
Digital Geometric Processing

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

15-362/662 | Computer Graphics

• Local Operations Wrap-up

• Good Geometry

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 07 | Geometry Processing

15-362/662 | Computer Graphics Lecture 06 | Geometry

Edge Flip

Goal: Move edge e around faces adjacent to it:

• No elements created/destroyed, just pointer reassignment
• Flipping the same edge multiple times yields original results

15-362/662 | Computer Graphics Lecture 06 | Geometry

Edge Flip

// collect

h = e->halfedge;

t = h->twin;

v1 = h->next->vertex;

v2 = t->next->vertex;

v3 = h->next->next->vertex;

v4 = t->next->next->vertex;

f1 = h->face;

f2 = t->face;

// disconnect

v1->halfedge = h->next;

v2->halfedge = t->next;

f1->halfedge = h;

f2->halfedge = t;

// connect

t->vertex = v3;

h->vertex = v4;

// are we done? What is missing?

f1

f2

15-362/662 | Computer Graphics Lecture 06 | Geometry

Edge Vertex Split

Goal: Insert edge between vertex v and midpoint of edge e:

• Creates a new vertex, new edge, and new face
• Involves much more pointer reassignments

15-362/662 | Computer Graphics Lecture 06 | Geometry

Edge Collapse

Goal: Replace edge (c,d) with a single vertex m:

• Deletes a vertex, (up to) 3 edges, and (up to) 2 faces
• Depends on the degree of the original faces

15-362/662 | Computer Graphics Lecture 06 | Geometry

Local Operations

Many other local operations you will explore in your homework…

15-362/662 | Computer Graphics Lecture 06 | Geometry

Local Operation Tips

• Always draw out a diagram
• We’ve given you some unlabeled diagrams
• With pen + paper, label the elements you’ll need to

collect/create

• Stage your code in the following way:
• Create
• Collect
• Disconnect
• Connect
• Delete

• Write asserts around your code
• Check if elements that should be deleted were deleted
• Make sure there are no dangling references to anything

that has been deleted
• Make sure every element that you disconnected or

reconnected is still valid
• What it means for a vertex to be valid is not the same

as what it means for an edge to be valid, etc.

15-362/662 | Computer Graphics

• Good Geometry

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 07 | Geometry Processing

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Geometry Processing Tasks

[reconstruction] [remeshing] [filtering]

[compression][parameterization][shape analysis]

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Geometry Processing: Reconstruction

• Given samples of geometry, reconstruct surface

• Data: What are “samples”?
• Points & normals
• Image pairs / sets (multi-view stereo)
• Line density integrals (MRI/CT scans)

• Algorithm: How do you get a surface?
• Silhouette-based (visual hull)
• Voronoi-based (e.g., power crust)
• PDE-based (e.g., Poisson reconstruction)
• Radon transform / isosurfacing (marching cubes)

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Geometry Processing: Remeshing

• Upsampling: increase resolution via interpolation
• Subdivision
• Bilateral upsampling

• Downsampling: decrease resolution via averaging
• Subsampling
• Iterative decimation

• Resampling: modify sample distribution to improve quality
• Remeshing

downsample

upsample

resample

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Geometry Processing: Filtering

• Remove noise, or emphasize important features (e.g., edges)
• Curvature flow
• Bilateral filtering
• Spectral filtering

• Useful for cleaning up noisy 3D scans
• Example: Kinect

• Search for key facial components while
smoothening out artifacts in between

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Geometry Processing: Compression

• Reduce storage size by eliminating redundant
data/approximating unimportant data

• Techniques may be either lossy or lossless:
• Lossy: unable to reconstruct original mesh

• Able to compress the mesh better
• Lossless: able to reconstruct original mesh

• Not as good compression results

• Somewhat similar idea to downsampling
• Added objective of wanting to recover the original

mesh perfectly (lossless) or as best as possible (lossy)

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Geometry Processing: Shape Analysis

