
Introduction To
Geometry

15-362/662 | Computer Graphics Lecture 06 | Geometry

15-362/662 | Computer Graphics

• Implicit & Explicit Geometry

• Manifold Geometry

• Local Geometric Operations

Lecture 06 | Geometry

15-362/662 | Computer Graphics Lecture 06 | Geometry

Some Motivation

“I hate meshes.
I cannot believe how hard this is.
Geometry is hard.”

-- David Baraff
Senior Research Scientist

Pixar Animation Studios
(also a former CMU prof.)

“why won’t you subdivide”

15-362/662 | Computer Graphics Lecture 06 | Geometry

What Is Geometry?

g e • o m • e t • r y /jēˈämətrē/ n.

1. The study of shapes, sizes, patterns, and positions.

2. The study of spaces where some quantity (lengths,

 angles, etc.) can be measured.

“Earth” “measure”

Remember that Computer Graphics is just operating on a bunch of numbers.
If we can measure it, we can represent it as numbers on our computer!

15-362/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Geometry

[IMPLICIT] [EXPLICIT]

[CURVATURE]

[LINGUISTIC]

“unit circle”

[SYMMETRIC]

rotate

[DYNAMIC]

[TOMOGRAPHIC]

(constant density)
[DISCRETE]

n ➞ ∞

which is best?

15-362/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Machines

15-362/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Cloth

15-362/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Water

15-362/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Humans

15-362/662 | Computer Graphics Lecture 06 | Geometry

How To Represent This Thing

15-362/662 | Computer Graphics Lecture 06 | Geometry

Many Ways To Encode Geometry

• Explicit:
• point cloud
• polygon meshes
• subdivision surfaces
• NURBS

• Implicit:
• level set
• constructive solid geometry
• algebraic surface
• L-systems
• Fractals

• Not one best geometric representation!
• Each is suited for a different task
• Tradeoffs between:

• Accuracy
• Memory
• Performance (searching/operating)

15-362/662 | Computer Graphics Lecture 06 | Geometry

Implicit Geometry

• Points aren’t known directly, but satisfy some
relationship
• Example: unit sphere is all points such that

x2+y2+z2=1

• More generally, in the form f(x,y,z) = 0

• Finding example points is hard
• Requires solving equation

• Checking if points are inside/outside is easy
• Just evaluate the function with a given point

f(x,y)

f = 0

+1

-1

15-362/662 | Computer Graphics Lecture 06 | Geometry

Explicit Geometry

• All points are given directly

• More generally:

• Given any (𝑢, 𝑣), we can find a point on the surface
• Can limit (𝑢, 𝑣) to some range

• Example: triangle with barycentric coordinates

• Finding example points is easy
• We are given them for free

• Checking if points are inside/outside is hard
• We are given the output values and need to find

input values that satisfy the geometry

15-362/662 | Computer Graphics Lecture 06 | Geometry

What does easy and hard mean?

15-362/662 | Computer Graphics Lecture 06 | Geometry

Implicit Geometry [Hard]

• Given the unit sphere:

 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 + 𝑧2 = 1

• Find a point that exists on it.

• Answer: (1,0,0)
• Not so difficult, but how did you arrive at the answer?
• We are given a constraint, and need to find parameters

𝑥, 𝑦, 𝑧 that satisfy the constraint
• Keep guessing and checking

15-362/662 | Computer Graphics Lecture 06 | Geometry

Implicit Geometry [Easy]

• Given the unit sphere:

 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 + 𝑧2 = 1

• Find if the point (0.75, 0.5, 0.25) lives inside it.

• Answer: yes!
• 𝑓 0.75, 0.5, 0.25 = 0.752 + 0.52 + 0.252 = 0.875 < 1
• Easy to check! Just evaluate the sign of the function at

the desired point
(0.75, 0.5, 0.25)

15-362/662 | Computer Graphics Lecture 06 | Geometry

Explicit Geometry [Easy]

• Given the torus:

 𝑓 𝑢, 𝑣 = ((2 + cos 𝑢) cos 𝑣 , (2 + cos 𝑢) sin 𝑣 , sin 𝑢)

• Find a point that exists on it.

• Answer: (3,0,0)
• Just plug in any value of 𝑢, 𝑣 !

• We plugged in 𝑢, 𝑣 = (0,0)

15-362/662 | Computer Graphics Lecture 06 | Geometry

Explicit Geometry [Hard]

• Given the torus:

 𝑓 𝑢, 𝑣 = ((2 + cos 𝑢) cos 𝑣 , (2 + cos 𝑢) sin 𝑣 , sin 𝑢)

• Find if the point (1.96, -0.39, 0.9) lives inside it.

• Answer: no, I’m not computing that
• We are given a constraint, and need to find parameters

𝑢, 𝑣 that satisfy the constraint
• Keep guessing and checking

(1.96, -0.39, 0.9)

15-362/662 | Computer Graphics Lecture 06 | Geometry

Let’s look at some implicit examples…

15-362/662 | Computer Graphics Lecture 06 | Geometry

Algebraic Surfaces [Implicit]

• A surface built with algebra
• Generally thought of as a surface where points are some radius

𝑟 away from another point/line/surface

• [+] Generates smooth/symmetric surfaces
• [-] Cannot generate impurities/deformations

15-362/662 | Computer Graphics Lecture 06 | Geometry

Constructive Solid Geometry [Implicit]

• Build more complicated shapes via Boolean operations
• Basic operations:

• Can be used to form complex shapes!

