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Isotropic Remeshing

• Isotropic: same value when measured in any direction
• Remeshing: a change in the mesh

• Goal: change the mesh to make triangles more 
uniform shape and size

• Helps achieve good mesh properties:
• Good approximation of original shape
• Vertex degrees close to 6
• Angles close to 60deg
• Delaunay triangles
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Improving Degree

𝑖
𝑗

𝑘

𝑙

flip

Vertices with degree 6 makes triangles more regular
Deviation function: |𝑑𝑖 − 6| + |𝑑𝑗 − 6| + |𝑑𝑘 − 6| + |𝑑𝑙 − 6|

 If flipping an edge reduces deviation function, flip edge
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Improving Vertex Positioning

average

Center vertices to make triangles more even in size
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Improving Edge Length

split

If an edge is longer than (4/3 * mean) length, split it
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Improving Edge Length

collapse

If an edge is shorter than (4/5 * mean) length, collapse it
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Isotropic Remeshing

Step 1: Step 2: 

Step 3: Step 4: 

collapsesplit

flip average
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Closest Point Queries

???

p

• Problem: given a point, in how do we find the closest 
point on a given surface?

• Several use cases:
• Ray/mesh intersection in pathtracing
• Kinematics/animation
• GUI/user selection

• When I click on a mesh, what point am I 
actually clicking on?



15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a Line

NTx = c

p
N

To find the closest point to p along NTx = c
We can have p travel along N for some time t

𝑁𝑇 𝑝 + 𝑡𝑁 = 𝑐

Multiplying the terms out

𝑁𝑇𝑝 + 𝑡𝑁𝑇𝑁 = 𝑐

The unit norm multiplied by itself is 1
Solve for t

𝑡 = 𝑐 − 𝑁𝑇𝑝

Propagate p along N for time t

𝑝 + 𝑡𝑁
𝑝 + (𝑐 − 𝑁𝑇𝑝)𝑁
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Closest Point on a Line Segment

Compute the vector p from the line base a along the line

⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

Normalize to get a time

𝑡 =
⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

⟨𝐛 − 𝐚, 𝐛 − 𝐚⟩

Clip time to range [0,1]and interpolate

p
p p

p

p

p

pp
p

p

a

b

𝒂 + (𝐛 − 𝐚)𝑡
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Closest Point on a 2D Triangle

• Easy! Just compute closest point to each line segment
• For each point, compute distance
• Point with smallest distance wins

• What if the point is inside the triangle?
• Even easier! The closest point is the point itself
• Recall point-in-triangle tests
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Closest Point on a 3D Triangle

• Method #1: Projection**
• Construct a plane that passes through the triangle

• Can be done using cross product of edges
• Project the point to the closest point on the plane

• Same expression as with a line: 𝑝 + (𝑐 − 𝑁𝑇𝑝)𝑁
• Check if point is in triangle using half-plane test

• Else, compute distance from each line segment in 3D
•  Same expression as with a 2D line segment

• Method #2: Rotation**
• Translate point + triangle so that triangle vertex v1 is at the origin
• Rotate point + triangle so that triangle vertex v2 sits on the z-axis
• Rotate point + triangle so that triangle vertex v3 sits in the plane x=0
• Disregard x-coordinate of point

• Problem reduces to closest point on 2D triangle

**https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4264&rep=rep1&type=pdf
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Closest Point on a 3D Triangle Mesh

• Conceptually easy! 
• Loop over every triangle
• Compute closest point to current triangle
• Keep track of globally closest point

• Not practical in real world
• Meshes have billions of triangles
• Programs make thousands of geometric 

queries a second

• Will look at better solutions a bit later
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Mesh-Mesh Intersections

• Sometimes when editing geometry, a mesh will 
intersect with itself

• Likewise, sometimes when animating geometry, 
meshes will collide

• How do we check for/prevent collisions?
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Point-Line Intersection

NTx = c

p
N

Just plug point in

𝑁𝑇𝑝 = 𝑐?
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Point-Line Segment Intersection

