Coordinate Spaces
& Transformations

Wrapup from Wednesday — References

class Vertex {

« We can declare functions that automatically public:
cast variables to ref on input and return HalfedgeRef& halfedge () {return halfedge;}
private:

* This does not mean that the variable
accepting the return must also be a ﬁéifedgeRef halfedge;
reference. Consider how h is being s .
assigned a reference even though it is not a

reference type itself
float totalArea = 0.0f;

« Sothen wh_y bother .returnlng a ref? FalfAdeeRef b = vert—shelfedaa(): do I
« Sometimes we just want reassurance if (!h->face()->is boundary()) {
that we're always returning a reference totalArea += h->face()->area();

to the same vertex halfedge in our call }

to vert->halfedge (), and that no

duplicates are being created |
while(h !'= vert->halfedge())

h = h->twin () ->next();

* The Rasterization Pipeline
* Transformations
* Homogeneous Coordinates

* 3D Rotations

15-362/662 | Computer Graphics

The Goal Of Graphics

* Render very high complexity 3D scenes

* Hundreds of thousands to millions
to billions of triangles in a scene

 Complex vertex and fragment
shader computations

* High resolution screen outputs
(~10Mpixel + supersampling)

 30-120 fps

* Limited hardware resources
e Can’t always afford an RTX 4090
e Be efficient enough to run on
commercial hardware

L 2 IR

Unreal Engine 5 Tech Demo (2020) Epic Games

Processing The Graphics Pipeline

* Modern real time image generation based on rasterization

 INPUT:
* 3D “primitives” —essentially all triangles!
e Colors
* Textures

* OUTPUT:

* Bitmap image (possibly w/ depth, alpha, ...)

INPUT RASTERIZATION OUTPUT
(TRIANGLES) PIPELINE (BITMAP IMAGE)
X?RTIifsl, 1) Bf ¢ 1, 1;-1)
Bel (=1, 1, 1) F: (=1, 1,~1)
Ce (1,=1, 1) &= (1=1;~1)
Pr (=17=17 1 3 H: (=1,=1;~1)

TRIANGLES

EHF, GFH, FGB, CBG,
GHC, DCH, ABD, CDB,
HED, ADE, EFA, BAF

Q: How do we write software
to perform rasterization?

Vertices

Primitives

Fragments

Pixels

The First Week of Class -- The Graphics Pipeline

°q
Vertex Generation °4 Verticesin 3D space

Vertex stream °2

vene‘Pmesﬂm ;.-..--.--.-.0.-..--.-..3

Vertex stream : ° © Vertices in positioned on screen

Primitive Generation °

Primitive stream

Primitive Processing

- Triangles positioned on screen
Fragment Generation :

(Rasterization) .
Fragment stream % %3 Fragments (one per pixel covered by triangle *)

Fragment Processing

Fragmentstream ﬁ ?- Shaded fragments

. Outputimage (pixels)

15-362/662 | Computer Graphics

Let’s simplify things a bit

15-362/662 | Computer Graphics

The “Simpler” Graphics Pipeline

w, h’

£ T

(0,0)
Project objects onto
thescreen

Sample triangle coverage

- A

Combine samples into final Sample texture maps / Interpolate triangle
image (depth, alpha, ...) evaluate shaders attributes at covered samples

15-362/662 | Computer Graphics

. Ther o otion Diool

* Transformations
* Homogeneous Coordinates

* 3D Rotations

15-362/662 | Computer Graphics

Transformations In Computer Graphics

e Common uses of linear transformations:
* Position/deform objects in space
 Camera movements
* Animate objects over time
* Project 3D objects onto 2D images
 Map 2D textures onto 3D objects
* Project shadows of objects onto other objects

* Today we’ll focus on common transformations of
space (rotation, scaling, etc.) encoded by linear
maps

15-362/662 | Computer Graphics

Review: Linear Maps

What does it mean for a map f: R™ — R" to be linear?