15-362/662 | Computer Graphics Lecture 06 | Geometry

Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

f=.5 f=.4 f=.3

(Gaussian centered at p)

(Sum of Gaussians centered at different points)

15-362/662 | Computer Graphics Lecture 06 | Geometry

Level Set Methods [Implicit]

• Store a grid of values approximating function

• Surface is found where interpolated values equal zero

• [+] Provides much more explicit control over shape
• [-] Runs into problems of aliasing!

15-362/662 | Computer Graphics Lecture 06 | Geometry

Fractals [Implicit]

• No precise definition; exhibit self-similarity, detail at all scales

• [+] New “language” for describing natural phenomena
• [-] Hard to control shape!

15-362/662 | Computer Graphics Lecture 06 | Geometry

Let’s look at some explicit examples…

15-362/662 | Computer Graphics Lecture 06 | Geometry

Point Cloud [Explicit]

• A list of points (𝑥, 𝑦, 𝑧)
• Often augmented with normals

• [+] Easily represent any kind of geometry
• [+] Easy to draw dense cloud (>>1 point/pixel)
• [+] Easy for simulation
• [-] Large lookup time
• [-] Large memory overhead

• Hard to interpolate undersampled regions
• Hard to do processing / simulation /
• Result is just as good as the scan

15-362/662 | Computer Graphics Lecture 06 | Geometry

Triangle Mesh [Explicit]

• [+] Easy interpolation with good approximation
• Use barycentric interpolation to define points

inside triangles
• [-] Large memory overhead

• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)

• Polygonal Mesh: shapes do not need to be
triangles
• Ex: quads

0

1

2

3

x y z

0: -1 -1 -1

1: 1 -1 1

2: 1 1 -1

3: -1 1 1

[VERTICES]
i j k

0 2 1

0 3 2

3 0 1

3 1 2

[TRIANGLES]

15-362/662 | Computer Graphics

• Implicit & Explicit Geometry

• Manifold Geometry

• Local Geometric Operations

Lecture 06 | Geometry

15-362/662 | Computer Graphics Lecture 06 | Geometry

Manifold Assumption

• A mesh is manifold if and only if it can exist in real life
• Important for simulation/3D printing

• Everything in real life has volume to it
• Likewise, every manifold surface has some volume it encases
• Allows us to think of manifold surfaces as ‘shells’ to an inner

volume
• Example: M&Ms

• Everything in real life, when zoomed in far enough, should be able
to have a rectangular coordinate grid
• Likewise, every manifold surface should be planar when

zoomed in far enough
• Example: Planet Earth

15-362/662 | Computer Graphics Lecture 06 | Geometry

Manifold Properties

• For polygonal surfaces, check for “fins” and ”fans”

• Every edge is contained in only two polygons (no “fins”)
• The extra 3rd or 4th or 5th or so forth polygon is the

fin of a fish

• The polygons containing each vertex make a single “fan”
• We should be able to loop around the faces around a

vertex in a clear way

15-362/662 | Computer Graphics Lecture 06 | Geometry

Manifold Check

15-362/662 | Computer Graphics Lecture 06 | Geometry

Manifold Check

**https://github.com/rlguy/Blender-FLIP-Fluids/wiki/Manifold-Meshes

15-362/662 | Computer Graphics Lecture 06 | Geometry

Planes Are Not Manifold?

• How to make manifold: add a second polygon that overlaps
with the first plane, connecting all the edges
• Messy, two polygon will overlap, but will fix the

manifold issue

• How to make manifold: add a new type of edge denoting it
as a boundary
• The “boundary” edge

15-362/662 | Computer Graphics Lecture 06 | Geometry

Boundary Edges

• Objects in real life (Ex: pants) have boundaries
• Boundary geometry loops around to create the inner

seams of the pants
• The volume enclosed by pants are not where your

legs go, but the physical thickness of the pants

• Representing both the inside and outside of pants is
expensive!
• Use boundary edges

• A boundary edge has 1 polygon per edge

YES

• This does not mean planes are
manifold! This just gives us a way
to represent complex manifold
geometry as simpler non-
manifold geometry

15-362/662 | Computer Graphics Lecture 06 | Geometry

What are some ways to describe the connectivity of geometry?

15-362/662 | Computer Graphics Lecture 06 | Geometry

Polygon Soup

• Most basic idea imaginable:
• For each triangle, just store three coordinates
• No other information about connectivity
• Not much different from point cloud

• A “Triangle cloud”?

