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Edge Flip

Goal: Move edge e around faces adjacent to it:

• No elements created/destroyed, just pointer reassignment
• Flipping the same edge multiple times yields original results
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Edge Flip

// collect

h = e->halfedge;

t = h->twin; 

v1 = h->next->vertex;

v2 = t->next->vertex;

v3 = h->next->next->vertex;

v4 = t->next->next->vertex;

f1 = h->face;

f2 = t->face;

// disconnect

v1->halfedge = h->next; 

v2->halfedge = t->next; 

f1->halfedge = h;

f2->halfedge = t;

// connect

t->vertex = v3;

h->vertex = v4;

// are we done?   What is missing?

f1

f2
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Edge Vertex Split

Goal: Insert edge between vertex v and midpoint of edge e:

• Creates a new vertex, new edge, and new face
• Involves much more pointer reassignments
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Edge Collapse

Goal: Replace edge (c,d) with a single vertex m:

• Deletes a vertex, (up to) 3 edges, and (up to) 2 faces
• Depends on the degree of the original faces
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Local Operations

Many other local operations you will explore in your homework…
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Local Operation Tips

• Always draw out a diagram
• We’ve given you some unlabeled diagrams
• With pen + paper, label the elements you’ll need to 

collect/create

• Stage your code in the following way:
• Create
• Collect
• Disconnect
• Connect
• Delete

• Write asserts around your code
• Check if elements that should be deleted were deleted
• Make sure there are no dangling references to anything 

that has been deleted
• Make sure every element that you disconnected or 

reconnected is still valid
• What it means for a vertex to be valid is not the same 

as what it means for an edge to be valid, etc.
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Geometry Processing Tasks

[ reconstruction ] [ remeshing ] [ filtering ]

[ compression ][ parameterization ][ shape analysis ]
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Geometry Processing: Reconstruction

• Given samples of geometry, reconstruct surface

• Data: What are “samples”?
• Points & normals
• Image pairs / sets (multi-view stereo)
• Line density integrals (MRI/CT scans)

• Algorithm: How do you get a surface?
• Silhouette-based (visual hull)
• Voronoi-based (e.g., power crust)
• PDE-based (e.g., Poisson reconstruction)
• Radon transform / isosurfacing (marching cubes)
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Geometry Processing: Remeshing

• Upsampling: increase resolution via interpolation
• Subdivision
• Bilateral upsampling

• Downsampling: decrease resolution via averaging
• Subsampling
• Iterative decimation

• Resampling: modify sample distribution to improve quality
• Remeshing

downsample

upsample

resample
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Geometry Processing: Filtering

• Remove noise, or emphasize important features (e.g., edges)
• Curvature flow
• Bilateral filtering
• Spectral filtering

• Useful for cleaning up noisy 3D scans
• Example: Kinect

• Search for key facial components while 
smoothening out artifacts in between 
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Geometry Processing: Compression

• Reduce storage size by eliminating redundant 
data/approximating unimportant data

• Techniques may be either lossy or lossless:
• Lossy:  unable to reconstruct original mesh

• Able to compress the mesh better
• Lossless: able to reconstruct original mesh

• Not as good compression results

• Somewhat similar idea to downsampling
• Added objective of wanting to recover the original 

mesh perfectly (lossless) or as best as possible (lossy)



15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Geometry Processing: Shape Analysis

• Identify/understand important semantic features
• Segmentation
• Correspondence
• Symmetry detection
• Alignment

• Objective: Compute similarities between 
two meshes

• Starting to become AI-driven
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But what makes a good mesh?
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A Good Mesh Has…

• Good approximation of original shape
• Keep elements that contribute shape info
• More elements where curvature is high

• Regular vertex degree
• Degree 6 for triangle mesh, 4 for quad mesh

• Better polygon shape
• More regular computation
• Smoother subdivision

[ good ] [ okay ] [ bad ]
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 ] subdivide

subdivide
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A Good Mesh Has…

• Good triangle shape
• All angles close to 60 degrees

• More sophisticated condition: Delaunay
• For every triangle, the unique circumcircle (circle 

passing through all vertices of the triangle) does 
not encase any other vertices

• Many nice properties:
• Maximizes minimum angle
• Smoothest interpolation

• Tradeoff: sometimes a mesh can be approximated best 
with long & skinny triangles
• Doesn’t make the mesh Delaunay anymore
• Example: cylinder

[ good ] [ bad ]

[ delaunay ]
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A Good Mesh Has…

• Good approximation on the vertices & interpolation
• Placing vertices on a sphere and linearly 

interpolating is not enough
• Adding more vertices yields better 

approximation, but now too much data to 
store/process! 