4\ o add first s

Xz g E

= =)

< =

=, —

= b

; —
@ ; 1 }

| > | FO+£(y)

then add =

f(x), f(y) > f(x+y)

Geometrically it maps lines to Algebraically it preserves vector space operations

lines, and preserves the origin (addition & scaling)

Review: Linear Maps

 Why do we care about linear transformations?
* Cheap to apply
* Usually pretty easy to solve for (linear systems)
* Composition of linear transformations is linear
* Product of many matrices is a single matrix
* Gives uniform representation of transformations
* Simplifies graphics algorithms, systems

cos O sin@ 0 a 0 0 cos6@ O sin 6 A1l Ap A
—sin @ cos@ O 0O o 0 0 1 0 o= | Ay A Arz
0 0 1 0 0 ¢ —smm6B 0 cos 6 A31 A32 A33

[rotation | [rotation] [composite]

Types of Transformations

[scale]

[translation]

[rotation]

[shear]

15-362/662 | Computer Graphics

Invariants of Transformation

A transformation is determined by the invariants it preserves

transformation invariants algebraic description

flax+ty) = af(x) + f(y),
f(0) =0

linear straight lines / origin

translation differences between pairs of points f(x-y) = x-y

: lines through the origin / direction
scaling

JX)/f(x)] = x/|x|

of vectors
. origin / distances between points / f(x)-f(y)| = |x-y]|,
rotation . .
orientation det(f) > 0

15-362/662 | Computer Graphics

Rotation

[keeps origin fixed] [preserves distance] [preserves orientation]

First two properties imply rotations are linear

We say that a transform preserves orientation if det(T) > 0

15-362/662 | Computer Graphics

2D Rotations

Rotations preserve distances and the origin—hence, a 2D rotation by an
angle 6 maps each point x to a point f(x) on the circle of radius |x]|:

15-362/662 | Computer Graphics

2D Rotations

[0] X f(x)

A 0 . [cos@]
— sin 1l .
bY) ' le cos@] s o
o]
R,—/
X1

M) 1 0 _ cos @ —sin @
X = [le — M [O] 5 [1] J&) = x [sin@] T 5 [COS 9]

Rotations (like all transforms) are linear maps.
We can express the transform as a change of bases:

cos@ —sin(@)| |x
sin@ cos(@)| |*2

Jo(X) = [

3D Rotations

In 3D, keep one axis fixed and rotate the other two:

[rotate around x4]

1 O 0
0 cosO —sin(0)
0 sin® cos(6)

X2

15-362/662 | Computer Graphics

[rotate around x,]

cos® 0 sin(0)

0 I 0
—sin@ 0 cos(0)

[rotate around x5]

cosO —sin(0) 0
sin@ cos(6) 0
0 0 1

3D Inverse Rotations

R' R
gl]
e, el e e
gL
e,] T

o F \? eTe,

p— F/ & \6/ p— egel

§ k/’ \\ eg e1

(1,0,0) 1 0 0 |

—| 0 0
0

15-362/662 | Computer Graphics

Reflections

 Does every matrix Q'Q = I represent a rotation?
* Must preserve:

* Origin

* Distance

* QOrientation

Y
 Consider:
o[10
0 1
Z

* Just like rotations, Q has nice inverse properties:

T,_ | (=1)* 0] _
Ce=1 "9 1|7

e But the determinant is negative!
* Not orientation preserving

15-362/662 | Computer Graphics

* Each vector u gets scaled by some scalar a
f(u)=au,a €R

* Scaling is a linear transformation
e Addition:

f(bu) = abu = bau = bf (u)

e Multiplication:

flu+v)=
a(u+v) =
au + av =

fa) +1(v)

15-362/662 | Computer Graphics

Scaling

Negative Scaling

Can think of negative scaling as a series of reflections

(o)= T le 1)

Also works in 3D:

0 —

o 0o]l[1 0O O]
1 0 0 —1 0
0 1[0 O 1

O =

S
|

flip x]

In 2D, two reflections so resulting (det(T) > 0)
In 3D, three reflections so resulting (det(T) < 0)

o = O

[flipz]

_— O

Non-Uniform Scaling

* To scale a vector u by a non-uniform amount (a, b, ¢):

a 0 0 [w | auy |
0 b 0|l w|=| b
0 0 ¢ U3 cu3
* The above works only if scaling is axis-aligned. What if it isnt? I

* |dea:

* Rotate to a new axis R
* Perform axis-aligned scaling D
* Rotate back to original axis R

A == RTDR

* Resulting transform A is a symmetric matrix

* Q: Do all symmetric matrices represent non-uniform scaling?

