
The Rendering Equation

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

15-362/662 | Computer Graphics

• The Rendering Equation

• A Simple Path-Tracer

• Camera Rays

Lecture 11 | Rendering Equation

15-362/662 | Computer Graphics Lecture 10 | Rendering Equation

Tracing Rays

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Tracing Rays

• Goal: trace light rays around the scene
• Rays bounce around illuminating

objects before reaching a camera

• Think of light rays as packets of info
• When light hits an object, it picks

up the object’s color before
moving onto the next object

• Recall: absorption spectrum
• Any colors not absorbed are

emitted back out

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

(recursive definition) (base case) + (scattering function) ∗

The Rendering Equation should:
• Be recursive
• Have a base case
• Govern how light scatters (reflectance)

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

(recursive definition)

(base case)

(scattering function)

(previous recursive call)

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Outgoing Radiance

• To know what an object looks like, we want to know its
outgoing radiance
• Carries color and radiometry information

• Outgoing radiance parameterized by a ray with point 𝐩 in
outgoing direction 𝜔𝑜

• Where is the light coming from, and at what
direction is it headed

• Want to solve for the outgoing radiance into the camera
• The rendering equation helps us get there

𝐩

𝜔𝑜

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Recall: The Light Source

• Light sources emit electromagnetic radiation that we
view as light
• In this class, we will treat light as a particle
• Nice property: light paths are ray-like

• We know how to work with rays

• Adding light into our scenes allow us to illuminate color
• A scene without lights will be just black
• Light bounces off objects (emittance), until it hits a

sensor (eyes, camera, etc.)

• A light will have outgoing radiance at point 𝐩 in some
outgoing direction 𝜔𝑜

• The way 𝐩 and 𝜔𝑜 are defined determines the light
source!

Kirby & The Forgotten Land (2022) Nintendo

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Point Light

• Defined by:
• 𝐩 = [x, y, z] origin

• Light rays generated from all directions

• Intensity falls of with radius ∝
1

𝑟2

• Very easy to check for visibility
• Every point in active area

• Extension to Point Light: Area Light
• Light generated from rectangle

• Extension to Point Light: Spherical Light
• Light generated from sphere

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Directional Light

• Defined by:
• 𝜔𝑜= [x, y, z] direction

• Can be simplified to 𝜔𝑜= [x, y]
• Normalized 3D coordinates can be written in 2D

• Light rays generated from infinity in the direction specified
• No fall-off of energy
• Very easy to check for visibility

• Every point in active area

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Spot Light

• Defined by:
• 𝐩 = [x, y, z] origin
• 𝜔𝑜 = [x, y] direction (same optimization)
• [hfov] horizontal field of view
• [vfov] vertical field of view

• Same parameters as a camera

• Light rays generated from directions within field of view

• Intensity falls of with radius ∝
1

𝑟2

• Challenging to check for visibility
• Point must fall in the light’s field of view

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Environmental Light

• Defined by:
• An image!

• Sample light directly from an image
• No intensity falloff. Image distance is at infinity
• Very easy to check for visibility

• Every point in active area

• We’ll learn how to build this in a future lecture

Uncharted 4 (2016) Naughty Dog

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Incoming Radiance

𝐩

𝜔𝑖

• Measures how much light is coming in from direction 𝜔𝑖
onto the incident surface point 𝐩
• Example: light source shining light on a surface

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Reflecting Light

Some objects, like mirrors,
will reflect light in a single direction

𝐩

𝜔𝑖

𝜔0

𝜔0
𝜔0 𝜔0

𝜔0

𝜔0

𝐩

𝜔𝑖 𝜔0

Some objects, like brick walls,
will reflect light in all directions

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

There’s A Lot Of BRDFs

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖

what about the integral?

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Recap: Radiance In Rendering

• Surfaces are planar (Ex: triangles)
• Light can enter surface from any angle around the

hemisphere

• Outgoing radiance is a function of incoming radiance
from every possible direction around the hemisphere

Scratch-A-Pixel (2018)

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Just One Small Issue…

The integral assumes infinite
sampling around the hemisphere

• Infinite lighting
• Infinite rays
• Infinite ray bounces

Computers can only process
finite amounts of data

• Finite lighting
• Finite rays
• Finite ray bounces

15-362/662 | Computer Graphics

• The Rendering Equation

• A Simple Path-Tracer

• Camera Rays

Lecture 11 | Rendering Equation

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface
• Emits a ray in reflected direction
• Mixes blue and yellow and orange

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface
• Emits a ray in reflected direction
• Mixes blue and yellow and orange

• Ray passes through pinhole camera
• Light recorded on photoelectric cell
• Incident pixel will be brown in final image

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Problem: cannot always count on rays
entering camera!
• Example: if I turn the blue triangle a

bit, the ray goes off into the void

• Compute wasted on a ray that doesn’t
contribute to the final image!

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Idea: What if we trace a ray from the camera instead?

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Hemholtz Reciprocity

• Reversing the order of incoming and outgoing
light does not affect the BRDF evaluation

• Critical to reverse path-tracing algorithms
• Allows us to trace rays backwards and

still get the same BRDF effect

𝐩

𝜔𝑖 𝜔0

𝐩

𝜔𝑜 𝜔𝑖

𝑓𝑟 p, 𝜔𝑖 → 𝜔𝑜 = 𝑓𝑟 p, 𝜔𝑜 → 𝜔𝑖

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

• Rays now traced out from the camera
• Ray origin is pixel, direction faces

pinhole

• Issue #1: How do we know the color of the
rays now things are backwards?

