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Tracing Rays
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Tracing Rays

• Goal: trace light rays around the scene
• Rays bounce around illuminating 

objects before reaching a camera

• Think of light rays as packets of info
• When light hits an object, it picks 

up the object’s color before 
moving onto the next object

• Recall: absorption spectrum
• Any colors not absorbed are 

emitted back out
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The Rendering Equation

( recursive definition ) ( base case )  + ( scattering function ) ∗

The Rendering Equation should:
• Be recursive
• Have a base case
• Govern how light scatters (reflectance)
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The Rendering Equation

( recursive definition )

( base case )

( scattering function )

( previous recursive call )
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The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖 
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Outgoing Radiance

• To know what an object looks like, we want to know its 
outgoing radiance
• Carries color and radiometry information

• Outgoing radiance parameterized by a ray with point 𝐩 in 
outgoing direction 𝜔𝑜

• Where is the light coming from, and at what 
direction is it headed

• Want to solve for the outgoing radiance into the camera
• The rendering equation helps us get there

𝐩

𝜔𝑜 
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Recall: The Light Source

• Light sources emit electromagnetic radiation that we 
view as light
• In this class, we will treat light as a particle
• Nice property: light paths are ray-like

• We know how to work with rays

• Adding light into our scenes allow us to illuminate color
• A scene without lights will be just black
• Light bounces off objects (emittance), until it hits a 

sensor (eyes, camera, etc.)

• A light will have outgoing radiance at point 𝐩 in some 
outgoing direction 𝜔𝑜

• The way 𝐩 and 𝜔𝑜 are defined determines the light 
source!

Kirby & The Forgotten Land (2022) Nintendo
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Point Light

• Defined by:
• 𝐩 = [x, y, z] origin

• Light rays generated from all directions

• Intensity falls of with radius ∝
1

𝑟2

• Very easy to check for visibility
• Every point in active area

• Extension to Point Light: Area Light
• Light generated from rectangle

• Extension to Point Light: Spherical Light
• Light generated from sphere



15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Directional Light

• Defined by:
•  𝜔𝑜= [x, y, z] direction

• Can be simplified to 𝜔𝑜= [x, y]
• Normalized 3D coordinates can be written in 2D

• Light rays generated from infinity in the direction specified
• No fall-off of energy
• Very easy to check for visibility

• Every point in active area
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Spot Light

• Defined by:
• 𝐩 = [x, y, z] origin
• 𝜔𝑜 = [x, y] direction (same optimization)
• [hfov] horizontal field of view
• [vfov] vertical field of view

• Same parameters as a camera

• Light rays generated from directions within field of view

• Intensity falls of with radius ∝
1

𝑟2 

• Challenging to check for visibility
• Point must fall in the light’s field of view
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Environmental Light

• Defined by:
• An image!

• Sample light directly from an image
• No intensity falloff. Image distance is at infinity
• Very easy to check for visibility

• Every point in active area

• We’ll learn how to build this in a future lecture

Uncharted 4 (2016) Naughty Dog
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Incoming Radiance

𝐩

𝜔𝑖 

• Measures how much light is coming in from direction 𝜔𝑖 
onto the incident surface point 𝐩
• Example: light source shining light on a surface
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Reflecting Light

Some objects, like mirrors, 
will reflect light in a single direction

𝐩

𝜔𝑖 

𝜔0 

𝜔0 
𝜔0 𝜔0 

𝜔0 

𝜔0 

𝐩

𝜔𝑖 𝜔0 

Some objects, like brick walls, 
will reflect light in all directions
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There’s A Lot Of BRDFs
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The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖 

what about the integral?
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Recap: Radiance In Rendering

• Surfaces are planar (Ex: triangles)
• Light can enter surface from any angle around the 

hemisphere

• Outgoing radiance is a function of incoming radiance 
from every possible direction around the hemisphere

Scratch-A-Pixel (2018)
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Just One Small Issue…

