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Review: The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖 
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Reflectance Functions

• Reflectance Functions refer to how light reflects off a surface

• Bidirectional Reflectance Distribution Function (BRDF):
• Bidirectional – a function of two directions 𝜔𝑖 and 𝜔𝑜
• Reflectance – light changing directions
• Distribution – likelihood of light changing to a certain direction
• Function – it’s a function

• Represented as a Probability Distribution Function (PDF) 
• Indicating the likelihood an incident direction 𝜔𝑖 at point 𝐩 will 

reflect to an outgoing direction 𝜔𝑜
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Types of Reflectance Functions

• A BRDF is a passthrough function
• Example: an incoming ray 𝜔𝑖 at incident point p 

reflects 85% of red, 90% of green, and 50% of blue in 
the outgoing direction 𝜔𝑜 

• Written as 𝑓𝑟 p, 𝜔𝑖 → 𝜔𝑜 = < 0.85, 0.90, 0.50 >
• Remainder of light gets absorbed 

• Conservation of energy

• Multiply the BRDF function by the incident radiance to get 
the outgoing radiance:

• When people talk about BRDFs, think materials!
• Graphics is about seeing things
• How we see a BRDF defines how we see a material
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Types of Reflectance Functions

Ideal Specular

• Perfect mirror

Ideal Diffuse

• Uniform in all directions

Glossy Specular

• Majority of light in reflected direction

Retroreflective

• Reflects light back towards source
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Dirac Delta Distribution

• With ideal specular, the BRDF is a constant 
maximum reflectance (no energy absorbed) in the 
reflected direction

• 𝑓𝑟 p, 𝜔𝑖 → 𝜔′𝑖 = < 1.0, 1.0, 1.0 >
• 𝜔′𝑖 is the incoming direction reflected 

about intersection point p’s normal

• Can represent the PDF of an ideal specular as a 
dirac delta (𝜹) function

• 1 in one place, 0 everywhere else
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Reflectance Direction

• Isotropic BRDFs are fixed when the incident and 
exiting directions are rotated about the normal

• Anisotropic BRDFs vary when the incident and 
exiting directions are rotated about the normal

[ isotropic ] [ anisotropic ]
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Models Of Scattering

• How can we model “scattering” of light?
• Many different things could happen to a photon:

• Bounces off surface
• Transmitted through surface
• Bounces around inside surface
• Absorbed and re-emitted

• What goes in must come out! 
• Total energy must be conserved
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Much More Than Just A BRDF

• BRDFs - Bidirectional Reflectance Distribution Function 
• Describes light reflecting without entering the surface
• Ex: lambertian, mirror

• BTDFs - Bidirectional Transmittance Distribution Function 
• Describes light entering the surface
• Ex: glass

• BSDFs - Bidirectional Scattering Distribution Function
• Encapsulates BRDFs and BTDFs
• BRDFs are just more common in literature : ) 
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Much Much More Than Just A BRDF

• BSSRDFs, *SS - Surface Scattering
• Describes light entering and scattering the 

surface before being reflected out
• Ex: milk

• BSSTDFs, *SS - Surface Scattering
• BTDF but with subsurface scattering
• Ex: also milk

• BSSDFs, *SS - Surface Scattering
• Encapsulates BSSRDFs and BSSTDFs
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BRDF Examples

BRDFs can be a mix of diffuse and specular

[ diffuse ] [ plastic ] [ semi-gloss ]

[ mystic lacquer ] [ mirror] [ gold]
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Hemispherical Incident Radiance

Consider a hemisphere view from this point

At any point on any surface in the scene, there’s an incident radiance field that 
gives the directional distribution of illumination at the point
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Diffuse Exitant Radiance

[ incident radiance ] [ exitant radiance ]

Colors sampled from uniform hemisphere blend all colors into one average color.
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Ideal Specular Exitant Radiance

[ incident radiance ] [ exitant radiance ]

Incident radiance is “flipped around normal” to get exitant radiance.
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Plastic Exitant Radiance

[ incident radiance ] [ exitant radiance ]

Incident radiance gets flipped and blurred.
Common example of a material that has both diffuse and specular properties.