15-362/662 | Computer Graphics

Spectral Theorem

Spectral theorem says a symmetric matrix A = AT has:
* Orthonormal eigenvectors ey, ..., e,, € R"
* Real eigenvalues 14, ...,4, € R

WHAT GIVES PEOPLE
Eigenvalues represent the diagonals of the scalar transform
Eigenvectors are axis which we are scaling about FEEL‘NCS OF PO\,JER

e Can be represented as a rotation transform
MONEY

R:[el en} D = =3

A, STATUS l

Knowing
Can write the relationship as AR = RD what an |
e Equivalently, A = RDR' eigenvalue is I
Hence, every symmetric matrix performs a non-uniform scaling
along some set of orthogonal axes

Shear

* Ashear displaces each point x in a direction u according to its
distance along a fixed vector v: ‘

fu,v(x) =X+ (V: X)ll

* Still alinear transformation—can be rewritten as:

Agy =1+ uv’
e Example:
u = (cos(t), 0,0) 1 cos(t) 0 |
v =(0,1,0) Au,v =0 1 0
0 0 1

15-362/662 | Computer Graphics

Composing Transforms

— o

R, (0) Ry (1) S(t) A(t) = Ry (t)Ry (®)S(t)

We can now build up composite transformations via matrix multiplication

15-362/662 | Computer Graphics

Order matters when compositing transforms!

Composing Transforms

a
® ([]
1 o [)
< } >
3
A 4

[[scale by 1/2, then translate by (3,1)]
1 . a
< S Y >
{ o
' 0.5t o o
original — —t—t—t >
[original] =

[translate by (3,1), then scale by 1/2]

Composing Transforms

How would you perform these transformations?**

A f(xz).t. A I
3 %
4 . f(xs) l o f(x1) | fxs) & |
f(x2)
[]
< Xo] —r> ———%) — < {(xi): —a—i > <
1 f(x1)

v v f(xo)t

**remember there’s always more than one way to do so

Rotating About A Point

ol

A

\

A 4

y

[Step 0] compute x (dist. from origin)

4

A

@ X

a

A 4

\

y

[Step 2] rotate

4

A

® X

A

\

y

[Step 1] translate by -x

4

A

®

A 4

a

\

y

[Step 3] translate by x

A 4

Decomposing Transforms

* In general, no unique way to write a given linear
transformation as a composition of basic transformations!
* However, there are many useful decompositions:

e Singular value decomposition
* Good for signal processing

* LU factorization
e Good for solving linear systems

e Polar decomposition
e Good for spatial transformations

25

15-362/662 | Computer Graphics

34 —.
52
23

11

—.89
.70
—.69

Polar & Single Value Decomposition

Polar decomposition decomposes any matrix A into orthogonal
matrix Q and symmetric positive-semidefinite matrix P

rotation/reflection nonnegative
nonuniform scaling

7~
A=QP

Since P is symmetric, can take this further via the spectral
decomposition P = VDVT (V orthogonal, D diagonal):

A= QVDVT UDVT

U rotation ’ rotation

axis-aligned
scaling

Result UDVT is called the singular value decomposition

Interpolating Transformations [Linear]

Consider interpolating between two linear transformations
Ag, A1 of some initial model

Idea: take a linear combination of the two matrices

A() = (1 — t)A4, + tA,

t €[0,1]

Hits the right start/endpoints... but looks awful in between!