Check if adding distances equals net distance**

𝑑𝑖𝑠𝑡 𝑎, 𝑝 + 𝑑𝑖𝑠𝑡 𝑝, 𝑏 = 𝑑𝑖𝑠𝑡(𝑎, 𝑏)

p
p p

p

p

p

pp
p

p

a

b

**Potential numeric stability issues
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Line-Line Intersection

Two equations, two unknowns
Solve a linear system
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Point-Triangle Intersection

You know this : )
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Ray-Mesh Intersection

• We just saw closest triangle to a point

• What if we want to find the closest triangle a ray intersects?
• A ray is a point + a direction vector
• More constrained problem
• Naïve approach still needs to check every triangle!

time
point along ray

origin unit direction
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Ray-Mesh Intersection

• Spatial data structures that allows us to compute ray-mesh 
intersections without having to check every triangle

• Think of building these structures as a preprocessing step
• Building can take a while
• Searching must be fast!

time
point along ray

origin unit direction
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Ray-Plane Intersection

Given a plane defined as

𝐍T𝐱 = c

We can find the intersection point by plugging in the ray for 𝐱

𝐍T(𝐨 + 𝑡𝐝) = c

Then solve for 𝑡

𝑡 =
c − 𝐍T𝐨

𝐍T𝑑

Substitute the time into the ray equation to find the 
intersection point

𝐩 = 𝐨 +
c − 𝐍T𝐨

𝐍T𝑑
𝐝
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Ray-Triangle Intersection

• Not much different:
• i) Compute ray-plane intersection to find point p on plane
• ii) Perform point-in-triangle test for point p

• Barycentric coordinates

• Not a very efficient algorithm…
• Can we combine both steps into one?
• Idea: set intersection and barycentric tests equal

• If the intersection point lies within the triangle, the above 
equation will have a solution

𝐨 + 𝑡𝐝 = 1 − 𝑢 − 𝑣 ∗ 𝒑𝟎 + 𝑢 ∗ 𝒑𝟏 + 𝑣 ∗ 𝒑𝟐
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Moller-Trumbore Algorithm

𝐨 + 𝑡𝐝 = 1 − 𝑢 − 𝑣 ∗ 𝒑𝟎 + 𝑢 ∗ 𝒑𝟏 + 𝑣 ∗ 𝒑𝟐

Given the below equation

Rearrange the terms until unknowns are on one side

𝐨 − 𝒑𝟎 = 𝑢 ∗ (𝒑𝟏 − 𝒑𝟎) + 𝑣 ∗ (𝒑𝟐 − 𝒑𝟎) − 𝑡𝐝

Rewrite in terms of variables**

𝒔 = 𝑢 ∗ 𝒆𝟏 + 𝑣 ∗ 𝒆𝟐 − 𝑡𝐝

Rewrite as a matrix operation

𝒔 = [𝒆𝟏 𝒆𝟐 −𝐝] ∙
𝑢
𝑣
𝑡

Solve using Cramer’s rule

𝑢
𝑣
𝑡

=
1

(𝒆𝟏 × 𝐝) ∙ 𝒆𝟐

−(𝒔 × 𝒆𝟐) ∙ 𝐝
(𝒆𝟏 × 𝐝) ∙ 𝒔

−(𝒔 × 𝒆𝟐) ∙ 𝒆𝟏

𝒔 = 𝐨 − 𝒑𝟎

𝒆𝟏 = 𝒑𝟏 − 𝒑𝟎

𝒆𝟐 = 𝒑𝟐 − 𝒑𝟎
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Moller-Trumbore Visualized

𝒔 = [𝒆𝟏 𝒆𝟐 −𝐝] ∙
𝑢
𝑣
𝑡

x

y
z

u

v

1

1

𝐨 − 𝒑𝟎 = [𝒑𝟏 − 𝒑𝟎 𝒑𝟐 − 𝒑𝟎 −𝐝] ∙
𝑢
𝑣
𝑡

• Matrix 𝐌−𝟏 transforms triangle to unit triangle at the origin 
with unit-length edges spanning 𝑢 and 𝑣
• Transforms ray to be orthogonal to the triangle

• Q: What if 𝑡 is negative?
• Ray intersection happens in negative direction!

