
Geometric Queries
and

Spatial Data Structures

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

15-362/662 | Computer Graphics

• Geometric Remeshing

• Geometric Queries

• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Partitioning Structures

Lecture 08 | Spatial Structures

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Isotropic Remeshing

• Isotropic: same value when measured in any direction
• Remeshing: a change in the mesh

• Goal: change the mesh to make triangles more
uniform shape and size

• Helps achieve good mesh properties:
• Good approximation of original shape
• Vertex degrees close to 6
• Angles close to 60deg
• Delaunay triangles

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Improving Degree

𝑖
𝑗

𝑘

𝑙

flip

Vertices with degree 6 makes triangles more regular
Deviation function: |𝑑𝑖 − 6| + |𝑑𝑗 − 6| + |𝑑𝑘 − 6| + |𝑑𝑙 − 6|

 If flipping an edge reduces deviation function, flip edge

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Improving Vertex Positioning

average

Center vertices to make triangles more even in size

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Improving Edge Length

split

If an edge is longer than (4/3 * mean) length, split it

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Improving Edge Length

collapse

If an edge is shorter than (4/5 * mean) length, collapse it

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Isotropic Remeshing

Step 1: Step 2:

Step 3: Step 4:

collapsesplit

flip average

15-362/662 | Computer Graphics

• Geometric Remeshing

• Geometric Queries

• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Partitioning Structures

Lecture 08 | Spatial Structures

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point Queries

???

p

• Problem: given a point, in how do we find the closest
point on a given surface?

• Several use cases:
• Ray/mesh intersection in pathtracing
• Kinematics/animation
• GUI/user selection

• When I click on a mesh, what point am I
actually clicking on?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a Line

NTx = c

p
N

To find the closest point to p along NTx = c
We can have p travel along N for some time t

𝑁𝑇 𝑝 + 𝑡𝑁 = 𝑐

Multiplying the terms out

𝑁𝑇𝑝 + 𝑡𝑁𝑇𝑁 = 𝑐

The unit norm multiplied by itself is 1
Solve for t

𝑡 = 𝑐 − 𝑁𝑇𝑝

Propagate p along N for time t

𝑝 + 𝑡𝑁
𝑝 + (𝑐 − 𝑁𝑇𝑝)𝑁

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a Line Segment

Compute the vector p from the line base a along the line

⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

Normalize to get a time

𝑡 =
⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

⟨𝐛 − 𝐚, 𝐛 − 𝐚⟩

Clip time to range [0,1]and interpolate

p
p p

p

p

p

pp
p

p

a

b

𝒂 + (𝐛 − 𝐚)𝑡

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a 2D Triangle

• Easy! Just compute closest point to each line segment
• For each point, compute distance
• Point with smallest distance wins

• What if the point is inside the triangle?
• Even easier! The closest point is the point itself
• Recall point-in-triangle tests

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a 3D Triangle

• Method #1: Projection**
• Construct a plane that passes through the triangle

• Can be done using cross product of edges
• Project the point to the closest point on the plane

• Same expression as with a line: 𝑝 + (𝑐 − 𝑁𝑇𝑝)𝑁
• Check if point is in triangle using half-plane test

• Else, compute distance from each line segment in 3D
• Same expression as with a 2D line segment

• Method #2: Rotation**
• Translate point + triangle so that triangle vertex v1 is at the origin
• Rotate point + triangle so that triangle vertex v2 sits on the z-axis
• Rotate point + triangle so that triangle vertex v3 sits in the plane x=0
• Disregard x-coordinate of point

• Problem reduces to closest point on 2D triangle

**https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4264&rep=rep1&type=pdf

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a 3D Triangle Mesh

• Conceptually easy!
• Loop over every triangle
• Compute closest point to current triangle
• Keep track of globally closest point

• Not practical in real world
• Meshes have billions of triangles
• Programs make thousands of geometric

queries a second

• Will look at better solutions a bit later

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Mesh-Mesh Intersections

• Sometimes when editing geometry, a mesh will
intersect with itself

• Likewise, sometimes when animating geometry,
meshes will collide

• How do we check for/prevent collisions?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Point-Line Intersection