• Need to apply correct surface normals
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Surface Normals

• A surface normal is a vector that is perpendicular to 
the surface at a given point
• The surface normal for a surface 𝑧 = 𝑓(𝑥, 𝑦) at 

point (𝑥′, 𝑦′) is:

• Value assigned per-vertex

• Surface normal are interpolated via-barycentric 
coordinates and extruded in that direction to provide 
the appearance of curvature during rendering

𝑁𝑠 =
𝑓𝑥(𝑥′, 𝑦′)

𝑓𝑦(𝑥′, 𝑦′)

−1
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Subdivision

• Subdivison is the process of upsampling a mesh

• General formula:
• Split Step: split faces into smaller faces
• Move Step: replace vertex positions/properties 

with weighted average of neighbors 
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Linear Subdivision [Split Step]

• Split every polygon (any # of sides) into quadrilaterals

• Each new quadrilateral now has:
• [face coords]     : 1 new vertex from the mesh face center
• [edge coords]    : 2 new vertices from the new edges 
• [vertex coords] : 1 new vertex from the original mesh face
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Linear Subdivision [Move Step]

Step 1: Step 2:Face Coords Edge Coords

Step 3: Vertex Coords

(𝑎 + 𝑏) / 2

𝑣𝑖 = 𝑣𝑖𝑣𝑖
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Catmull Clark Subdivision

• In 1978, Edwin Catmull (Pixar co-founder) and Jim Clark 
wanted to create a generalization of uniform bi-cubic b-
splines for 3D meshes
• We will cover what this means in a future lecture : )

• Became ubiquitous in graphics
• Helped Catmull win an Academy Award for 

Technical Achievement in 2005 

OpenSubdiv V2 (2018) Pixar
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Catmull-Clark Subdivision [Split Step]

• Split every polygon (any # of sides) into quadrilaterals

• Each new quadrilateral now has:
• [face coords]     : 1 new vertex from the mesh face center
• [edge coords]    : 2 new vertices from the new edges 
• [vertex coords] : 1 new vertex from the original mesh face
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Catmull-Clark Subdivision [Move Step]

Step 1: Step 2:Face Coords Edge Coords

Step 3: Vertex Coords

- vertex degree

- average of face coords around vertex

- average of edge coords around vertex

- original vertex position
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Catmull-Clark Subdivision [Quads]

Few irregular vertices Smoothly-varying surface normals Smooth reflections/caustics
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Catmull-Clark Subdivision [Triangles]

Many irregular vertices Erratic surface normals Jagged reflections/caustics
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Is there a better subdivision scheme we can use for triangulated meshes?



15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision

Step 1: 

Step 2: Step 3: 

Split triangle 
into 4 triangles

Assign new coords Assign old coords

1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
      3/(8n) otherwise
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Loop Subdivision

Step 1: 

Step 2: Step 3: 

Split triangle 
into 4 triangles

Assign new coords Assign old coords

1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
      3/(8n) otherwise

How do we efficiently do Step 1?
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Loop Subdivision Using Local Ops

Step 1: 

Step 2: 
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split
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Loop Subdivision Using Local Ops

Step 1: 

Step 2: 
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

The order we traverse the edges and split them matter!

Traversing edges forward and splitting vs traversing them 
backwards and splitting will yield different meshes
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Loop Subdivision Using Local Ops

Step 1: 

Step 2: 
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

Flipping new edges until the below criteria is met 
ensures that any order of splitting edges will still result in 
the same final mesh
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Simplification

• Simplification is the process of downsampling a mesh
• Less Storage overhead

• Smaller file sizes
• Less Processing overhead

• Less elements to iterate over
• Larger mesh modifications

• Instead of moving tens of smaller mesh 
elements, move one larger mesh element
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Simplification Algorithm Basics

• Greedy Algorithm:
• Assign each edge a cost
• Collapse edge with least cost
• Repeat until target number of elements is reached

• Particularly effective cost function: quadric error metric**

[ 300 triangles ] [ 30 triangles ][ 3,000 triangles ][ 30,000 triangles ]

**invented at CMU (Garland & Heckbert 1997)
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Quadratic Error Metric

• Goal: approximate a point’s distance from a collection of triangles
• Review: what is the distance of a point 𝐱 from a plane 𝐩 with 

normal 𝐧?