15-362/662 | Computer Graphics Lecture 12 | BRDFs

Copper Exitant Radiance

[ incident radiance ] [ exitant radiance ]

More blurring, plus coloration (nonuniform absorption across frequencies).
Copper absorbs some colors, and emits the rest, giving it a “warm brown” color.



• When integrating the BRDF over the hemisphere, total 
value will be less than or equal to 1

• Conservation of energy: outgoing energy should be less 
than or equal to incoming energy

• Energy should not be created
• Energy lost is absorbed into the intersected material

• BRDF helps capture that absorption

• BRDF can never be negative

• A negative BRDF would imply negative energy???
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Integration of BRDF
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Radiometric Description of BRDF

• Recall: differential irradiance landing on surface 
from differential cone of directions 𝜔𝑖

• Recall: differential radiance reflected in direction 
𝜔𝑟 (due to differential irradiance from 𝜔𝑖) 

• BRDF captures the ratio between the incoming 
irradiance and the outgoing radiance

• Given the incoming irradiance, computes the 
outgoing radiance

measured in steradians
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• Materials

• Environment Lighting
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Change Of Syntax

• Surface-local space
• Normal is 𝑛 = < 0, 1, 0 >
• Unit directions 𝑤𝑖 and 𝑤𝑜 point away from 

intersection point 𝑝

• All material interactions will occur in surface-local space
• Transform 𝑤𝑖 to surface-local space
• Compute new outgoing ray 𝑤𝑜 
• Transform 𝑤𝑜 back to world space
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Lambertian Material

• Also known as diffuse

• Light is equally likely to be reflected in each output 
direction

• BRDF is a constant, relying on albedo (𝜌)

• BRDF can be pulled out of the integral

• Easy! Pick any outgoing ray 𝑤𝑜 
Minions (2015) Illumination Entertainment



15-362/662 | Computer Graphics Lecture 12 | BRDFs

Lambertian Material

• The albedo (𝜌)  describes how much of each color is 
is reflected

• Why does the Lambertian PDF divide by 𝝅?
• Consider our irradiance integral:

• If the albedo is 1, then the integral is greater 
than 1 (cosine integral over hemisphere is 𝜋)

• Divide the albedo by 𝜋 to normalize the 
irradiance so it is less than or equal to 1



• Reflectance equation described as:

• Recall incoming and outgoing rays share same origin 
point p

• BRDF represented by dirac delta (𝛿) function
• 1 when ray is perfect reflection, 0 everywhere else
• All radiance gets reflected, nothing absorbed

• In practice, no hope of finding reflected direction via 
random sampling

• Simply pick the reflected direction!
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Reflective Material
[ side view ]

[ top view ]
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• 𝜂𝑖 and 𝜂𝑡 describe the index of refraction of the incoming 
and outgoing mediums

• Example: 𝜂𝑖 is air, 𝜂𝑡 is water 

• 𝜂 is the ratio of the speed of light in a vacuum to that 
in a second medium of greater density

• The larger the 𝜂, the denser the material

Vacuum
Air (sea level)
Water (20°C)
Glass
Diamond

1.0
1.00029
1.333
1.5-1.6
2.42

Medium 𝜼
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• Can rewrite the equation as:
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• Can rewrite the equation as:

what if the term in the square root is negative?



0 < 𝑐𝑜𝑠2𝜃 < 1
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Refractive Material
[ side view ]

[ top view ]

We know that:

0 < 1 − (1 − 𝑐𝑜𝑠2𝜃) < 1

And so:

But if 𝜂𝑖/ 𝜂𝑡 > 1 then it is possible that:

This is known as total internal reflection, and happens when 
the incoming index 𝜂𝑖 is denser than the outgoing index 𝜂𝑡

Hence 𝜂𝑖/ 𝜂𝑡 > 1 
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Total Internal Reflection

• When going from a more dense (i.e water) to less dense 
(i.e air) material, light will bend more towards the horizon