=

𝐨 − 𝒑𝟎 = 𝐌 ∙
𝑢
𝑣
𝑡

=
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Spatial Data Structures

• Naïve ray-mesh intersection requires checking every triangle 
for ray-triangle intersection
• Meshes have millions to billions of triangles
• O(n) exectution

• Idea: sort triangles in a way where we can perform quick 
intersection tests on groups of triangles at a time
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Bounding Box

• Precompute the smallest axis-aligned bounding box around 
all primitives
• Keep track of smallest and largest (x,y,z) coordinates for 

all primitives 

• Check for ray-box intersection
• If misses, we are done
• If passes, check all triangles

• Saves time for rays that clearly miss the mesh, but…
• Still O(n) for rays that intersect the box 
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More Bounding Boxes

• What if we had 2 levels of bounding boxes?
• Global bounding box

• Head bounding box
• Body bounding box

• Check for global ray-box intersection
• If misses, we are done
• If passes,

• Check for head ray-box intersection
• If misses, continue
• If passes, check all triangles in head

• Check for body ray-box intersection
• If misses, continue
• If passes, check all triangles in body

• Better, some rays can now pass the global bbox but neither 
the head/body bbox
• We have tighter checks rays need to pass in order to 

search underlying triangles
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A Hierarchy of…Bounding Volumes?

[ Level 0 ]
[ Level 1 ] [ Level 2 ]
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Bounding Volume Hierarchy (BVH)

• Recursively partition nodes into smaller nodes 
• Stop when node contains no more than several 

primitives

• The resulting BVH mimics a tree
• Root node encompasses all primitives
• Each non-root node has a parent
• Each non-leaf node has two children

• Some BVHs can have more than 2 children
• Each leaf node points to a handful of primitives

Stanford Bunny BVH visualizing 10th level
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Let’s look at an example
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BVH Example

Bounding boxes will sometimes intersect!
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BVH Example

pass ✓
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BVH Example

pass ✓fail ✗
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BVH Example

pass ✓fail ✗

Are we done?
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BVH Example

pass ✓fail ✗pass ✓

We can find a closer triangle if we check here
Remember: bounding boxes will intersect!
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BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)

{

  // test if ray hits node’s bbox

  HitInfo hit = intersect(ray, node->bbox);

  if (hit.prim == NULL || hit.t > best.t))  

    return;

  // for leaves, check each primitive

  if (node->leaf) {

    for (each primitive p in node->primList) {

      hit = intersect(ray, p);

      if (hit.prim != NULL && hit.t < best.t) {

        best.prim = p;

        best.t = t;

      }

    }

  } else {

   // traverse BOTH children

    hit(ray, node->child1, best);

    hit(ray, node->child2, best);

  }

}

struct BVHNode {

  // is the node a leaf

  bool leaf;

 // min/max coordinates enclosing primitives

  Bbox bbox;

  // left child (can be NULL)

  BVHNode *child1;

  // right child (can be NULL)

  BVHNode *child2;

  // for leaves, stores primitives

  Primitive *primList;

}

struct HitInfo {

  // the primitive the ray hit

  Primitive *prim;

  // the time along the ray the hit occured

  float t;

}
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BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)

{

  // test if ray hits node’s bbox

  HitInfo hit = intersect(ray, node->bbox);

  if (hit.prim == NULL || hit.t > best.t))  

    return;

  // for leaves, check each primitive

  if (node->leaf) {

    for (each primitive p in node->primList) {

      hit = intersect(ray, p);

      if (hit.prim != NULL && hit.t < best.t) {

        best.prim = p;

        best.t = t;

      }

    }

  } else {

   // traverse BOTH children

    hit(ray, node->child1, best);

    hit(ray, node->child2, best);

  }

}

struct BVHNode {

  // is the node a leaf

  bool leaf;

 // min/max coordinates enclosing primitives

  Bbox bbox;

  // left child (can be NULL)

  BVHNode *child1;

  // right child (can be NULL)

  BVHNode *child2;

  // for leaves, stores primitives

  Primitive *primList;