• Quadric error is the sum of squared point-to-plane distances

dist(𝐱) = ⟨𝐧, 𝐱⟩ − ⟨𝐧, 𝐩⟩ = ⟨𝐧, 𝐱 − 𝐩⟩

𝐩

𝐱

𝐧

𝑄 = 1

𝑄 =
1

8

𝑄 =
1

2

𝑄 = 0

𝐧1

𝐧2𝐧3

𝐧4

𝐧5

𝐩

𝑄(𝐱): = ∑
𝑖=1

𝑘

⟨𝐧𝑖, 𝐱 − 𝐩⟩2
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Quadratic Error As Homogeneous Coordinates

𝐩

𝐱

𝐧

• Given:
• Query point 𝐱 =  (𝑥, 𝑦, 𝑧)
•  Normal 𝐧 =  (𝑎, 𝑏, 𝑐)
• Offset from origin 𝑑 = − 𝐧, 𝐩

• We can rewrite in homogeneous coordinates:
• 𝐮 =  (𝑥, 𝑦, 𝑧, 1)
• 𝐯 =  (𝑎, 𝑏, 𝑐, 𝑑)

• Signed distance to plane is then just 𝐮, 𝐯 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑
• Squared distance is ⟨𝐮, 𝐯⟩2 = 𝐮𝖳(𝐯𝐯𝖳)𝐮 =: 𝐮𝖳𝐾𝐮

• Matrix 𝐾 = 𝐯𝐯𝑇 encodes squared distance to plane

• Key Idea: sum of matrices 𝐾 represents distance to a union of planes

𝐮𝖳𝐾1𝐮 + 𝐮𝖳𝐾2𝐮 = 𝐮𝖳(𝐾1 + 𝐾2)𝐮

𝐧1

𝐧2𝐧3

𝐧4

𝐧5

𝐩



𝐦

𝑒𝑖𝑗𝑖 𝑗
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Quadratic Error of Edge Collapse

• How much does it cost to collapse an edge 𝑒𝑖𝑗?

• Compute midpoint 𝐦, measure error as 

• Error becomes “score” for 𝑒𝑖𝑗, determining priority

• Q: where to put 𝐦?

𝑄(𝐦) = 𝐦𝖳(𝐾𝑖 + 𝐾𝑗)𝐦

collapse



𝐦

𝑒𝑖𝑗𝑖 𝑗
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Quadratic Error of Edge Collapse

𝐦
• Find point 𝐱 that minimizes error

• Take derivatives!

𝑄(𝐦) = 𝐦𝖳(𝐾𝑖 + 𝐾𝑗)𝐦

collapse
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How to take a derivative of a function involving matrices? 



15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Minimizing a Quadratic Function

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝑓′ 𝑥 = 2𝑎𝑥 + 𝑏 = 0
𝑥 = −𝑏/2𝑎

To find the min of a function 𝑓(𝑥) 

take derivative 𝑓′(𝑥) and set equal to 0

can also write any quadratic function of n variables as a symmetric matrix A
consider the multivariable function

𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑔

we can rewrite it as:

𝑓(𝑥, 𝑦) = 𝐱𝖳𝐴𝐱 + 𝐮𝖳𝐱 + 𝑔

take derivative 𝑓′(𝑥) and set equal to 0

𝑓′(𝑥, 𝑦) = 2𝐴𝐱 + 𝐮 = 0

𝐱 = −
1

2
𝐴−1𝐮

same structure

same structure
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Positive Definite Quadratic Form

How do we know if our solution minimizes quadratic error?

𝐱 = −
1

2
𝐴−1𝐮

𝑥𝑎𝑥 = 𝑎𝑥2 > 0
𝑎 > 0

[ positive definite ]

[ positive semidefinite ]

[ indefinite ]

In the 1D case, we minimize the function if 

In the ND case, we minimize the function if

This is known as the function being positive semidefinite
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Minimizing Quadratic Error

Find “best” point for edge collapse by minimizing quadratic form

𝑚𝑖𝑛
𝐮∈ℝ4

𝐮𝑇𝐾𝐮

Already know fourth (homogeneous) coordinate for a point is 1
Break up our quadratic function into two pieces

= 𝐱𝖳𝐵𝐱 + 2𝐰𝖳𝐱 + 𝑑2

Can minimize as before

2𝐵𝐱 + 2𝐰 = 0
𝐱 = −𝐵−1𝐰
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Quadratic Error Simplification Algorithm

// compute K for each face

for(v : vertices) {

 for(f : faces) {

  Vec4 ve(N, d);

  f->K = outer(ve, ve);

 }

}

// compute K for each vertex

for(v : vertices)

 for(f : v->faces())

  v->K += f->K;

// compute K for each edge

// place into priority queue

PriorityQueue pq;

for(e : edge) {

 for(v : e->vertices())

  e->K += v->K;

 pq.push(e->K, e);

}

// iterate until mesh is a target size

while(faces.length() < target_size) {

 // collapse edge with smallest cost

 e = pq.pop();

 K = e->K;

 v = collapse(e);

 // position new vertex to optimal pos

 v->pos = -B.inv() * w

 // update K for vertex 

 // update K for edges touching vertex 

 v->K = K;

 for(e2 : v->edges()) {

  e2->K = 0

  for(v2 : e2->vertices())

   e2->K += v2->K;

 }

}
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Is simplification the inverse operation of subdivision?
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Dangers of Resampling

Repeatedly resampling an image degrades signal quality!
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Dangers of Resampling

. . .

downsample upsample

help.

