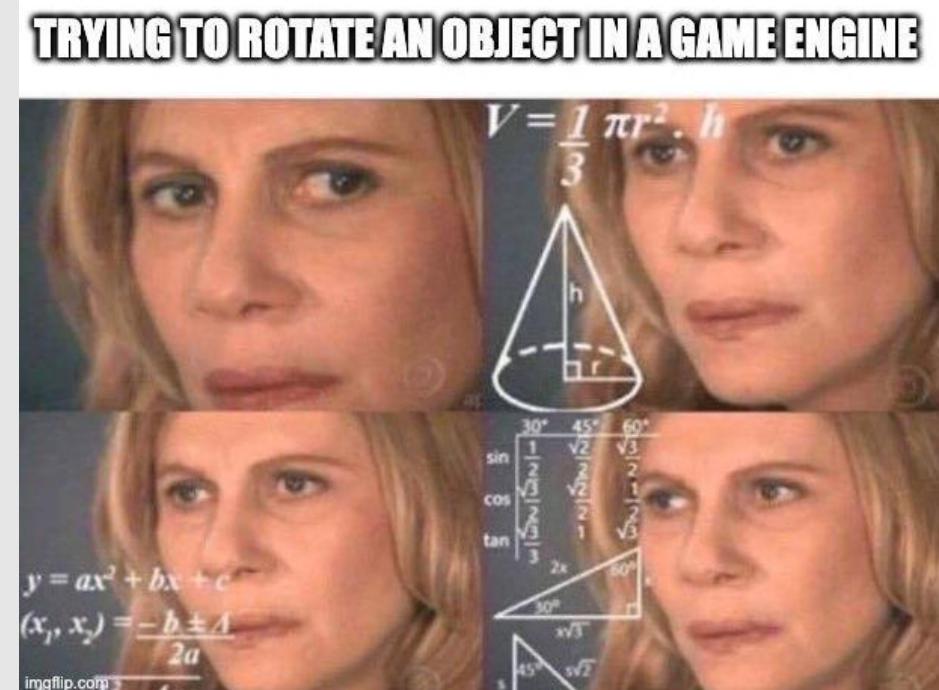
- Recall axis-angle rotations
 - Represent an axis with 3 coordinates (i, j, k)
 - Represent an angle by some scalar a
- Just like how we multiply rotation matrices together, we can also multiply complex components. If we represent:
 - i as a 90deg rotation about x -axis
 - j as a 90deg rotation about y -axis
 - k as a 90deg rotation about z -axis

$$i^2 = j^2 = k^2 = ijk = -1$$

- Then two 90deg rotations about the same axis will produce the inverted image, the same as scaling by -1
- This can also be rewritten as:

$$ij = k$$

- A 90deg x -axis rotation and a 90deg y -axis rotation is the same as a 90deg z -axis rotation
- Can be rewritten in any other way



Multiplying Quaternions

Given two quaternions:

$$q = a_1 + b_1i + c_1j + d_1k$$

$$p = a_2 + b_2i + c_2j + d_2k$$

Can express their product as:

$$\begin{aligned} qp = & a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 \\ & + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)i \\ & + (a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2)j \\ & + (a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2)k \end{aligned}$$

recall

$$i^2 = j^2 = k^2 = ijk = -1$$

The result still looks like a quaternion
But there's a better way to multiply...

Multiplying Quaternions

Recall quaternions can be thought of as an axis and angle:

$$(x, y, z) \mapsto 0 + xi + yj + zk$$

$$(\text{scalar, vector}) \in \mathbb{H}$$
$$\mathbb{R} \quad \mathbb{R}^3$$

Can express their product as:

$$(a, \mathbf{u})(b, \mathbf{v}) = (ab - \mathbf{u} \cdot \mathbf{v}, a\mathbf{v} + b\mathbf{u} + \mathbf{u} \times \mathbf{v})$$

If the scalar components are 0, we get:

$$\mathbf{u}\mathbf{v} = \mathbf{u} \times \mathbf{v} - \mathbf{u} \cdot \mathbf{v}$$

Rotating With Quaternions

- **Goal:** rotate x by angle θ around axis $u = (x, y, z)$:
 - Make x imaginary, and build q based on u and θ
 - **Note:** components of q must be normalized!