}

struct HitInfo {

  // the primitive the ray hit

  Primitive *prim;

  // the time along the ray the hit occured

  float t;

}

We don’t ALWAYS need to check both children.
Recall the first example where we terminated

after searching only the closer bbox.

pass ✓
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Better BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)

{

  if (node->leaf) {

    // same as previous slide

  } else {

    BVHNode* child1 = node->child1;

    BVHNode* child2 = node->child2;

    HitInfo hit1 = intersect(ray, child1->bbox);

    HitInfo hit2 = intersect(ray, child2->bbox);

    // pick node with better time

    BVHNode* first = (hit1.t <= hit2.t) ? 

                       child1 : child2;

    BVHNode* second = (hit2.t <= hit1.t) ? 

                       child2 : child1;

    

    hit(ray, first, best);

    if (hit2.t < best.t)  

      hit(ray, second, best);  

  }

}
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Better BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)

{

  if (node->leaf) {

    // same as previous slide

  } else {

    BVHNode* child1 = node->child1;

    BVHNode* child2 = node->child2;

    HitInfo hit1 = intersect(ray, child1->bbox);

    HitInfo hit2 = intersect(ray, child2->bbox);

    // pick node with better time

    BVHNode* first = (hit1.t <= hit2.t) ? 

                       child1 : child2;

    BVHNode* second = (hit2.t <= hit1.t) ? 

                       child2 : child1;

    

    hit(ray, first, best);

    if (hit2.t < closest.t)  

      hit(ray, second, best);  

  }

}

Only check far bbox if closest primitive in 
the near bbox is farther than the closest point 

intersected in the far bbox.

This means there’s a potential
to find a better primitive : )
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So we know how to traverse a BVH,
But how do we build one?
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BVH Partitioning

What is the best way to partition these primitives?
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BVH Partitioning

We can split them into equal # of primitives…
…but bboxes take up large area
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BVH Partitioning

We can split them into the smallest possible bboxes…
…but some bboxes will have many more primitives
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

Surface Area Heuristic gives us a quantitative way of telling us if a partition is good
A better partition will have a lower cost
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

• Fixed cost associated with bbox intersection
• Having too large a BVH depth means we have to 

check too many bboxes before finding a primitive
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

• For a convex object A inside a parent convex object 
B, the probability that a random ray that hits B also 
hits A is given by the ratio of the surface areas 𝑆𝐴 
and 𝑆𝐵 of these objects:
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

• For a node 𝐶𝐴 , this is the cost of checking all 
primitives held by this box
• All triangles have the same cost 𝐶𝑡𝑟𝑖

• For 𝑁𝐴 triangles, cost is 𝑁𝐴𝐶𝑡𝑟𝑖



• Minimizes surface area deviation
• Minimizes primitive deviation

• New equation:

• 𝐶𝑡𝑟𝑎𝑣, 𝐶𝑡𝑟𝑖 and 𝑆𝐶 are constants, so we can remove 
them when computing the minimum cost:
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

𝐶 = 𝐶𝑡𝑟𝑎𝑣 +
𝑆𝐴

𝑆𝐶
𝑁𝐴𝐶𝑡𝑟𝑖 +

𝑆𝐵

𝑆𝐶
𝑁𝐵𝐶𝑡𝑟𝑖

𝐶′ = 𝑆𝐴𝑁𝐴 + 𝑆𝐵𝑁𝐵
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We know what a good partition is,
but how do we actually build a partition
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Building Partitions

for(axis : [x, y, z]) {              // check all axis-aligned partitions

 sort(primitives, axis);     // sort primitives by centroid

 n = primitives.length();

 for(int i = 0; i < n; i++) {

  a = bbox(primitves[0,i]);

  b = bbox(primitves[i,n]);

  // surface area heuristic

  cost = a.area * i + b.area * (n – i);

  if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

 }

}

// create children bounding boxes based on best axis and partition location

partition(best_axis, best_partition);
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Building Partitions

for(axis : [x, y, z]) {              // check all axis-aligned partitions

 sort(primitives, axis);     // sort primitives by centroid

 n = primitives.length();

 for(int i = 0; i < n; i++) {

  a = bbox(primitves[0,i]);

  b = bbox(primitves[i,n]);