Repeatedly resampling a mesh also degrades signal quality!
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Isotropic Remeshing

• Isotropic: same value when measured in any direction
• Remeshing: a change in the mesh

• Goal: change the mesh to make triangles more 
uniform shape and size

• Helps achieve good mesh properties:
• Good approximation of original shape
• Vertex degrees close to 6
• Angles close to 60deg
• Delaunay triangles
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Improving Degree

𝑖
𝑗

𝑘

𝑙

flip

Vertices with degree 6 makes triangles more regular
Deviation function: |𝑑𝑖 − 6| + |𝑑𝑗 − 6| + |𝑑𝑘 − 6| + |𝑑𝑙 − 6|

 If flipping an edge reduces deviation function, flip edge
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Improving Vertex Positioning

average

Center vertices to make triangles more even in size
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Improving Edge Length

split

If an edge is longer than (4/3 * mean) length, split it
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Improving Edge Length

collapse

If an edge is shorter than (4/5 * mean) length, collapse it
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Isotropic Remeshing

Step 1: Step 2: 

Step 3: Step 4: 

collapsesplit

flip average
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Closest Point Queries

???

p

• Problem: given a point, in how do we find the closest 
point on a given surface?

• Several use cases:
• Ray/mesh intersection in pathtracing
• Kinematics/animation
• GUI/user selection

• When I click on a mesh, what point am I 
actually clicking on?
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Closest Point on a Line

NTx = c

p
N

To find the closest point to p along NTx = c
We can have p travel along N for some time t

𝑁𝑇 𝑝 + 𝑡𝑁 = 𝑐

Multiplying the terms out

𝑁𝑇𝑝 + 𝑡𝑁𝑇𝑁 = 𝑐

The unit norm multiplied by itself is 1
Solve for t

𝑡 = 𝑐 − 𝑁𝑇𝑝

Propagate p along N for time t

𝑝 + 𝑡𝑁
𝑝 + (𝑐 − 𝑁𝑇𝑝)𝑁
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Closest Point on a Line Segment

Compute the vector p from the line base a along the line

⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

Normalize to get a time

𝑡 =
⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

⟨𝐛 − 𝐚, 𝐛 − 𝐚⟩

Clip time to range [0,1]and interpolate

p
p p

p

p

p

pp
p

p

a

b

𝒂 + (𝐛 − 𝐚)𝑡
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Closest Point on a 2D Triangle

• Easy! Just compute closest point to each line segment
• For each point, compute distance
• Point with smallest distance wins

• What if the point is inside the triangle?
• Even easier! The closest point is the point itself
• Recall point-in-triangle tests
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Closest Point on a 3D Triangle

• Method #1: Projection**
• Construct a plane that passes through the triangle

• Can be done using cross product of edges
• Project the point to the closest point on the plane

• Same expression as with a line: 𝑝 + (𝑐 − 𝑁𝑇𝑝)𝑁
• Check if point is in triangle using half-plane test

• Else, compute distance from each line segment in 3D
•  Same expression as with a 2D line segment

• Method #2: Rotation**
• Translate point + triangle so that triangle vertex v1 is at the origin
• Rotate point + triangle so that triangle vertex v2 sits on the z-axis
• Rotate point + triangle so that triangle vertex v3 sits on the yz-axis
• Disregard x-coordinate of point

• Problem reduces to closest point on 2D triangle

**https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4264&rep=rep1&type=pdf
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Closest Point on a 3D Triangle Mesh

• Conceptually easy! 
• Loop over every triangle
• Compute closest point to current triangle
• Keep track of globally closest point

• Not practical in real world
• Meshes have billions of triangles
• Programs make thousands of geometric 

queries a second

• Will look at better solutions next time
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Mesh-Mesh Intersections

• Sometimes when editing geometry, a mesh will 
intersect with itself

• Likewise, sometimes when animating geometry, 
meshes will collide

• How do we check for/prevent collisions?
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Point-Line Intersection

NTx = c

p
N

Just plug point in

𝑁𝑇𝑝 = 𝑐?
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Point-Line Segment Intersection

Check if adding distances equals net distance**

𝑑𝑖𝑠𝑡 𝑎, 𝑝 + 𝑑𝑖𝑠𝑡 𝑝, 𝑏 = 𝑑𝑖𝑠𝑡(𝑎, 𝑏)

p
p p

p

p

p

pp
p

p

a

b

**Potential numeric stability issues
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Line-Line Intersection

Two equations, two unknowns
Solve a linear system
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Point-Triangle Intersection

You know this : )
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