• Identify/understand important semantic features
• Segmentation
• Correspondence
• Symmetry detection
• Alignment

• Objective: Compute similarities between
two meshes

• Starting to become AI-driven

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

But what makes a good mesh?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

A Good Mesh Has…

• Good approximation of original shape
• Keep elements that contribute shape info
• More elements where curvature is high

• Regular vertex degree
• Degree 6 for triangle mesh, 4 for quad mesh

• Better polygon shape
• More regular computation
• Smoother subdivision

[good] [okay] [bad]

[
d

e
gr

e
e

6
]

[
d

e
gr

e
e

2
0

] subdivide

subdivide

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

A Good Mesh Has…

• Good triangle shape
• All angles close to 60 degrees

• More sophisticated condition: Delaunay
• For every triangle, the unique circumcircle (circle

passing through all vertices of the triangle) does
not encase any other vertices

• Many nice properties:
• Maximizes minimum angle
• Smoothest interpolation

• Tradeoff: sometimes a mesh can be approximated best
with long & skinny triangles
• Doesn’t make the mesh Delaunay anymore
• Example: cylinder

[good] [bad]

[delaunay]

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

A Good Mesh Has…

• Good approximation on the vertices & interpolation
• Placing vertices on a sphere and linearly

interpolating is not enough
• Adding more vertices yields better

approximation, but now too much data to
store/process!

• Need to apply correct surface normals

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Surface Normals

• A surface normal is a vector that is perpendicular to
the surface at a given point
• The surface normal for a surface 𝑧 = 𝑓(𝑥, 𝑦) at

point (𝑥′, 𝑦′) is:

• Value assigned per-vertex

• Surface normal are interpolated via-barycentric
coordinates and extruded in that direction to provide
the appearance of curvature during rendering

𝑁𝑠 =
𝑓𝑥(𝑥′, 𝑦′)

𝑓𝑦(𝑥′, 𝑦′)

−1

15-362/662 | Computer Graphics

• Good Geometry

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 07 | Geometry Processing

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Subdivision

• Subdivison is the process of upsampling a mesh

• General formula:
• Split Step: split faces into smaller faces
• Move Step: replace vertex positions/properties

with weighted average of neighbors

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Linear Subdivision [Split Step]

• Split every polygon (any # of sides) into quadrilaterals

• Each new quadrilateral now has:
• [face coords] : 1 new vertex from the mesh face center
• [edge coords] : 2 new vertices from the new edges
• [vertex coords] : 1 new vertex from the original mesh face

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Linear Subdivision [Move Step]

Step 1: Step 2:Face Coords Edge Coords

Step 3: Vertex Coords

(𝑎 + 𝑏) / 2

𝑣𝑖 = 𝑣𝑖𝑣𝑖

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Catmull Clark Subdivision

• In 1978, Edwin Catmull (Pixar co-founder) and Jim Clark
wanted to create a generalization of uniform bi-cubic b-
splines for 3D meshes
• We will cover what this means in a future lecture :)

• Became ubiquitous in graphics
• Helped Catmull win an Academy Award for

Technical Achievement in 2005

OpenSubdiv V2 (2018) Pixar

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Catmull-Clark Subdivision [Split Step]

• Split every polygon (any # of sides) into quadrilaterals

• Each new quadrilateral now has:
• [face coords] : 1 new vertex from the mesh face center
• [edge coords] : 2 new vertices from the new edges
• [vertex coords] : 1 new vertex from the original mesh face

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Catmull-Clark Subdivision [Move Step]

Step 1: Step 2:Face Coords Edge Coords

Step 3: Vertex Coords

- vertex degree

- average of face coords around vertex

- average of edge coords around vertex

- original vertex position

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Catmull-Clark Subdivision [Quads]

Few irregular vertices Smoothly-varying surface normals Smooth reflections/caustics

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Catmull-Clark Subdivision [Triangles]

Many irregular vertices Erratic surface normals Jagged reflections/caustics

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Is there a better subdivision scheme we can use for triangulated meshes?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision

Step 1:

Step 2: Step 3:

Split triangle
into 4 triangles

Assign new coords Assign old coords

1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
 3/(8n) otherwise

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision

Step 1:

Step 2: Step 3:

Split triangle
into 4 triangles

Assign new coords Assign old coords

1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
 3/(8n) otherwise

How do we efficiently do Step 1?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision Using Local Ops

Step 1:

Step 2:
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision Using Local Ops

Step 1:

Step 2:
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

The order we traverse the edges and split them matter!