$$x \in \text{Im}(\mathbb{H})$$

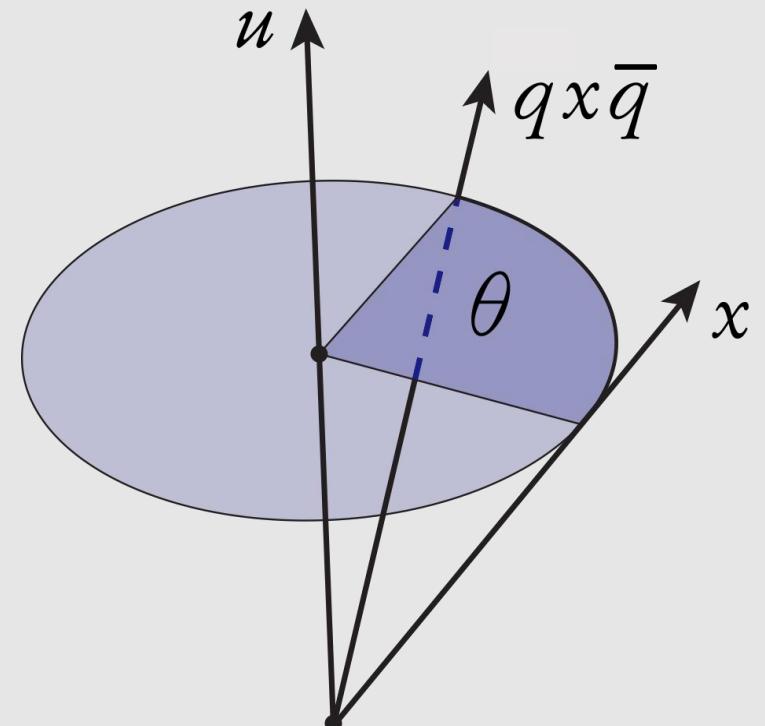
$$q \in \mathbb{H}, \quad |q|^2 = 1$$

$$q = \cos(\theta/2) + \sin(\theta/2)u$$

- q now looks like:

$$q = a + bi + cj + dk \in \mathbb{H}$$

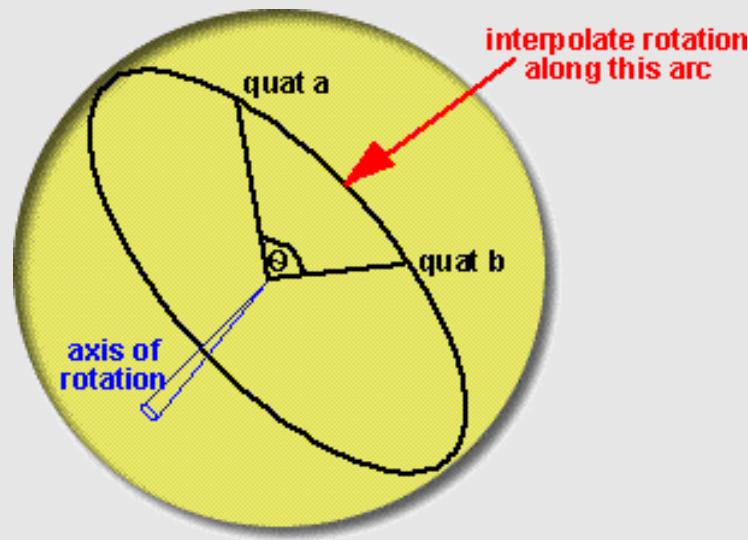
- \bar{q} is q with every complex component negative
- Now just compute $qx\bar{q}$ to get final rotation



Interpolating With Quaternions

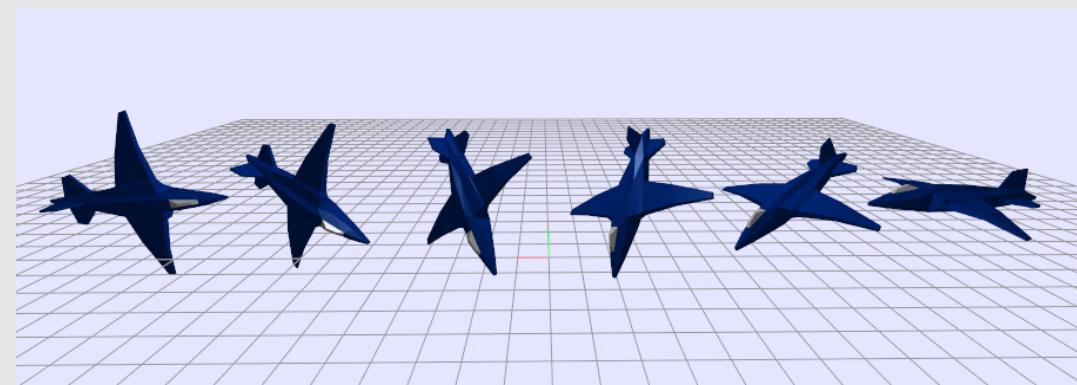
- Interpolating Euler angles can yield strange-looking paths, non-uniform rotation speed, etc.
 - Simple solution w/ quaternions: “SLERP” (spherical linear interpolation):