The integral assumes infinite 
sampling around the hemisphere

• Infinite lighting
• Infinite rays
• Infinite ray bounces

Computers can only process 
finite amounts of data

• Finite lighting
• Finite rays
• Finite ray bounces
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Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source
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Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface 
• Emits a ray in reflected direction
• Mixes blue and yellow and orange
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Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface 
• Emits a ray in reflected direction
• Mixes blue and yellow and orange

• Ray passes through pinhole camera
• Light recorded on photoelectric cell
• Incident pixel will be brown in final image
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Example Of A Simple Renderer

Pinhole

• Problem: cannot always count on rays 
entering camera!
• Example: if I turn the blue triangle a 

bit, the ray goes off into the void 

• Compute wasted on a ray that doesn’t 
contribute to the final image!
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Idea: What if we trace a ray from the camera instead?
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Hemholtz Reciprocity

• Reversing the order of incoming and outgoing 
light does not affect the BRDF evaluation

• Critical to reverse path-tracing algorithms
• Allows us to trace rays backwards and 

still get the same BRDF effect

𝐩

𝜔𝑖 𝜔0 

𝐩

𝜔𝑜 𝜔𝑖 

𝑓𝑟 p, 𝜔𝑖 → 𝜔𝑜  = 𝑓𝑟 p, 𝜔𝑜 → 𝜔𝑖
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Example Of A Simple Backwards Renderer

Pinhole

• Rays now traced out from the camera
• Ray origin is pixel, direction faces 

pinhole

• Issue #1: How do we know the color of the 
rays now things are backwards?

• Issue #2: Rays still go to infinity!
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Example Of A Simple Backwards Renderer

Pinhole

• Issue #2: Rays still go to infinity!

• After n-bounces, terminate the ray by 
constructing the ray towards the light source
• If scene has multiple lights, pick one

• Only works for BDRFs that are not ideal 
specular (Ex: mirror, glass)! 
• If ideal specular, then continue to trace 

the ray until a non ideal specular 
surface is hit
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Example Of A Simple Backwards Renderer

Pinhole

• Issue #1: How do we know the color of 
the rays now things are backwards?

• Split the renderer into two parts:
• Path-trace to find a path to the 

light source
• Backpropagate the colors back to 

the pixel



15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3 ]]

𝐿 𝑝𝑖𝑥𝑒𝑙 =  +𝑓𝑟  [ +𝑓𝑟  [ ]]

[ ray depth 2 ]
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Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3 ]]

𝐿 𝑝𝑖𝑥𝑒𝑙 =  +𝑓𝑟  [ +𝑓𝑟  [ ]]

• Intersect       , no emission 

[ ray depth 2 ]
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Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3 ]]

𝐿 𝑝𝑖𝑥𝑒𝑙 =  +𝑓𝑟  [ +𝑓𝑟  [ ]]

• Intersect       , no emission 
• Intersect       , no emission 

[ ray depth 2 ]
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Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3 ]]

𝐿 𝑝𝑖𝑥𝑒𝑙 =  +𝑓𝑟  [ +𝑓𝑟  [ ]]

• Intersect       , no emission 
• Intersect       , no emission 
• Ray terminate, emission

[ ray depth 2 ]
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Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑜 𝑟𝑎𝑦2 ]

𝐿 𝑝𝑖𝑥𝑒𝑙 =  +𝑓𝑟  [ ]]

• Intersect       , no emission 
• Intersect       , no emission 
• Ray terminate, emission

[ ray depth 2 ]
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Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑜 𝑟𝑎𝑦1

𝐿 𝑝𝑖𝑥𝑒𝑙 =  +𝑓𝑟  [ +𝑓𝑟  [ ]]

• Intersect       , no emission 
• Intersect       , no emission 
• Ray terminate, emission

[ ray depth 2 ]
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Terminating Emission Occlusion