NTx = c

p
N

Just plug point in

𝑁𝑇𝑝 = 𝑐?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Point-Line Segment Intersection

Check if adding distances equals net distance**

𝑑𝑖𝑠𝑡 𝑎, 𝑝 + 𝑑𝑖𝑠𝑡 𝑝, 𝑏 = 𝑑𝑖𝑠𝑡(𝑎, 𝑏)

p
p p

p

p

p

pp
p

p

a

b

**Potential numeric stability issues

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Line-Line Intersection

Two equations, two unknowns
Solve a linear system

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Point-Triangle Intersection

You know this :)

15-362/662 | Computer Graphics

• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Partitioning Structures

Lecture 08 | Spatial Structures

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Ray-Mesh Intersection

• We just saw closest triangle to a point

• What if we want to find the closest triangle a ray intersects?
• A ray is a point + a direction vector
• More constrained problem
• Naïve approach still needs to check every triangle!

time
point along ray

origin unit direction

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Ray-Mesh Intersection

• Spatial data structures that allows us to compute ray-mesh
intersections without having to check every triangle

• Think of building these structures as a preprocessing step
• Building can take a while
• Searching must be fast!

time
point along ray

origin unit direction

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Ray-Plane Intersection

Given a plane defined as

𝐍T𝐱 = c

We can find the intersection point by plugging in the ray for 𝐱

𝐍T(𝐨 + 𝑡𝐝) = c

Then solve for 𝑡

𝑡 =
c − 𝐍T𝐨

𝐍T𝑑

Substitute the time into the ray equation to find the
intersection point

𝐩 = 𝐨 +
c − 𝐍T𝐨

𝐍T𝑑
𝐝

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Ray-Triangle Intersection

• Not much different:
• i) Compute ray-plane intersection to find point p on plane
• ii) Perform point-in-triangle test for point p

• Barycentric coordinates

• Not a very efficient algorithm…
• Can we combine both steps into one?
• Idea: set intersection and barycentric tests equal

• If the intersection point lies within the triangle, the above
equation will have a solution

𝐨 + 𝑡𝐝 = 1 − 𝑢 − 𝑣 ∗ 𝒑𝟎 + 𝑢 ∗ 𝒑𝟏 + 𝑣 ∗ 𝒑𝟐

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Moller-Trumbore Algorithm

𝐨 + 𝑡𝐝 = 1 − 𝑢 − 𝑣 ∗ 𝒑𝟎 + 𝑢 ∗ 𝒑𝟏 + 𝑣 ∗ 𝒑𝟐

Given the below equation

Rearrange the terms until unknowns are on one side

𝐨 − 𝒑𝟎 = 𝑢 ∗ (𝒑𝟏 − 𝒑𝟎) + 𝑣 ∗ (𝒑𝟐 − 𝒑𝟎) − 𝑡𝐝

Rewrite in terms of variables**

𝒔 = 𝑢 ∗ 𝒆𝟏 + 𝑣 ∗ 𝒆𝟐 − 𝑡𝐝

Rewrite as a matrix operation

𝒔 = [𝒆𝟏 𝒆𝟐 −𝐝] ∙
𝑢
𝑣
𝑡

Solve using Cramer’s rule

𝑢
𝑣
𝑡

=
1

(𝒆𝟏 × 𝐝) ∙ 𝒆𝟐

−(𝒔 × 𝒆𝟐) ∙ 𝐝
(𝒆𝟏 × 𝐝) ∙ 𝒔

−(𝒔 × 𝒆𝟐) ∙ 𝒆𝟏

𝒔 = 𝐨 − 𝒑𝟎

𝒆𝟏 = 𝒑𝟏 − 𝒑𝟎

𝒆𝟐 = 𝒑𝟐 − 𝒑𝟎

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Moller-Trumbore Visualized

𝒔 = [𝒆𝟏 𝒆𝟐 −𝐝] ∙
𝑢
𝑣
𝑡

x

y
z

u

v

1

1

𝐨 − 𝒑𝟎 = [𝒑𝟏 − 𝒑𝟎 𝒑𝟐 − 𝒑𝟎 −𝐝] ∙
𝑢
𝑣
𝑡

• Matrix 𝐌−𝟏 transforms triangle to unit triangle at the origin
with unit-length edges spanning 𝑢 and 𝑣
• Transforms ray to be orthogonal to the triangle

• Q: What if 𝑡 is negative?
• Ray intersection happens in negative direction!