• Issue #2: Rays still go to infinity!

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

• Issue #2: Rays still go to infinity!

• After n-bounces, terminate the ray by
constructing the ray towards the light source
• If scene has multiple lights, pick one

• Only works for BDRFs that are not ideal
specular (Ex: mirror, glass)!
• If ideal specular, then continue to trace

the ray until a non ideal specular
surface is hit

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

• Issue #1: How do we know the color of
the rays now things are backwards?

• Split the renderer into two parts:
• Path-trace to find a path to the

light source
• Backpropagate the colors back to

the pixel

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3]]

𝐿 𝑝𝑖𝑥𝑒𝑙 = +𝑓𝑟 [+𝑓𝑟 []]

[ray depth 2]

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3]]

𝐿 𝑝𝑖𝑥𝑒𝑙 = +𝑓𝑟 [+𝑓𝑟 []]

• Intersect , no emission

[ray depth 2]

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3]]

𝐿 𝑝𝑖𝑥𝑒𝑙 = +𝑓𝑟 [+𝑓𝑟 []]

• Intersect , no emission
• Intersect , no emission

[ray depth 2]

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3]]

𝐿 𝑝𝑖𝑥𝑒𝑙 = +𝑓𝑟 [+𝑓𝑟 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑜 𝑟𝑎𝑦2]

𝐿 𝑝𝑖𝑥𝑒𝑙 = +𝑓𝑟 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑜 𝑟𝑎𝑦1

𝐿 𝑝𝑖𝑥𝑒𝑙 = +𝑓𝑟 [+𝑓𝑟 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Terminating Emission Occlusion

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑜 𝑟𝑎𝑦1

𝐿 𝑝𝑖𝑥𝑒𝑙 = +𝑓𝑟 [+𝑓𝑟 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

• Possibility that geometry in the scene blocks final ray from
reaching light source
• No contribution returned, ray wasted : (

15-362/662 | Computer Graphics

Next Event Estimation (NEE)

Lecture 11 | Rendering Equation

Pinhole

• Extension to Backwards Path Tracing
• At each ray bounce, trace two new rays:

• A ray generated by the BRDF
• A ray towards the light

• Average samples together
• Can only be done for diffuse surfaces!

• No need to trace ray to light source explicitly
on termination
• Taken care of at each ray bounce

• Issue: requires a lot of ray traces!

15-362/662 | Computer Graphics

Single Sample Importance Sampling

Lecture 11 | Rendering Equation

Pinhole

• Extension to Backwards Path Tracing
• At each ray bounce, pick one:

• A ray generated by the BRDF
• A ray towards the light

• Can only be done for diffuse surfaces!
• Sample between rays with uniform

probability

• You will implement this in Scotty3D

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

If we can connect the final ray to whatever our target is,
why can’t we just use Forward Path Tracing?

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Problem With Forward Renderer

Pinhole

• Terminating ray must go through pinhole!

• Cannot chose which pixel sensor the light
ray will hit
• Leads to uneven distribution of light

samples onto final image sensor

• Backwards Renderer allows us to generate
even number of rays from sensor
• Leads to higher-quality image

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Side Note: Why Is Everything In Focus?

Cyberpunk 2077 (2020) CD Projekt

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Side Note: Why Is Everything In Focus?

• When rendering, we can render everything clearly
• No need to set focal distance
• No blur like with real cameras

• Rendering uses pinhole cameras
• Light isn’t spread out across multiple sensors
• Produces clear images everywhere

• Renderers can use pinhole, cameras cannot
• Pinhole rendering takes in less light

• Requires longer exposure
• Render can freeze digital scene
• Camera cannot freeze physical scene

• Needs to increase aperture
• Leads to blurring at different distances

15-362/662 | Computer Graphics

• The Rendering Equation

• A Simple Path-Tracer

• Camera Rays

Lecture 11 | Rendering Equation

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Camera Properties

• Goal: render an image of a given width and height
• Think of the sensor image in front of the

camera 1 unit away in the –z direction

• Construct rays from the camera origin to a point
on the sensor
• Where on the sensor depends on what

sampling method

• Instead of width and height, we are given the
vertical field of view (vfov) and aspect ratio of
the sensor image
• Vertical FOV measures how wide vertically

the camera can see
• Aspect ratio is the ratio of width/height

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Generating Camera Rays

• Solve for width and height

• Generate point on sensor plane using any sampler
• In our example we use random sampling

• Build a ray from the camera to the sample point
on the sensor

Ray Camera::generate_ray()

{

 // generate ray uniformly [0, 1]

 // can use other methods here too

 float x = rand() – 0.5f;

 float y = rand() – 0.5f;

 // computing height is an exercise to reader

 float hgt = // TODO: some trig

 // aspect ratio tells us ratio of wth/hgt

 float wth = hgt * aspect_ratio;

 // convert to 2D sensor coordinates

 float x_cord = x * wth;

 float y_cord = y * hgt;

 // construct ray from camera origin to sensor

 // sensor is 1 unit away in –z dir

 Ray r(Vec3(), Vec3(x_cord, y_cord, -1.0f));

 return r;

}

Triangle! Just use trig!

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Supersampling Camera Rays

• Similar to rasterization, can trace multiple rays per pixel
• Resolve samples by averaging

• Many different sampling methods to chose from:
• Jittered Sampling
• Multi-jittered sampling
• N-Rooks sampling
• Sobol sequence sampling
• Halton sequence sampling
• Hammersley sequence sampling

• Visualizer built in Scotty3D to see ray distribution

	Slide 1: The Rendering Equation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