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑜 𝑟𝑎𝑦1

𝐿 𝑝𝑖𝑥𝑒𝑙 =  +𝑓𝑟  [ +𝑓𝑟  [ ]]

• Intersect       , no emission 
• Intersect       , no emission 
• Ray terminate, emission

[ ray depth 2 ]

• Possibility that geometry in the scene blocks final ray from 
reaching light source
• No contribution returned, ray wasted : (
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Next Event Estimation (NEE)

Lecture 11 | Rendering Equation

Pinhole

• Extension to Backwards Path Tracing
• At each ray bounce, trace two new rays:

• A ray generated by the BRDF
• A ray towards the light

• Average samples together
• Can only be done for diffuse surfaces!

• No need to trace ray to light source explicitly 
on termination
• Taken care of at each ray bounce

• Issue: requires a lot of ray traces!
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Single Sample Importance Sampling

Lecture 11 | Rendering Equation

Pinhole

• Extension to Backwards Path Tracing
• At each ray bounce, pick one:

• A ray generated by the BRDF
• A ray towards the light

• Can only be done for diffuse surfaces!
• Sample between rays with uniform 

probability

• You will implement this in Scotty3D



15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

If we can connect the final ray to whatever our target is, 
why can’t we just use Forward Path Tracing?



15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Problem With Forward Renderer

Pinhole

• Terminating ray must go through pinhole!

• Cannot chose which pixel sensor the light 
ray will hit
• Leads to uneven distribution of light 

samples onto final image sensor

• Backwards Renderer allows us to generate 
even number of rays from sensor
• Leads to higher-quality image
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Side Note: Why Is Everything In Focus?

Cyberpunk 2077 (2020) CD Projekt
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Side Note: Why Is Everything In Focus?

• When rendering, we can render everything clearly
• No need to set focal distance
• No blur like with real cameras

• Rendering uses pinhole cameras
• Light isn’t spread out across multiple sensors
• Produces clear images everywhere

• Renderers can use pinhole, cameras cannot
• Pinhole rendering takes in less light

• Requires longer exposure
• Render can freeze digital scene
• Camera cannot freeze physical scene

• Needs to increase aperture
• Leads to blurring at different distances
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• Camera Rays
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Camera Properties

• Goal: render an image of a given width and height
• Think of the sensor image in front of the 

camera 1 unit away in the –z direction

• Construct rays from the camera origin to a point 
on the sensor
• Where on the sensor depends on what 

sampling method

• Instead of width and height, we are given the 
vertical field of view (vfov) and aspect ratio of 
the sensor image
• Vertical FOV measures how wide vertically 

the camera can see
• Aspect ratio is the ratio of width/height 
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Generating Camera Rays

• Solve for width and height

• Generate point on sensor plane using any sampler
• In our example we use random sampling

• Build a ray from the camera to the sample point 
on the sensor

Ray Camera::generate_ray()

{

  // generate ray uniformly [0, 1]

  // can use other methods here too

  float x = rand() – 0.5f; 

  float y = rand() – 0.5f;

  // computing height is an exercise to reader  

  float hgt = // TODO: some trig

  // aspect ratio tells us ratio of wth/hgt

  float wth = hgt * aspect_ratio;

  

  // convert to 2D sensor coordinates

  float x_cord = x * wth;

  float y_cord = y * hgt;

  // construct ray from camera origin to sensor

  // sensor is 1 unit away in –z dir

  Ray r(Vec3(), Vec3(x_cord, y_cord, -1.0f));

  return r;

}

Triangle! Just use trig!
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Supersampling Camera Rays

• Similar to rasterization, can trace multiple rays per pixel
• Resolve samples by averaging

• Many different sampling methods to chose from:
• Jittered Sampling
• Multi-jittered sampling 
• N-Rooks sampling
• Sobol sequence sampling 
• Halton sequence sampling 
• Hammersley sequence sampling

• Visualizer built in Scotty3D to see ray distribution
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