Traversing edges forward and splitting vs traversing them
backwards and splitting will yield different meshes

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision Using Local Ops

Step 1:

Step 2:
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

Flipping new edges until the below criteria is met
ensures that any order of splitting edges will still result in
the same final mesh

15-362/662 | Computer Graphics

• Good Geometry

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 07 | Geometry Processing

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Simplification

• Simplification is the process of downsampling a mesh
• Less Storage overhead

• Smaller file sizes
• Less Processing overhead

• Less elements to iterate over
• Larger mesh modifications

• Instead of moving tens of smaller mesh
elements, move one larger mesh element

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Simplification Algorithm Basics

• Greedy Algorithm:
• Assign each edge a cost
• Collapse edge with least cost
• Repeat until target number of elements is reached

• Particularly effective cost function: quadric error metric**

[300 triangles] [30 triangles][3,000 triangles][30,000 triangles]

**invented at CMU (Garland & Heckbert 1997)

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Quadratic Error Metric

• Goal: approximate a point’s distance from a collection of triangles
• Review: what is the distance of a point 𝐱 from a plane 𝐩 with

normal 𝐧?

• Quadric error is the sum of squared point-to-plane distances

dist(𝐱) = ⟨𝐧, 𝐱⟩ − ⟨𝐧, 𝐩⟩ = ⟨𝐧, 𝐱 − 𝐩⟩

𝐩

𝐱

𝐧

𝑄 = 1

𝑄 =
1

8

𝑄 =
1

2

𝑄 = 0

𝐧1

𝐧2𝐧3

𝐧4

𝐧5

𝐩

𝑄(𝐱): = ∑
𝑖=1

𝑘

⟨𝐧𝑖, 𝐱 − 𝐩⟩2

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Quadratic Error As Homogeneous Coordinates

𝐩

𝐱

𝐧

• Given:
• Query point 𝐱 = (𝑥, 𝑦, 𝑧)
• Normal 𝐧 = (𝑎, 𝑏, 𝑐)
• Offset from origin 𝑑 = − 𝐧, 𝐩

• We can rewrite in homogeneous coordinates:
• 𝐮 = (𝑥, 𝑦, 𝑧, 1)
• 𝐯 = (𝑎, 𝑏, 𝑐, 𝑑)

• Signed distance to plane is then just 𝐮, 𝐯 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑
• Squared distance is ⟨𝐮, 𝐯⟩2 = 𝐮𝖳(𝐯𝐯𝖳)𝐮 =: 𝐮𝖳𝐾𝐮

• Matrix 𝐾 = 𝐯𝐯𝑇 encodes squared distance to plane

• Key Idea: sum of matrices 𝐾 represents distance to a union of planes

𝐮𝖳𝐾1𝐮 + 𝐮𝖳𝐾2𝐮 = 𝐮𝖳(𝐾1 + 𝐾2)𝐮

𝐧1

𝐧2𝐧3

𝐧4

𝐧5

𝐩

𝐦

𝑒𝑖𝑗𝑖 𝑗

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Quadratic Error of Edge Collapse

• How much does it cost to collapse an edge 𝑒𝑖𝑗?

• Compute midpoint 𝐦, measure error as

• Error becomes “score” for 𝑒𝑖𝑗, determining priority

• Q: where to put 𝐦?