• The incident angle that causes an outgoing 90deg 
angle is the critical angle

• Can solve for critical angle by solving for 𝜃:

• When the critical angle is exceeded, the ray is 
reflected back into the surface

1 −
𝜂𝑖

2

𝜂𝑡
2 (1 − 𝑐𝑜𝑠2𝜃) = 0

reflections at surface 
of water viewing from 
under the surface 
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Optical Manhole

• Works the other direction too
• Light rays from air entering water bend 

themselves into a smaller solid angle 
• Pitch black in surrounding areas

• Gives the illusion that light is a small cone 
around user
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• BRDF represented by dirac delta (𝛿) function
• 1 when ray is perfect refraction, 0 everywhere else
• Edge Case: 1 when ray is total internal reflection
• All radiance gets reflected, nothing absorbed

• In practice, no hope of finding refracted direction via 
random sampling

• Simply pick the refracted direction!
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Refractive Isn’t Just Refractive

Refraction

Reflection
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Fresnel Reflectance

• The amount of reflectance increases for refractive 
material as the angle from the normal increases

• i.e the angle gets steeper

• Known as the Fresnel coefficient

Lafortune et al. (1997)
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Fresnel Coefficient

Computing the Fresnel coefficient is kinda hard…
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Schlick’s Approximation

Easier to compute : )

Harder to spell : (

𝑐𝑜𝑠𝜃 is the same as 𝑛 ∙ 𝜔
for normal 𝑛 and ray 𝜔
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Glass

• Comprised of both reflection (Fresnel) and refraction (Snell)

void glass(ni, nf, ray ri, ray *rf)
{
  bool internal_reflect = refract(ni, nf, ri, rf);
  if(internal _reflect) {
    // if refraction fails, reflect
    reflect(ri, rf);
    return;
  }

  // compute Fresnel for probability split
  float fr = fresnel(ni, nf, *rf);
  float p = rand();
  if (p < fr) {
    // fr% chance of reflecting
    reflect(ri, rf);
  }
  else {
    // 1 - fr% chance of refracting
    // already refracted, nothing left to do
  }
}
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Glass

[ without Fresnel ]
constant reflection

[ with Fresnel ]
varying reflection
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Recall: Environment Light

• Sample light directly from an image
• No intensity falloff. Image distance is at infinity
• Very easy to check for visibility

• Every point in active area

• We’ll learn how to build this in a future lecture
Uncharted 4 (2016) Naughty Dog

Lecture 12 | BRDFs

now
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Environment As A Light

• Environment lighting is more than just placing a 
background image in the scene

• Scene elements can use the background as a 
light source, sampling emitted colors the same 
way we would sample from regular lights

• Saves heavily on compute costs
• No need to create complex background 

geometry
• Think of it as baking diffuse information into a 

texture and then using that texture as a light

• Best part: any image can be used as an 
environment light!

Lecture 12 | BRDFs

Monster’s University (2013) Pixar
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Polar Coordinates

• Normally refer to coordinates on an image by 
cartesian [𝑥, 𝑦] coordinates

• Since we ”wrap” an image around a scene as a 
sphere, more intuitive to refer to coordinates on an 
image by polar [𝜃, 𝜑] coordinates

• Easy to convert back to cartesian

Lecture 12 | BRDFs
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Uniform Sampling

• When our ray terminates, we randomly sample a 
light source

• If the light source we pick is the environment 
map, where on the image do we sample?

• Idea: randomly sample a direction on the unit 
sphere, trace ray to environment map

• Surface area of unit sphere is 4𝜋, pdf is 1
4𝜋

• Scotty3D has a hemisphere sampler, how can we 
extend that to a sphere sampler?