=

𝐨 − 𝒑𝟎 = 𝐌 ∙
𝑢
𝑣
𝑡

=

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Spatial Data Structures

• Naïve ray-mesh intersection requires checking every triangle
for ray-triangle intersection
• Meshes have millions to billions of triangles
• O(n) exectution

• Idea: sort triangles in a way where we can perform quick
intersection tests on groups of triangles at a time

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Bounding Box

• Precompute the smallest axis-aligned bounding box around
all primitives
• Keep track of smallest and largest (x,y,z) coordinates for

all primitives

• Check for ray-box intersection
• If misses, we are done
• If passes, check all triangles

• Saves time for rays that clearly miss the mesh, but…
• Still O(n) for rays that intersect the box

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

More Bounding Boxes

• What if we had 2 levels of bounding boxes?
• Global bounding box

• Head bounding box
• Body bounding box

• Check for global ray-box intersection
• If misses, we are done
• If passes,

• Check for head ray-box intersection
• If misses, continue
• If passes, check all triangles in head

• Check for body ray-box intersection
• If misses, continue
• If passes, check all triangles in body

• Better, some rays can now pass the global bbox but neither
the head/body bbox
• We have tighter checks rays need to pass in order to

search underlying triangles

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

A Hierarchy of…Bounding Volumes?

[Level 0]
[Level 1] [Level 2]

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Bounding Volume Hierarchy (BVH)

• Recursively partition nodes into smaller nodes
• Stop when node contains no more than several

primitives

• The resulting BVH mimics a tree
• Root node encompasses all primitives
• Each non-root node has a parent
• Each non-leaf node has two children

• Some BVHs can have more than 2 children
• Each leaf node points to a handful of primitives

Stanford Bunny BVH visualizing 10th level

15-362/662 | Computer Graphics

• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Partitioning Structures

Lecture 08 | Spatial Structures

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Let’s look at an example

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Example

Bounding boxes will sometimes intersect!

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Example

pass ✓

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Example

pass ✓fail ✗

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Example

pass ✓fail ✗

Are we done?

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Example

pass ✓fail ✗pass ✓

We can find a closer triangle if we check here
Remember: bounding boxes will intersect!

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)

{

 // test if ray hits node’s bbox

 HitInfo hit = intersect(ray, node->bbox);

 if (hit.prim == NULL || hit.t > best.t))

 return;

 // for leaves, check each primitive

 if (node->leaf) {

 for (each primitive p in node->primList) {

 hit = intersect(ray, p);

 if (hit.prim != NULL && hit.t < best.t) {

 best.prim = p;

 best.t = t;

 }

 }

 } else {

 // traverse BOTH children

 hit(ray, node->child1, best);

 hit(ray, node->child2, best);

 }

}

struct BVHNode {

 // is the node a leaf

 bool leaf;

 // min/max coordinates enclosing primitives

 Bbox bbox;

 // left child (can be NULL)

 BVHNode *child1;

 // right child (can be NULL)

 BVHNode *child2;

 // for leaves, stores primitives

 Primitive *primList;

}

struct HitInfo {

 // the primitive the ray hit

 Primitive *prim;

 // the time along the ray the hit occured

 float t;

}

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)

{

 // test if ray hits node’s bbox

 HitInfo hit = intersect(ray, node->bbox);

 if (hit.prim == NULL || hit.t > best.t))

 return;

 // for leaves, check each primitive

 if (node->leaf) {

 for (each primitive p in node->primList) {

 hit = intersect(ray, p);

 if (hit.prim != NULL && hit.t < best.t) {

 best.prim = p;

 best.t = t;

 }

 }

 } else {

 // traverse BOTH children

 hit(ray, node->child1, best);

 hit(ray, node->child2, best);

 }

}

struct BVHNode {

 // is the node a leaf

 bool leaf;

 // min/max coordinates enclosing primitives

 Bbox bbox;

 // left child (can be NULL)

 BVHNode *child1;