𝑄(𝐦) = 𝐦𝖳(𝐾𝑖 + 𝐾𝑗)𝐦

collapse

𝐦

𝑒𝑖𝑗𝑖 𝑗

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Quadratic Error of Edge Collapse

𝐦
• Find point 𝐱 that minimizes error

• Take derivatives!

𝑄(𝐦) = 𝐦𝖳(𝐾𝑖 + 𝐾𝑗)𝐦

collapse

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

How to take a derivative of a function involving matrices?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Minimizing a Quadratic Function

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝑓′ 𝑥 = 2𝑎𝑥 + 𝑏 = 0
𝑥 = −𝑏/2𝑎

To find the min of a function 𝑓(𝑥)

take derivative 𝑓′(𝑥) and set equal to 0

can also write any quadratic function of n variables as a symmetric matrix A
consider the multivariable function

𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑔

we can rewrite it as:

𝑓(𝑥, 𝑦) = 𝐱𝖳𝐴𝐱 + 𝐮𝖳𝐱 + 𝑔

take derivative 𝑓′(𝑥) and set equal to 0

𝑓′(𝑥, 𝑦) = 2𝐴𝐱 + 𝐮 = 0

𝐱 = −
1

2
𝐴−1𝐮

same structure

same structure

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Positive Definite Quadratic Form

How do we know if our solution minimizes quadratic error?

𝐱 = −
1

2
𝐴−1𝐮

𝑥𝑎𝑥 = 𝑎𝑥2 > 0
𝑎 > 0

[positive definite]

[positive semidefinite]

[indefinite]

In the 1D case, we minimize the function if

In the ND case, we minimize the function if

This is known as the function being positive semidefinite

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Minimizing Quadratic Error

Find “best” point for edge collapse by minimizing quadratic form

𝑚𝑖𝑛
𝐮∈ℝ4

𝐮𝑇𝐾𝐮

Already know fourth (homogeneous) coordinate for a point is 1
Break up our quadratic function into two pieces

= 𝐱𝖳𝐵𝐱 + 2𝐰𝖳𝐱 + 𝑑2

Can minimize as before

2𝐵𝐱 + 2𝐰 = 0
𝐱 = −𝐵−1𝐰

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Quadratic Error Simplification Algorithm

// compute K for each face

for(v : vertices) {

 for(f : faces) {

 Vec4 ve(N, d);

 f->K = outer(ve, ve);

 }

}

// compute K for each vertex

for(v : vertices)

 for(f : v->faces())

 v->K += f->K;

// compute K for each edge

// place into priority queue

PriorityQueue pq;

for(e : edge) {

 for(v : e->vertices())

 e->K += v->K;

 pq.push(e->K, e);

}

// iterate until mesh is a target size

while(faces.length() < target_size) {

 // collapse edge with smallest cost

 e = pq.pop();

 K = e->K;

 v = collapse(e);

 // position new vertex to optimal pos

 v->pos = -B.inv() * w

 // update K for vertex

 // update K for edges touching vertex

 v->K = K;

 for(e2 : v->edges()) {

 e2->K = 0

 for(v2 : e2->vertices())

 e2->K += v2->K;

 }

}

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Is simplification the inverse operation of subdivision?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Dangers of Resampling

Repeatedly resampling an image degrades signal quality!

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Dangers of Resampling

. . .

downsample upsample

help.

Repeatedly resampling a mesh also degrades signal quality!

15-362/662 | Computer Graphics

• Good Geometry

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 07 | Geometry Processing

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Isotropic Remeshing

• Isotropic: same value when measured in any direction
• Remeshing: a change in the mesh

• Goal: change the mesh to make triangles more
uniform shape and size

• Helps achieve good mesh properties:
• Good approximation of original shape
• Vertex degrees close to 6
• Angles close to 60deg
• Delaunay triangles

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Improving Degree

𝑖
𝑗

𝑘

𝑙

flip

Vertices with degree 6 makes triangles more regular
Deviation function: |𝑑𝑖 − 6| + |𝑑𝑗 − 6| + |𝑑𝑘 − 6| + |𝑑𝑙 − 6|