• Flip a coin, flip the sign
• Cut the pdf in half: 1

2𝜋
∗ 1

2
= 1

4𝜋

Lecture 12 | BRDFs

focus on all areas equally
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Uniform Sampling

Lecture 12 | BRDFs

void env_lighting(ray ri)
{
  // generate ray uniformly
  ray rf = hemisphere::sampler();
  // half chance of flipping ray
  // our ”clever” sphere sampler
  float p = rand();
  if (p > 0.5) {
    rf.y = -rf.y;
  }

  // double the options, half the pdf
  float pdf = hemisphere::pdf() * 0.5;

  // trace ray into environment map
  trace_ray(rf);
}

• Why do we need to trace the environment 
lighting ray? Can just sample image pixel

• Environment lighting ray may still be 
occluded by scene geometry!
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Uniform Sampling

Lecture 12 | BRDFs

• Issue: uniform sampling takes a long time 
to converge

• Mixing dark regions of the image 
with light regions

• Gives appearance of high 
variance

• Will converge with enough samples, 
but needs a lot of samples

• Is there another approach we can use that 
prioritizes areas with high info (light)?
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Importance Sampling

Lecture 12 | BRDFs

focus on bright 
regions

• Idea: sample a direction on the unit sphere 
proportional to the luminance at that pixel

• Brighter areas are more important

• Algorithm:
• Assign a probability to each pixel 

proportional to its luminance
• Use inversion sampling to pick a sample 

based on the new probability distribution
• Create and trace a ray to pixel
• Divide contribution by PDF of selected pixel

• Division helps keep sampler unbiased
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Creating A PDF

Lecture 12 | BRDFs

• PDF of a pixel should be proportional to its flux
• Flux = luminance ∗ solid angle
• Luminance is 𝐿
• Solid angle is 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑

• Area for each pixel is the same
• Simplifies to 𝐿𝑠𝑖𝑛𝜃

• Already have a mapping from [𝑥, 𝑦] to [𝜃, 𝜑]

• To make sure distribution is valid, need to 
normalize PDFs

• Divide every PDF by the sum of all PDFs

• How can we use that info to sample pixel with a 
discrete probability distribution?
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Inversion Sampling

Lecture 12 | BRDFs

• Convert PDF to CDF:

• Image is 2D, CDF is 1D
• Flatten image into 1D array

• Recall images are 1D in memory

• Generate random number 𝑟 between 0 and 1
• Find index 𝑖 such that:

• Convert 𝑖 to polar coordinates [𝜃, 𝜑]
• Construct and trace ray from polar 

coordinates

𝑐𝑑𝑓(𝑖)  =  𝑝𝑑𝑓(𝑖)  +  𝑐𝑑𝑓(𝑖 − 1)

𝑐𝑑𝑓 𝑖 − 1 < 𝑟 <  𝑐𝑑𝑓(𝑖)
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Importance Sampling

Lecture 12 | BRDFs

void env_lighting(ray ri)
{
  // generate pdf and cdf
  vector<float> pdf = Image::pdf();
  vector<float> cdf = Image::cdf(pdf);
  
  // inversion sampling
  float p = rand();
  auto i = upper_bound(cdf.begin(), 
                       cdf.end(), p);
  
  // create ray from target pixel
  ray rf = ray_from_index(i);

  // trace ray into environment map
  trace_ray(rf);
}

• Notice how we do not even use the 
incoming ray

• Both uniform and importance 
ignore incident directions
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Uniform vs. Importance

Lecture 12 | BRDFs

Importance sampling is better able to capture directional light 
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Uniform vs. Importance

Lecture 12 | BRDFs

Importance sampling is better able to capture sparse lights
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• Monte-Carlo Sampling

• Biased vs Unbiased Estimators

• Physically-Based Rendering Methods
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What Makes A Render Expensive

• Number of Rays
• How many rays traced into the scene

• Measured as samples (rays) per pixel [spp]

• Number of Ray Bounces
• How ray bounces before termination

• Measured as ray bounce/depth

• Choosing the right number is difficult
• Similar to sample theory

Star Wars VII: The Force Awakens (2015) Lucasfilm

Lecture 16 | Variance Reduction
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Number Of Ray Samples

• Number of Rays
• How many rays traced into the scene

• Measured as samples (rays) per pixel [spp]