 // right child (can be NULL)

 BVHNode *child2;

 // for leaves, stores primitives

 Primitive *primList;

}

struct HitInfo {

 // the primitive the ray hit

 Primitive *prim;

 // the time along the ray the hit occured

 float t;

}

We don’t ALWAYS need to check both children.
Recall the first example where we terminated

after searching only the closer bbox.

pass ✓

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Better BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)

{

 if (node->leaf) {

 // same as previous slide

 } else {

 BVHNode* child1 = node->child1;

 BVHNode* child2 = node->child2;

 HitInfo hit1 = intersect(ray, child1->bbox);

 HitInfo hit2 = intersect(ray, child2->bbox);

 // pick node with better time

 BVHNode* first = (hit1.t <= hit2.t) ?

 child1 : child2;

 BVHNode* second = (hit2.t <= hit1.t) ?

 child2 : child1;

 hit(ray, first, best);

 if (hit2.t < best.t)

 hit(ray, second, best);

 }

}

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Better BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)

{

 if (node->leaf) {

 // same as previous slide

 } else {

 BVHNode* child1 = node->child1;

 BVHNode* child2 = node->child2;

 HitInfo hit1 = intersect(ray, child1->bbox);

 HitInfo hit2 = intersect(ray, child2->bbox);

 // pick node with better time

 BVHNode* first = (hit1.t <= hit2.t) ?

 child1 : child2;

 BVHNode* second = (hit2.t <= hit1.t) ?

 child2 : child1;

 hit(ray, first, best);

 if (hit2.t < closest.t)

 hit(ray, second, best);

 }

}

Only check far bbox if closest primitive in
the near bbox is farther than the closest point

intersected in the far bbox.

This means there’s a potential
to find a better primitive :)

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

So we know how to traverse a BVH,
But how do we build one?

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Partitioning

What is the best way to partition these primitives?

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Partitioning

We can split them into equal # of primitives…
…but bboxes take up large area

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Partitioning

We can split them into the smallest possible bboxes…
…but some bboxes will have many more primitives

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

Surface Area Heuristic gives us a quantitative way of telling us if a partition is good
A better partition will have a lower cost

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

• Fixed cost associated with bbox intersection
• Having too large a BVH depth means we have to

check too many bboxes before finding a primitive

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

• For a convex object A inside a parent convex object
B, the probability that a random ray that hits B also
hits A is given by the ratio of the surface areas 𝑆𝐴
and 𝑆𝐵 of these objects:

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

• For a node 𝐶𝐴 , this is the cost of checking all
primitives held by this box
• All triangles have the same cost 𝐶𝑡𝑟𝑖

• For 𝑁𝐴 triangles, cost is 𝑁𝐴𝐶𝑡𝑟𝑖

• Minimizes surface area deviation
• Minimizes primitive deviation

• New equation:

• 𝐶𝑡𝑟𝑎𝑣, 𝐶𝑡𝑟𝑖 and 𝑆𝐶 are constants, so we can remove
them when computing the minimum cost:

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶𝑡𝑟𝑎𝑣 measures the cost of intersecting the current node’s bbox
• 𝑝𝐴 measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶𝐴 measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶𝑡𝑟𝑎𝑣 + 𝑝𝐴𝐶𝐴 + 𝑝𝐵𝐶𝐵

𝐶 = 𝐶𝑡𝑟𝑎𝑣 +
𝑆𝐴

𝑆𝐶
𝑁𝐴𝐶𝑡𝑟𝑖 +

𝑆𝐵

𝑆𝐶
𝑁𝐵𝐶𝑡𝑟𝑖

𝐶′ = 𝑆𝐴𝑁𝐴 + 𝑆𝐵𝑁𝐵

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

We know what a good partition is,
but how do we actually build a partition

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) { // check all axis-aligned partitions

 sort(primitives, axis); // sort primitives by centroid

 n = primitives.length();

 for(int i = 0; i < n; i++) {

 a = bbox(primitves[0,i]);

 b = bbox(primitves[i,n]);

 // surface area heuristic

 cost = a.area * i + b.area * (n – i);

 if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

 }

}

// create children bounding boxes based on best axis and partition location

partition(best_axis, best_partition);

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) { // check all axis-aligned partitions

 sort(primitives, axis); // sort primitives by centroid

 n = primitives.length();

 for(int i = 0; i < n; i++) {

 a = bbox(primitves[0,i]);

 b = bbox(primitves[i,n]);

 // surface area heuristic

 cost = a.area * i + b.area * (n – i);

 if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

 }

}

// create children bounding boxes based on best axis and partition location

partition(best_axis, best_partition);

Checking every partition in a scene with millions of primitives
is incredibly expensive!