 If flipping an edge reduces deviation function, flip edge

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Improving Vertex Positioning

average

Center vertices to make triangles more even in size

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Improving Edge Length

split

If an edge is longer than (4/3 * mean) length, split it

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Improving Edge Length

collapse

If an edge is shorter than (4/5 * mean) length, collapse it

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Isotropic Remeshing

Step 1: Step 2:

Step 3: Step 4:

collapsesplit

flip average

15-362/662 | Computer Graphics

• Good Geometry

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 07 | Geometry Processing

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point Queries

???

p

• Problem: given a point, in how do we find the closest
point on a given surface?

• Several use cases:
• Ray/mesh intersection in pathtracing
• Kinematics/animation
• GUI/user selection

• When I click on a mesh, what point am I
actually clicking on?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a Line

NTx = c

p
N

To find the closest point to p along NTx = c
We can have p travel along N for some time t

𝑁𝑇 𝑝 + 𝑡𝑁 = 𝑐

Multiplying the terms out

𝑁𝑇𝑝 + 𝑡𝑁𝑇𝑁 = 𝑐

The unit norm multiplied by itself is 1
Solve for t

𝑡 = 𝑐 − 𝑁𝑇𝑝

Propagate p along N for time t

𝑝 + 𝑡𝑁
𝑝 + (𝑐 − 𝑁𝑇𝑝)𝑁

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a Line Segment

Compute the vector p from the line base a along the line

⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

Normalize to get a time

𝑡 =
⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

⟨𝐛 − 𝐚, 𝐛 − 𝐚⟩

Clip time to range [0,1]and interpolate

p
p p

p

p

p

pp
p

p

a

b

𝒂 + (𝐛 − 𝐚)𝑡

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a 2D Triangle

• Easy! Just compute closest point to each line segment
• For each point, compute distance
• Point with smallest distance wins

• What if the point is inside the triangle?
• Even easier! The closest point is the point itself
• Recall point-in-triangle tests

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a 3D Triangle

• Method #1: Projection**
• Construct a plane that passes through the triangle

• Can be done using cross product of edges
• Project the point to the closest point on the plane

• Same expression as with a line: 𝑝 + (𝑐 − 𝑁𝑇𝑝)𝑁
• Check if point is in triangle using half-plane test

• Else, compute distance from each line segment in 3D
• Same expression as with a 2D line segment

• Method #2: Rotation**
• Translate point + triangle so that triangle vertex v1 is at the origin
• Rotate point + triangle so that triangle vertex v2 sits on the z-axis
• Rotate point + triangle so that triangle vertex v3 sits on the yz-axis
• Disregard x-coordinate of point

• Problem reduces to closest point on 2D triangle

**https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4264&rep=rep1&type=pdf

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Closest Point on a 3D Triangle Mesh

• Conceptually easy!
• Loop over every triangle
• Compute closest point to current triangle
• Keep track of globally closest point

• Not practical in real world
• Meshes have billions of triangles
• Programs make thousands of geometric

queries a second

• Will look at better solutions next time

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Mesh-Mesh Intersections

• Sometimes when editing geometry, a mesh will
intersect with itself

• Likewise, sometimes when animating geometry,
meshes will collide

• How do we check for/prevent collisions?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Point-Line Intersection

NTx = c

p
N

Just plug point in

𝑁𝑇𝑝 = 𝑐?

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Point-Line Segment Intersection

Check if adding distances equals net distance**

𝑑𝑖𝑠𝑡 𝑎, 𝑝 + 𝑑𝑖𝑠𝑡 𝑝, 𝑏 = 𝑑𝑖𝑠𝑡(𝑎, 𝑏)

p
p p

p

p

p

pp
p

p

a

b

**Potential numeric stability issues

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Line-Line Intersection

Two equations, two unknowns
Solve a linear system

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Point-Triangle Intersection

You know this :)

	Slide 1: Digital Geometric Processing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