• Increasing number of rays increases image quality
• Anti-aliasing
• Reduces black spots from terminating emission 

occlusion

[ 16 spp ]
[ 1 spp ]

Lecture 16 | Variance Reduction
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Number Of Ray Samples

Pinhole

• Having more rays similar to taking more 
samples in rasterization

• Samples taken in a larger sample 
buffer and resolved into smaller 
output buffer

• More likely to find terminating ray that 
reaches light source/not be occluded

Lecture 16 | Variance Reduction
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Number Of Ray Bounces

• Number of Ray Bounces
• How ray bounces before termination

• Measured as ray bounce/depth

• Increasing ray bounces increases image quality
• Better color blending around images
• More details reflected in specular images

[ 8 depth ]
[ 2 depth ]

Lecture 16 | Variance Reduction
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Number Of Ray Bounces

Pinhole

• Having more ray bouncing allows for 
better color blending

• Final ray will be a larger mix of 
blue/orange than the original 
yellow

• Can render more interesting reflective 
and refractive paths with more bounces

Lecture 16 | Variance Reduction



Direct VS Indirect Illumination

• Direct Illumination: Direct path from emitter 
to point

• Indirect Illumination: Multi-bounce path 
from emitter to point

• Bounce describes how many piecewise linear 
rays we can stich together to form a path

• Direct is 1-bounce
• Indirect is N-bounce

• Some authors say Direct is 0-
bounce [index at 0]
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Direct VS Indirect Illumination
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[ Direct + Reflection + Refraction ]** [ Global ]

**Normally can’t do reflection & refraction in direct illumination
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Wait a minute…
direct illumination looks like rasterization

Lecture 16 | Variance Reduction



Direct VS Rasterization

• Food for thought: rasterization traces rays from a 
point in the output buffer to a shape in the scene

• Even in rasterization, shapes have depth
• We only care about the closest object we 

see (transparency disabled)

• Both rasterization and direct illumination only 
ever trace one ray!
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Direct VS Indirect Illumination

Minecraft (2020) Microsoft

• Direct Illumination gives you efficiency
• Easy to render
• Straightforward complexity
• Comparable to rasterization in difficulty
• Amendable to ray packeting
• Easy real-time performance

• Indirect (Global) Illumination gives you quality
• Some materials require multi-bounces

• Ex: refraction
• Ambient occlusion
• Higher contrast
• Samples converge to true values

• More bounces = ↓ efficiency, ↑ quality 
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So how do we take multiple samples?

Lecture 16 | Variance Reduction
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Continuous Vs. Discrete

• Our eyes see a continuous signal of energy

• Our digital cameras see a discrete signal of energy
• Computers process discrete values

• Let the following integral be the true continuous 
signal of the scene:

• Approximate the integral by taking multiple samples 
of our discrete scene function:

• We compute the average sample by dividing by N
• We multiply by the size of the domain, which is 2pi

Lecture 16 | Variance Reduction
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Sampling Rays

• Issue: Responsible for picking rays since 
we are no longer integrating over every 
possible ray direction in hemisphere

• Some rays will be better than others
• Again, similar to sample theory

• Idea: pick rays from a PDF 
• Uniform PDF: ray sampled in 

uniformly random direction in 
hemisphere

• Cos-weighted PDF: rays are more 
likely to be sampled in the direction 
of the normal [ uniform sampling ] [ cosine sampling ]

Lecture 16 | Variance Reduction
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But wait,
Isn’t taking non-uniform samples biased?

Lecture 16 | Variance Reduction
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• Monte-Carlo Sampling

• Biased vs Unbiased Estimators

• Physically-Based Rendering Methods
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Biased vs. Unbiased Renderer

• An unbiased renderer tries to mimic the 
uniformity of real life

• Does not introduce systematic bias
• Taking more samples will reduce error
• Approaches ground truth with infinite 

sampling

• A biased renderer will take shortcuts to 
make renders look better

• Taking more samples may introduce 
even more signal than the original 
image

• Usually faster rendering/less samples
• Can seek out more difficult paths

• When comparing render methods, makes 
more sense to compare unbiased methods

Lecture 16 | Variance Reduction
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Biased vs. Unbiased Example

[ p
df

 ]
[ s

am
pl

es
 ]

• In a biased estimator, draw samples proportional to the PDF
• More samples drawn where PDF is high
• Under-sampling where PDF is low

• The good news is that it is easy to turn this biased estimator 
into an unbiased one!