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) {

 sort(primitives, axis);

 n = primitives.length();

 for(int i = 0; i < n; i+=32) { // check every B primitives (B = 32)

 a = bbox(primitves[0,i]);

 b = bbox(primitves[i,n]);

 cost = a.area * i + b.area * (n – i);

 if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

 }

}

partition(best_axis, best_partition);

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) {

 sort(primitives, axis);

 n = primitives.length();

 for(int i = 0; i < n; i+=32) { // check every B primitives (B = 32)

 a = bbox(primitves[0,i]);

 b = bbox(primitves[i,n]);

 cost = a.area * i + b.area * (n – i);

 if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

 }

}

partition(best_axis, best_partition);

Still a lot of iterating over primitives each loop!

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) {

 sort(primitives, axis);

 n = primitives.length();

 bin_n = bin.length();

 for(int i = 0; i < n; i++) {

 bin = compute_bucket(primitves[i].centroid) // find bin that triangle lies in

 bin.bbox.add(primitves[i]); } // add triangle to bin

 for(int j = 0; j < bin_n; j++) {

 a = bbox(bin[0,j]); // add bins to partitions instead of triangles

 b = bbox(bin[j, bin_n]); // add bins to partitions instead of triangles

 // same as before

 }

}

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

[x-axis binning]

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

Cost = 3 prims * (0.15) + 8 prims * (0.87)

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

Cost = 6 prims * (0.38) + 5 prims * (0.43)

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

Cost = 9 prims * (0.81) + 2 prims * (0.18)

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

[y-axis binning]

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

Cost = 3 prims * (0.19) + 8 prims * (0.91)

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

Cost = 6 prims * (0.32) + 5 prims * (0.36)

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

Cost = 9 prims * (0.94) + 2 prims * (0.13)

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

Best Partition

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Building Partitions Example

Recurse with each child node

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

What About Ordering?

7
10

4

9
1

6

38

2

11

5

1 2 3 4 5 6 7 8 9 10 11primitives

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

What About Ordering?

7
10

4

9
1

6

38

2

11

5

1 9 10 7 6 4 5 3 8 2 11primitives

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

What About Ordering?

7
10

4

9
1

6

38

2

11

5

9 4 10 7 1 6 5 11 2 8 3primitives

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

What About Ordering?

9 4 10 7 1 6 5 11 2 8 3primitives

1 2 3 4 5 6 7 8 9 10 11primitives

1 9 10 7 6 4 5 3 8 2 11primitives

• Sort by partition axis
• Each node saves index start/end range for

primitives it is responsible for
• Combination of children node primitives

should match parent node primitives
• Example: all red and yellow primitives

encased in orange primitive list
• When partitioning a node along an axis, should

only sort for primitives in node’s range!

• Storing a BVH in memory requires storing the
primitive index order, as well as the start/end
indices of each node and their connectivity
(parent/child) to the tree.

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Edge Cases

[primitives with same centroid] [overlapping bboxes]

In these cases, pick a random partition

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Review

Building the BVH:
1) Pick axis [x,y,z]

1) Sort primitives on axis by centroid
2) Bin primitives (B = 32)
3) Partition primitives by bin along axis
4) Compute SAH, saving best result

2) Construct 2 child nodes from best SAH result
3) Recurse until few primitives (< 4) left in node

Traversing the BVH:
1) Check if ray hits current node bbox
2) If hit, find which child node is closer to ray
3) Recurse down closer child
4) If the farther child node is closer to the ray than

the hit discovered, recurse down the farther child

Traversal cost is 𝑂(log(𝑁)), same as tree-search

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Axis-Aligned BVH

• What is an axis-aligned BVH?
• By searching for partitions along the axes [x,y,z], we are

constraining ourselves to build partitions with
bounding boxes that are axis-aligned