15-362/662 | Computer Graphics

Interpolating Transformations [Polar]

Better idea: separately interpolate components of polar decomposition

Ap = QoPy
A =0Q1P
[scaling] [rotation] [composite]

i

P()=0-1)P +tP Q(t) = (1 —1t)Qo +tQy A(t) = Q(t)P(t)

15-362/662 | Computer Graphics

Translation

e So far we've ignored a basic transformation—translations
* Atranslation simply adds an offset u to the given point x

fu® =x+u

e Is this translation linear?
* (certainly seems to move across a line...)

[additivity] [homogeneity]
fux+y)=x+y+u fu(ax) = ax+u
fuX) + fu(y) =x+y+2u afy(x) = ax+ au

Translations are not linear!

15-362/662 | Computer Graphics

Maybe translations turn linear when we go into the
4th dimension...

15-362/662 | Computer Graphics

 Homogeneous Coordinates

* 3D Rotations

15-362/662 | Computer Graphics

e Came from efforts to study perspective

* Introduced by Mobius as a natural way of assigning
coordinates to lines

* Show up naturally in a surprising large number of places in
computer graphics:

Homogeneous Coordinates

3D transformations
Perspective projection
Quadric error simplification
Premultiplied alpha
Shadow mapping
Projective texture mapping
Discrete conformal geometry
Hyperbolic geometry
Clipping

Directional lights

15-362/662 | Computer Graphics

Homogeneous Coordinates in 2D

* Consider any 2D plane that does not pass through the origin o in 3D
* Every line through the origin in 3D corresponds to a point in the
2D plane
e Just find the point p where the line L pierces the plane

* Consider a point p’ = (x,y), and the plane z = 1in 3D

* Any three numbers p = (a, b, ¢) such that (2,2) = (x,y) are

cC C
homogeneous coordinates for p

* Example: (x,y,1)
* Ingeneral: (cx,cy,c)for c #0
* The c iscommonly referred to as the homogeneous
coordinate

* Great, but how does this help us with transforms?

Translation in Homogeneous Coordinates

* A 2D translation is similar to a 3D shear
* Moving a slice up/down the shear
moves the shape

e Recall shear is written as:

fuy(X) =X+ (v,x)u

fuy®) = (I + uv’)x

* Inourcase, v =(001), so**

1 O Ui CP1
0O 1 w cp>
0 0 1 C

**most often in this class we will alsousec=1

P1 -

P2 -

2D Transforms in Homogeneous Coordinate

[original] [2D rotation] [2D translate] [2D scale]
Original shape in 2D can be Rotate around the z-axis Shear in direction of Scale x-axis and y-axis,
viewed as many copies translation preserve z-axis

along the z-axis

Q: What about 3D homogeneous coordinates?

15-362/662 | Computer Graphics

3D Transforms in Homogeneous Coordinate

—_— = =

Matrix representations of 3D linear transformations just get
an additional identity row/column:

cos@ O sin@ Ol [1 0 s O]l[a O O O0][1
0 | 0 0 O 1 ¢ O O o 0 O 0
—sin® 0 cos® O O 0 1 O O 0 ¢ O 0
0 0) 0 1100 0 T][0 00 1T]|0

o = O O

o O == O
_—s e

Points vs. Vectors

« Homogeneous coordinates should be used differently for points and vectors:
* Triangle vertices are “points” and should be translated and rotated
e Butif we do the same for the normal, it no longer becomes a
normal

* Idea: normalis a “vector” and should just rotate! **
* Set homogeneous coordinate to O

**translating or scaling a triangle should never change the normal

cos@ 0 sin6@ u ny

0 L0 v | m|
—sm6B 0 cosO w n3
0 0 0 1][1
[cos® 0 sin® u |[n

0 1 0 % no #
—sin® O cos@ w n3
0 0 0 1 1] 0

Points vs. Vectors in Homogeneous Coordinates

* Ingeneral:
* A point has a nonzero homogeneous coordinate (c = 1)
* A vector has a zero homogeneous coordinate (c = 0)
e But wait... what division by c mean when it’s equal to zero?
* Well consider what happens as ¢ approaches O...