$$\text{Slerp}(q_0, q_1, t) = q_0(q_0^{-1}q_1)^t, \quad t \in [0, 1]$$



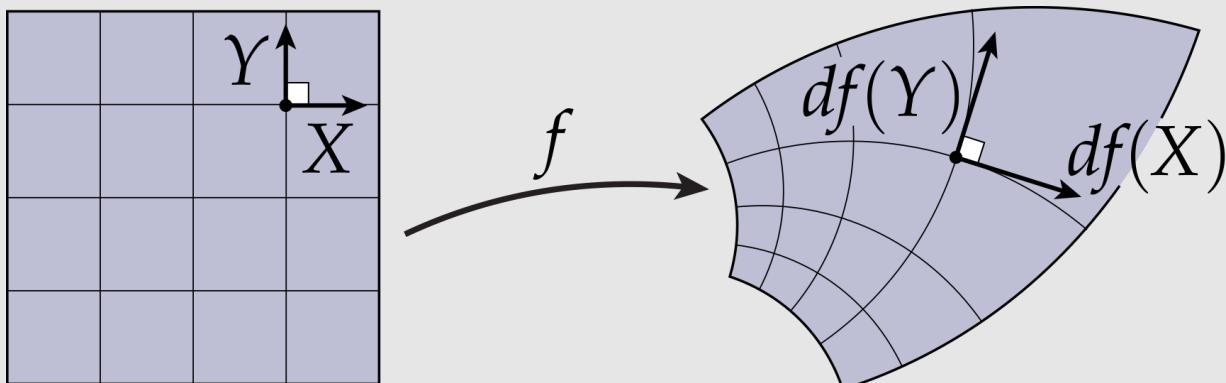
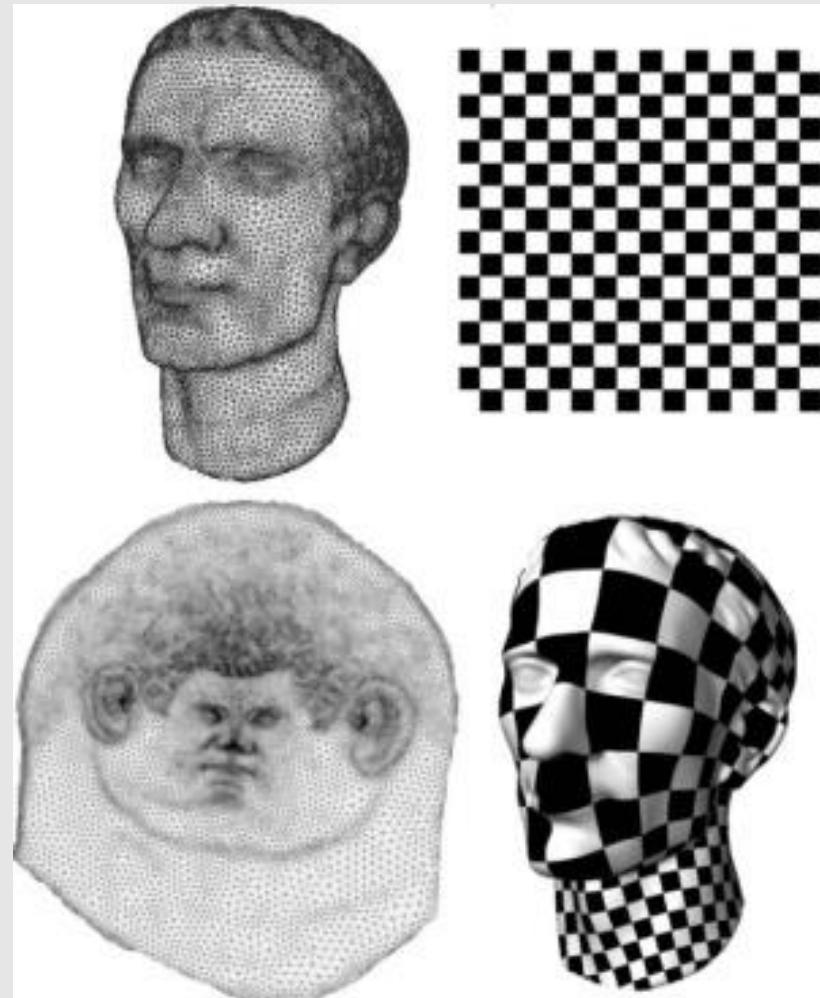
Animating Rotation with Quaternion Curves (1985) Shoemake

Fifa '15 (2014) Electronic Arts



Texture Mapping With Quaternions

- Quaternions can be used to generate texture maps coordinates
 - Complex numbers are natural language for angle-preserving (“conformal”) maps



Spatial Transformation Summary

[linear transformations]

- scaling
- rotation
- reflection
- shear

- Compose basic transformations to get more interesting ones
 - Always reduces to a single 4x4 matrix (in homogeneous coordinates)
 - Order of composition matters!
- Homogeneous coordinates can turn nonlinear transformations linear
- Many ways to decompose a given transformation (polar, SVD, ...)
- Use scene graph to organize transformations
- Use instancing to eliminate redundancy
- Quaternions help avoid troubles with Euler rotations in 3D (Gimbal Lock, Interpolation inconsistencies)

[nonlinear transformations]

- translation
- perspective projection

next lecture

Maxwell the cat (2022) Gary's Mod