• To make this biased estimator unbiased, simply divide by 
the PDF of the sample

• Samples with a high PDF are divided by a high value, 
not increasing its contribution much

• Samples with a low PDF are divided by a low value, 
increasing its contribution a lot

• Produces an unbiased sample set 

Lecture 16 | Variance Reduction
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The Monte Carlo Estimator

• Named Monte Carlo after the famous gambling 
location in Monaco 

• Shares the same random characteristic as a 
roulette game

• Algorithm:
• Sample a direction based on the PDF 𝑝(𝑤𝑗)
• Compute the incident radiance of the direction
• Divide by the PDF 𝑝(𝑤𝑗) to make unbiased
• Repeat, averaging the samples together

Lecture 16 | Variance Reduction

Note!   We no longer multiply our average by the size of the 
domain.   Dividing by the PDF takes care of that for us.   Why?    
Because the PDF must integrate to 1 over the entire domain. 
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Monte Carlo Uniform Sampling

• Let 𝑓(𝑤) be the incident radiance [ignoring BRDF]
• Let 𝑝(𝑤) be the PDF of the sampled direction 𝑤

• Taking random samples leads to:

• PDF is constant in all directions, just multiply by scalar 2𝜋

Lecture 16 | Variance Reduction
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Monte Carlo Cosine Sampling

• Let 𝑓(𝑤) be the incident radiance [ignoring BRDF]
• Let 𝑝(𝑤) be the PDF of the sampled direction 𝑤

• Taking random samples leads to:

• PDF removes the cosine term, we now get more radiance per sample!

Lecture 16 | Variance Reduction
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How do we get a good sense of “how well” we did?

Lecture 16 | Variance Reduction
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Variance

• Variance is how far we are from the average, 
on average

• Discrete:

• Continuous:

Lecture 16 | Variance Reduction



15-462/662 | Computer Graphics

Variance In Rendering

Lecture 16 | Variance Reduction

[ low variance ][ high variance ]
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Variance Reduction Example

• What’s the expected value of the integrand?
• Just by inspection: 1/2 (half black, half white)

• What’s the variance?
• (1/2)(0-1/2)2 + (1/2)(1-1/2)2 = (1/2)(1/4) + (1/2)(1/4) = ¼

• How do we reduce the variance?

Lecture 16 | Variance Reduction

2

2

0
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Trick question!
You can’t reduce the variance of an integrand.

Can only reduce variance of an estimator.
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Bias & Consistency

• An estimator is consistent if it converges to 
the correct answer:

• An estimator is unbiased if it is correct on 
average:

• consistent != unbiased

Lecture 16 | Variance Reduction

near infinite # of samples

even if just 1 sample
[ biased ] [ unbiased ]
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Consistent Or Unbiased?

Lecture 16 | Variance Reduction

[ m = 4 ] [ m = 16 ]

[ m = 64 ] [ m = ∞ ]

• Estimator for the integral over an image:
• Take n = m x m samples at fixed grid 

points
• Sum the contributions of each box
• Let m go to ∞

• Is the estimator:
• Consistent?
• Unbiased?
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Consistent Or Unbiased?

Lecture 16 | Variance Reduction

[ m = 1 ] [ m = 1 ]

[ m = 1 ] [ m = 1 ]

• Estimator for the integral over an image:
• Take only a single random sample of the 

image (n=1)
• Multiply it by the image area
• Use this value as my estimate

• Is the estimator:
• Consistent?
• Unbiased?

• What if I let my estimator go to ∞
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What is my true image?