(x,y)/1 (x,v)/0.5 (x,v)/0.25 (x,v)/0.001

e Can think of vectors as “points at infinity” (sometimes called “ideal points”)
* But don’t actually go dividing by zero...

Where can we use transforms?

15-362/662 | Computer Graphics

Scene Graph A,

e Suppose we want to build a skeleton out of cubes
* Idea: transform cubes in world space
e Store transform of each cube

* Problem: If we rotate the left upper leg, the lower left

leg won’t track with it
* Better Idea: store a hierarchy of transforms

left
* Known as a scene graph
* Each edge (+root) stores a linear
head lower leg

transformation
* Composition of transformations gets applied

left arm body right arm

to nodes
* Keep transformations o_n E'I sta!ck to richt left
reduce redundant multiplication upper leg upper leg
* Lower left leg transform: AyA 4, _ left
right lower leg

lower leg

Instancing

* What if we want many copies of the same object in a scene?
* Rather than have many copies of the geometry, scene
graph, we can just put a “pointer” node in our scene graph
e Saves a reference to a shared geometry
* Specify a transform for each reference
e Careful! Modifying the geometry will modify all
references to it

Realistic modeling and rendering of plant ecosystems
(1998) Deussen et al

4 dandehon)

~
- -

........
" ey

i
-

15-362/662 | Computer Graphics

3D Rotations

15-362/662 | Computer Graphics

3D Rotations

Rotating in 2D is the same as rotating around the z-axis
Idea: independently rotate around each (x,y,z)-axis for
3D rotations

Problem: order of rotation matters!
* Rotate a Rubik’s cube 90deg around the y-axis and
90deg around the z-axis
e Rotate a Rubik’s cube 90deg around the z-axis and
90deg around the y-axis
 They will not be the same!
* Order of rotation must be specified

3D Rotations in Matrix Form

Idea: independently rotate around each (x,y,z)-axis for 3D rotations:

1 0 0 | - cosfy 0 sin6, | cosf, —sinf, 0
Ry,=1 0 cosf, —sinb, Ry = 0] 0 R, = | sinf, cos6, O
| 0 sinfy cosby | —sin6, 0 cosb, | 0 0 1

Combining the matrices:

[cos 6y, cos 0, — cos By sin 0, sin 6,
RxRyR; = cos B, sin 0y sin), + cos by sinf; cosbycosb; —sinbysinb,sinf; — cosb, sin by
| —cos bty cosb;sinby +sinfysinf; cosb;sinby + cosbysinby,sinb, cosbycosb,

Consider the special case 8y = 1t/2 (so, cos By =0, sin By = 1):

I 0 0 1
— cos 6, sin 6, + cosf,sinf, cosB,cosb, —sinb,sinf, 0O
— €08 0y cos 0; +sinby sinb,; cosb,sinby + costysinb, 0 |

Gimbal Lock

* No matter how we adjust 0x, 0z, can only rotate in one plane!
* We are now “locked” into a single axis of rotation
* Not a great design for airplane controls!

cos B, sinfy + cosfysinf, cosBy,cosl, —sinb,sinb,
cos 0, cos B, +sinfy,sinf, cos6O,sinb, + cosb,sinf

15-362/662 | Computer Graphics

Rotation From Axis/Angle

Alternatively, there is a general expression for a matrix that
performs a rotation around a given axis u by a given angle 6:

" cos0+uz (1 —cos0) Uxty (1 —cosf) —uysin® uyu, (1 —cosf) + u, sinf]
uyty (1 —cos@) + u; sin6 cos 6 + ui (1 — cos0) uyuz (1 —cosf) — uysind
Luzty (1 —cos@) —uysin® uyuy (1 —cosf) + uysing cos@ +u? (1 —cosf) |

Just memorize this matrix! :)

Is there a better way to perform 3D rotations?