  // surface area heuristic 

  cost = a.area * i + b.area * (n – i); 

  if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

 }

}

// create children bounding boxes based on best axis and partition location

partition(best_axis, best_partition);

Checking every partition in a scene with millions of primitives
is incredibly expensive!
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Building Partitions

for(axis : [x, y, z]) {              

 sort(primitives, axis);

 n = primitives.length();

 for(int i = 0; i < n; i+=32) {         // check every B primitives (B = 32)

  a = bbox(primitves[0,i]);

  b = bbox(primitves[i,n]);

  

  cost = a.area * i + b.area * (n – i);

  if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

 }

}

partition(best_axis, best_partition);
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Building Partitions

for(axis : [x, y, z]) {              

 sort(primitives, axis);

 n = primitives.length();

 for(int i = 0; i < n; i+=32) {         // check every B primitives (B = 32)

  a = bbox(primitves[0,i]);

  b = bbox(primitves[i,n]);

  

  cost = a.area * i + b.area * (n – i);

  if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

 }

}

partition(best_axis, best_partition);

Still a lot of iterating over primitives each loop!



15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) {              

 sort(primitives, axis);

 n = primitives.length();

 bin_n = bin.length(); 

 for(int i = 0; i < n; i++) {

  bin = compute_bucket(primitves[i].centroid)   // find bin that triangle lies in

       bin.bbox.add(primitves[i]); }                 // add triangle to bin

 for(int j = 0; j < bin_n; j++) {        

  a = bbox(bin[0,j]);       // add bins to partitions instead of triangles

  b = bbox(bin[j, bin_n]);  // add bins to partitions instead of triangles

  // same as before 

 }

}
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Building Partitions Example
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Building Partitions Example

[ x-axis binning ]
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Building Partitions Example

Cost = 3 prims * (0.15) + 8 prims * (0.87)  
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Building Partitions Example

Cost = 6 prims * (0.38) + 5 prims * (0.43)  
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Building Partitions Example

Cost = 9 prims * (0.81) + 2 prims * (0.18)  
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Building Partitions Example

[ y-axis binning ]
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Building Partitions Example

Cost = 3 prims * (0.19) + 8 prims * (0.91)  
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Building Partitions Example

Cost = 6 prims * (0.32) + 5 prims * (0.36)  
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Building Partitions Example

Cost = 9 prims * (0.94) + 2 prims * (0.13)  
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Building Partitions Example

Best Partition
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Building Partitions Example

Recurse with each child node
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What About Ordering?
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What About Ordering?

9 4 10 7 1 6 5 11 2 8 3primitives

1 2 3 4 5 6 7 8 9 10 11primitives

1 9 10 7 6 4 5 3 8 2 11primitives

• Sort by partition axis
• Each node saves index start/end range for 

primitives it is responsible for
• Combination of children node primitives 

should match parent node primitives
• Example: all red and yellow primitives 

encased in orange primitive list
• When partitioning a node along an axis, should 

only sort for primitives in node’s range!

• Storing a BVH in memory requires storing the 
primitive index order, as well as the start/end 
indices of each node and their connectivity 
(parent/child) to the tree.



15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Edge Cases

[ primitives with same centroid ] [ overlapping bboxes ]

In these cases, pick a random partition
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BVH Review

Building the BVH:
1) Pick axis [x,y,z] 

1) Sort primitives on axis by centroid
2) Bin primitives (B = 32)
3) Partition primitives by bin along axis
4) Compute SAH, saving best result

2) Construct 2 child nodes from best SAH result
3) Recurse until few primitives (< 4) left in node

Traversing the BVH:
1) Check if ray hits current node bbox
2) If hit, find which child node is closer to ray
3) Recurse down closer child
4) If the farther child node is closer to the ray than 

the hit discovered, recurse down the farther child

Traversal cost is 𝑂(log(𝑁)), same as tree-search
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Axis-Aligned BVH

• What is an axis-aligned BVH?
• By searching for partitions along the axes [x,y,z], we are 

constraining ourselves to build partitions with 
bounding boxes that are axis-aligned

• How do we make a non-axis-aligned BVH?
• Simple! Just search for partitions that are not 

constrained to [x,y,z]
• Easy in theory, difficult in practice

• What are the pros/cons of non-axis-aligned BVH?
• [+] Better SAH
• [+] Nodes have less likelihood of having empty space
• [-] More work to compute partitions
• [-] Larger intersection cost for non-aligned bboxes
• [-] More memory overhead
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Axis-Aligned BVH

• Are non-axis-aligned BVHs actually faster?
• Yes, and no.