Lecture 16 | Variance Reduction
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The Cornell Box
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How do we take good samples?

Lecture 16 | Variance Reduction



Uniform Sampling

• Place samples uniformly apart in grid fashion
• [ + ] Easy to compute
• [ - ] We still have jagged edges, just at higher resolutions
• [ - ] More samples needed
• [ - ] Does not fix moiré pattern
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Random Sampling

• Place samples randomly
• [ + ] Easy to compute
• [ - ] Introduces noise, noticeable at low resolutions
• [ - ] Lack of distance between samples
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Jittered Sampling

• Divide into N x N grid, place a sample randomly per grid cell
• [ + ] Easy to compute
• [ + ] A more constrained version of random sampling
• [ - ] Ensures distance between samples, but not enough!
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N-Rooks Sampling

• All samples start on the diagonal, randomly shuffle (x, y) coordinates until 
rooks condition satisfied (no 2 samples lie on the same column or row)

• [ + ] Provides good sample sparsity
• [ - ] Expensive to compute
• [ - ] Possibility of not terminating
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Multi-Jittered Sampling

• Jittering + n-rook sampling
• [ + ] Provides good sample sparsity
• [ + ] Easier to satisfy rook condition
• [ - ] Expensive to compute
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Hammersley Sampling

• Sample according to a fixed, well formed distribution
• [ + ] Can pre-compute results
• [ + ] Evenly distributed in 2D space
• [ - ] No randomness in results
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Low-Discrepancy Sampling
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• In general, number of samples should be 
proportional to area

• Discrepancy measures deviation from this ideal

some family of regions 
𝑺 (box, disk, etc…)

overall discrepancy

area of 𝑺

# of samples in 𝑺

total # of samples in 𝑿

discrepancy of sample 
points 𝑿 in a region 𝑺



Low-Discrepancy Sampling

• A uniform grid has the lowest discrepancy
• But even low-discrepancy patterns can exhibit poor behavior
• We want patterns to be anisotropic (no preferred direction)
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Blue Noise

• Monkey retina exhibits blue noise pattern [Yellott 1983]
• No preferred directions (anisotropic)
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[ “blue noise” ]



Blue Noise Fourier Transform
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[ pattern ]

[ wavelength x ][ wavelength x ]
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[ pattern ]

[ Fourier Transform ] [ Fourier Transform ]

• Regular pattern has “spikes” at regular intervals

• Blue noise is spread evenly over all frequencies in all directions
• Bright center “ring” corresponds to sample spacing



Blue Noise Fourier Transform
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• Monte-Carlo Sampling

• Biased vs Unbiased Estimators

• Physically-Based Rendering Methods

Lecture 16 | Variance Reduction
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Previous Methods

Lecture 16 | Variance Reduction

[ backward path tracing ]
Fails: cannot intersect point lights

[ backward path tracing + connect to light ]
Works: reaches point lights

[ forward path tracing ]
Fails: cannot intersect pinhole camera

[ forward path tracing + connect to camera ]
Works: reaches pinhole camera
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Path Tracing Can Be Biased

Lecture 16 | Variance Reduction

[ backward path tracing + connect to light ]
works: reaches point lights

[ forward path tracing + connect to camera ]
works: reaches pinhole camera

• Deliberately connect terminating rays to light 
(forward) or camera (backward)

• Probability of sampling a ray that hits a non-
volume source (point light, pinhole camera) is 0

• We bias our renderer by choosing those rays
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Bidirectional Path Tracing

Lecture 16 | Variance Reduction

• If path-tracing is so great, why not do it twice?
• Main idea of bidirectional!

• Trace a ray from the camera into the scene
• Trace a ray from the light into the scene

• Connect the rays at the end

• Unbiased algorithm
• No longer trying to connect rays through 

non-volume sources

• Can set different lengths per ray
• Example: Forward m = 2, Backward m = 1
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Bidirectional Path Tracing

Lecture 16 | Variance Reduction

Issue: what if these are mirrors!
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Bidirectional Path Tracing

Lecture 16 | Variance Reduction

Issue: what if these are mirrors!