• How do we make a non-axis-aligned BVH?
• Simple! Just search for partitions that are not

constrained to [x,y,z]
• Easy in theory, difficult in practice

• What are the pros/cons of non-axis-aligned BVH?
• [+] Better SAH
• [+] Nodes have less likelihood of having empty space
• [-] More work to compute partitions
• [-] Larger intersection cost for non-aligned bboxes
• [-] More memory overhead

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Axis-Aligned BVH

• Are non-axis-aligned BVHs actually faster?
• Yes, and no.

• Surface area ratio
𝑆𝐴

𝑆𝐶
 decreases with better-fitting bboxes

• Bounding box intersection cost 𝐶𝑡𝑟𝑎𝑣 increases with more
compute required to check unaligned bbox

• How to check for intersection with non-axis-aligned bbox?
• Bbox now has an extra transform matrix 𝑇 taking it from

the parent’s coordinate space to its own coordinate space
• Apply the inverse transform to the bbox and ray and

compute axis-aligned intersections
• Larger memory overhead, now need to store the

transform with each node

𝐶 = 𝐶𝑡𝑟𝑎𝑣 +
𝑆𝐴

𝑆𝐶
𝑁𝐴𝐶𝑡𝑟𝑖 +

𝑆𝐵

𝑆𝐶
𝑁𝐵𝐶𝑡𝑟𝑖

15-362/662 | Computer Graphics

• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Paritioning Structures

Lecture 08 | Spatial Structures

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Primitive vs. Spatial

• Spatial Partitioning
• K-D Trees
• Uniform Grid
• Quad/Octree

• [+] No volume overlap
• [+] Can terminate on first hit
• [-] Higher potential for empty space
• [-] May intersect primitive multiple times

• Primitive Partitioning
• Bounding Volume Hierarchy

• [+] More flexible to geometry
• [+] Easier to update (animation)
• [-] Volumes can overlap
• [-] Unable to terminate on first hit

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Recursively partition space via axis-aligned
partitioning planes
• Interior nodes correspond to spatial splits
• Node traversal proceeds in front-to-back order
• Unlike BVH, can terminate search after first hit

is found
• Still 𝑂(log(𝑁)) performance

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Consider: Triangle 1 overlaps multiple zones
• Triangle 1 is checked for intersection when

checking red zone first
• Ray intersects triangle 1
• But triangle 2 is closer

• Requirement: intersection point must lie within zone

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Uniform Grid

• Partition space into equal sized volumes (volume-
elements or “voxels”)

• Each voxel contains primitives that overlap
• Walk ray through volume in order

• Very efficient implementation possible (think: 3D
line rasterization)

• Only consider intersection with primitives in
voxels the ray intersects

• What is a good number of voxels?
• Should be proportional to total number of

primitives 𝑁
• Number of cells traversed is proportional to

𝑂(
3

𝑁)
• A line going through a cube is a cubed root
• Still not as good as 𝑂(log(𝑁))

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Uniform Grid

Too few cells
Requires checking every primitive

Too many cells
Walking through a lot of empty space

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Uniform Grid

• Uniform grid cannot adapt to non-uniform
distribution of geometry in scene
• Unlike K-D tree, location of spatial partitions is

not dependent on scene geometry

Monsters University (2013) Pixar

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Where Uniform Grids Work

Legend of Zelda: Tears of the Kingdom (2023) Nintendo

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Quad-Tree/Octree

• Like uniform grid, easy to build
• Has greater ability to adapt to location of scene

geometry than uniform grid
• Still not as good adaptability as K-D tree

• Quad-tree: nodes have 4 children
• Partitions 2D space

• Octree: nodes have 8 children
• Partitions 3D space

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Spatial Data Structures Review

[Spatial] [Primitive] [Build Speed]

BVH

K-D Tree

Uniform Grid

Quad/Octree

✓

✗

✗

✗

[Search Speed]

✓

✓

✗

✗

✗

✓

✓

✓

✗

✗

✓

✓

	Slide 1: Geometric Queries and Spatial Data Structures
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