• Surface area ratio 
𝑆𝐴

𝑆𝐶
 decreases with better-fitting bboxes

• Bounding box intersection cost 𝐶𝑡𝑟𝑎𝑣 increases with more 
compute required to check unaligned bbox

• How to check for intersection with non-axis-aligned bbox?
• Bbox now has an extra transform matrix 𝑇 taking it from 

the parent’s coordinate space to its own coordinate space
• Apply the inverse transform to the bbox and ray and 

compute axis-aligned intersections
• Larger memory overhead, now need to store the 

transform with each node

𝐶 = 𝐶𝑡𝑟𝑎𝑣 +
𝑆𝐴

𝑆𝐶
𝑁𝐴𝐶𝑡𝑟𝑖 +

𝑆𝐵

𝑆𝐶
𝑁𝐵𝐶𝑡𝑟𝑖
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• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Paritioning Structures

Lecture 08 | Spatial Structures
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Primitive vs. Spatial

• Spatial Partitioning
• K-D Trees
• Uniform Grid
• Quad/Octree

• [+] No volume overlap
• [+] Can terminate on first hit
• [-] Higher potential for empty space
• [-] May intersect primitive multiple times

• Primitive Partitioning
• Bounding Volume Hierarchy

• [+] More flexible to geometry
• [+] Easier to update (animation)
• [-] Volumes can overlap
• [-] Unable to terminate on first hit
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K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Recursively partition space via axis-aligned 
partitioning planes
• Interior nodes correspond to spatial splits
• Node traversal proceeds in front-to-back order
• Unlike BVH, can terminate search after first hit 

is found 
• Still 𝑂(log(𝑁)) performance
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K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Consider: Triangle 1 overlaps multiple zones
• Triangle 1 is checked for intersection when 

checking red zone first
• Ray intersects triangle 1
• But triangle 2 is closer

• Requirement: intersection point must lie within zone
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Uniform Grid

• Partition space into equal sized volumes (volume-
elements or “voxels”)

• Each voxel contains primitives that overlap
• Walk ray through volume in order

• Very efficient implementation possible (think: 3D 
line rasterization)

• Only consider intersection with primitives in 
voxels the ray intersects

• What is a good number of voxels?
• Should be proportional to total number of 

primitives 𝑁
• Number of cells traversed is proportional to 

𝑂(
3

𝑁)
• A line going through a cube is a cubed root
• Still not as good as 𝑂(log(𝑁))
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Uniform Grid

Too few cells
Requires checking every primitive

Too many cells
Walking through a lot of empty space
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Uniform Grid

• Uniform grid cannot adapt to non-uniform 
distribution of geometry in scene
• Unlike K-D tree, location of spatial partitions is 

not dependent on scene geometry

Monsters University (2013) Pixar
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Where Uniform Grids Work

Legend of Zelda: Tears of the Kingdom (2023) Nintendo
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Quad-Tree/Octree

• Like uniform grid, easy to build
• Has greater ability to adapt to location of scene 

geometry than uniform grid
• Still not as good adaptability as K-D tree

• Quad-tree: nodes have 4 children
• Partitions 2D space

• Octree: nodes have 8 children 
• Partitions 3D space
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Spatial Data Structures Review

[ Spatial ] [ Primitive ] [ Build Speed ]

BVH

K-D Tree

Uniform Grid

Quad/Octree

✓

✗

✗

✗

[ Search Speed ]

✓

✓

✗

✗

✗

✓

✓

✓

✗

✗

✓

✓
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