• In cases of mirrors, we cannot choose any ray path

• Instead, continue tracing rays until diffuse surfaces 
are reached on both rays
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Bidirectional Path Tracing

Lecture 16 | Variance Reduction

[ final image ]

• Each row shows path length

• As we move over images in a row, 
we decrease forward ray depth 
and increase a backward ray 
depth

• Overall length kept constant 
per row
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Bidirectional Path Tracing

Lecture 16 | Variance Reduction

[ final image ]

• Not easy to tell which path 
lengths work well for a scene!

• The glass egg is illuminated 
at specific path lengths for 
forward and backward rays
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Good Paths Are Hard To Find

Lecture 16 | Variance Reduction

[ Bidirectional Path Tracing ]

[ Metropolis Light Transport ]

Once we find a good path, 
perturb it to find nearby 

“good” paths
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Metropolis Hasting Algorithm

Lecture 16 | Variance Reduction

• “Once we find a good path, perturb it to find 
nearby ‘good’ paths” – previous slide

• Algorithm: take random walk of dependent 
samples

• If in an area where sampling yields high 
values, stay in or near the area

• Otherwise move far away

• Sample distribution should be proportional to 
integrand

• Make sure mutations are “ergodic” (reach 
whole space)

• Need to take a long walk, so initial point 
doesn’t matter

float r = rand();
// if f(x’) >> f(x[i]), then a is large
// and we increase chances of moving to x’
// if f(x’) << f(x[i]), then a is small
// and we increase chances of staying at x
float a = f(x’)/f(x[i]);
if (r < a) 
  x[i+1] = x’;
else
  x[i+1] = x;

x[ i ]

x’
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Metropolis Hasting: Sampling An Image

Lecture 16 | Variance Reduction

[ short walk ] [ long walk ] [ original image ]

• Want to take samples proportional to image density 𝑓

• Occasionally jump to a random point (ergodicity)

• Transition probability is ’relative darkness’ 
• 𝑓(𝑥′)/𝑓(𝑥𝑖)
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Metropolis Light Transport

Lecture 16 | Variance Reduction

[ Path Tracing ] [ Metropolis Light Transport ]

• Similar idea: mutate good paths

• Water causes paths to refract a lot
• Small mutations allows renderer to find 

contributions faster

• Path Tracing and MLT rendered in the same time
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If there are so many good sampling methods,
why not combine them?
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Multiple Importance Sampling

Lecture 16 | Variance Reduction

• Multiple Importance Sampling: combine strategies to 
preserve strengths of all of them

• Think of it as taking multiple rays/samples at each 
bounce

𝒋𝒕𝒉 sample taken 
with 𝒊𝒕𝒉 strategysum over strategies

sum over samples

fraction of samples 
taken with  𝒌𝒕𝒉 strategy 

𝒌𝒕𝒉 strategy PDF 
total # of samples
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Multiple Importance Sampling

Lecture 16 | Variance Reduction

[ sample materials ] [ sample both ] [ sample lights ]

• Normally need to pick next ray bounce as hitting a material or hitting light
• MIS allows us to take both rays and average them together
• At each bounce, trace a ray as normal, and another ray to the light
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Photon Mapping

Lecture 16 | Variance Reduction

• Trace particles from light, deposit “photons” in KD-tree
• Useful for, e.g., caustics, fog

• Voronoi diagrams can improve photon distribution
• Careful: poor Voronoi resolution causes aliasing!
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Finite Element Radiosity

Lecture 16 | Variance Reduction

• Transport light between patches in scene
• Solve large linear system for equilibrium distribution

• Good for diffuse lighting; hard to capture other light paths
• Light paths travel in groups
• Difficult when light diverges
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Rendering Algorithm Chart

Lecture 16 | Variance Reduction

method consistent? unbiased?

Rasterization no no

Path Tracing almost almost

Bidirectional Path Tracing yes yes

Metropolis Light Transport yes yes

Photon Mapping yes no

Finite Element Radiosity no no
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