15-362/662 | Computer Graphics

Bridging The Rotation Gap

* Hamilton wanted to make a 3D equivalent for complex numbers

One day, when crossing a bridge, he realized he needed 4

(not 3) coordinates to describe 3D complex number space
* 1 realand 3 complex components

He carved his findings onto a bridge (still there in Dublin)

Later known as quaternions

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication

i’=j*= R*= ijR = -1
{ € cutit onastone of' thjs bridge

a2
3

William Rowan Hamilton
[1805 — 1865]

Quaternions For Math People

* 4 coordinates (1 real, 3 complex) comprise coordinates.
* His known as the ‘Hamilton Space’ Vababavavavavavawaa s :

H :=span({1,1,7,k})
g=a+bi+c+dkecH

e Quaternion product determined by:
2 =12 =k*=uyk= -1

* Warning: product no longer commutes!

Forg,pcH, qp# pq

* With 3D rotations, order matters.

Quaternions For Non-Math People

* Recall axis-angle rotations
* Represent an axis with 3 coordinates (i, j, k)
* Represent an angle by some scalar a

gq=a+bi+c+dkeH

e Just like how we multiply rotation matrices together, we can
also multiply complex components. If we represent:
[asa90deg rotation about x-axis
J as a 90deg rotation about y-axis
k as a 90deg rotation about z-axis

2 =12 =k*=yk=-1

Then two 90deg rotations about the same axis will
produce the inverted image, the same as scaling by -1
This can also be rewritten as:
ij=k
* A 90deg x-axis rotation and a 90deg y-axis rotation is
the same as a 90deg z-axis rotation
e (Can be rewritten in any other way

15-362/662 | Computer Graphics

Multiplying Quaternions

Given two quaternions:

q = daq —|—b11—|—C1]—|—d1k
p = day+ b1 + Co] + dok recall
Can express their product as: 12 =]2 — k2 — l]k = —1

/

qp = a1ay — biby — cycp —dqyds
+(a1by + bray 4+ c1dr — dqicp)1
—l—(fl1C2 — b1d2 + C1d? + dlbz)]
—|—({11d2 + bico — c1by + dlaz)k

The result still looks like a quaternion
But there’s a better way to multiply...

Multiplying Quaternions

Recall quaternions can be thought of as an axis and angle:
(x,y,2) = 0+ x1+y) + zk

(scalar, vector) € H
M M

R R3

Can express their product as:
(a,u)(b,v) =(ab—u-v,av+bu+u x v)

If the scalar components are 0, we get:

uv =u Xv—u-v

Rotating With Quaternions

Goal: rotate x by angle 8 around axisu = (x,y,2) :
* Make x imaginary, and build g based on u and 6
* Note: components of ¢ must be normalized!

x € Im(H)

geH, |q°=1

g =cos(0/2) +sin(0/2)u
q now looks like:

gq=a+bi+c+dkeH

q is q with every complex component negative
Now just compute gxqto get final rotation

Interpolating With Quaternions

Interpolating Euler angles can yield strange-looking
paths, non-uniform rotation speed, etc.
* Simple solution w/ quaternions: “SLERP”
(spherical linear interpolation):

Slerp(4o, 41,) = qo0(qy 'q1)", t € [0,1]

interpolate rotation

along this arc o , (TR
4 A R S
AROATR AL

A X A

Animating Rotation with Quaternion Curves (1985) Shoemake

Texture Mapping With Quaternions

* Quaternions can be used to generate texture maps
coordinates
 Complex numbers are natural language for
) maps

III

angle-preserving (“conforma

Spatial Transformation Summary

[linear transformations] [nonlinear transformations]
e scaling e translation
* rotation * perspective
* reflection projection \
e shear

next lecture

Compose basic transformations to get more interesting ones
* Always reduces to a single 4x4 matrix (in homogeneous
coordinates)
* Order of composition matters!
Homogeneous coordinates can turn nonlinear transformations linear
Many ways to decompose a given transformation (polar, SVD, ...)
Use scene graph to organize transformations
Use instancing to eliminate redundancy
Quaternions help avoid troubles with Euler rotations in 3D (Gimbal
Lock, Interpolation inconsistencies)

Maxwell the cat (2022) Gary’s Mod

	Slide 1: Coordinate Spaces & Transformations
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