• Pros:
• [+] Really stupid simple

• Cons:
• [-] Really stupid
• [-] Redundant storage of vertices
• [-] Very difficult to find neighboring polygons

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0 x1,y1,z1 x3,y3,z3

x1,y1,z1 x2,y2,z2 x3,y3,z3

0

1

2

3

15-362/662 | Computer Graphics Lecture 06 | Geometry

Adjacency List

• A little more complicated:
• Store triples of coordinates (x,y,z)
• Store tuples of indices referencing the coordinates

needed to build each triangle

• Pros:
• [+] No duplicate coordinates
• [+] Lower memory footprint
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry
• [+] Easy to change connectivity of geometry

• Cons:
• [-] Very difficult to find neighboring polygons
• [-] Difficult to add/remove mesh elements

x y z

0: -1 -1 -1

1: 1 -1 1

2: 1 1 -1

3: -1 1 1

VERTICES
i j k

0 2 1

0 3 2

3 0 1

3 1 2

POLYGONS

15-362/662 | Computer Graphics Lecture 06 | Geometry

Incidence Matrices

• If we want to know our neighbors, let’s store them:
• Store triples of coordinates (x,y,z) Store incidence

matrix between vertices + edges, and edges + faces
• 1 means touch, 0 means no touch
• Store as sparse matrix

• Pros:
• [+] No duplicate coordinates
• [+] Finding neighbors is O(1)
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry

• Cons:
• [-] Larger memory footprint
• [-] Hard to change connectivity with fixed indices
• [-] Difficult to add/remove mesh elements

v0 v1 v2 v3

e0 1 1 0 0

e1 0 1 1 0

e2 1 0 1 0

e3 1 0 0 1

e4 0 0 1 1

e5 0 1 0 1

VERTEX⬌EDGE

e0 e1 e2 e3 e4 e5

f0 1 0 0 1 0 1

f1 0 1 0 0 1 1

f2 1 1 1 0 0 0

f3 0 0 1 1 1 0

EDGE⬌FACE

15-362/662 | Computer Graphics Lecture 06 | Geometry

Halfedge Data Structure

• Let’s store a little, but not a lot, about our neighbors:
• Halfedge data structure added to our geometry
• Each edge gets 2 halfedges

• Each halfedge ”glues” an edge to a face

• Pros:
• [+] No duplicate coordinates
• [+] Finding neighbors is O(1)
• [+] Easy to traverse geometry
• [+] Easy to change mesh connectivity
• [+] Easy to add/remove mesh elements
• [+] Easy to keep geometry manifold

• Cons:
• [-] Does not support nonmanifold geometry

struct Halfedge

{

Halfedge* twin;

Halfedge* next;

Vertex* vertex;

Edge* edge;

Face* face;

};

15-362/662 | Computer Graphics Lecture 06 | Geometry

Halfedge Data Structure

• Makes mesh traversal easy
• Use “twin” and “next” pointers to move around the mesh
• Use “vertex”, “edge”, and “face” pointers to grab element

Halfedge* h = f->halfedge;

do {

h = h->next;

// do something w/ h->vertex

}

while(h != f->halfedge);

Halfedge* h = v->halfedge;

do {

h = h->twin->next;

}

while(h != v->halfedge);

Example: visit all vertices in a face Example: visit all neighbors of a vertex

Note: only makes sense if mesh is manifold!

struct Halfedge

{

Halfedge* twin;

Halfedge* next;

Vertex* vertex;

Edge* edge;

Face* face;

};

15-362/662 | Computer Graphics Lecture 06 | Geometry

Halfedge Data Structure

• Halfedge meshes are always manifold!

• Halfedge data structures have the following constraints:

h->twin->twin == h // my twin’s twin is me

h->twin != h // I am not my own twin

h2->next = h //every h’s is someone’s “next”

• Keep following next and you’ll traverse a face
• Keep following twin and you’ll traverse an edge
• Keep following next->twin and you’ll traverse a vertex

• Q: Why, therefore, is it impossible to encode the red figures?
• First shape violates first 2 conditions
• Second shape violates 3rd condition

15-362/662 | Computer Graphics Lecture 06 | Geometry

Connectivity vs Geometry

• Recall manifold conditions (fans not fins):
• These conditions say nothing about vertex positions! Just

connectivity

• Can have perfectly good (manifold) connectivity, even if
geometry is awful
• Can have perfectly good manifold connectivity for which

any vertex positions give “bad” geometry!

• Leads to confusion when debugging:
• Mesh looks “bad”, even though connectivity is fine

same connectivity,
random vertex

positions
cube
(manifold)

non manifold
connectivity?

…or just a really
skinny triangle?

15-362/662 | Computer Graphics

• Implicit & Explicit Geometry

• Manifold Geometry

• Local Geometric Operations

Lecture 06 | Geometry

15-362/662 | Computer Graphics Lecture 06 | Geometry

Edge Flip

Goal: Move edge e around faces adjacent to it:

• No elements created/destroyed, just pointer reassignment
• Flipping the same edge multiple times yields original results

15-362/662 | Computer Graphics Lecture 06 | Geometry

Edge Flip

// collect

h = e->halfedge;

t = h->twin;

v1 = h->next->vertex;

v2 = t->next->vertex;

v3 = h->next->next->vertex;

v4 = t->next->next->vertex;

f1 = h->face;

f2 = t->face;

// disconnect

v1->halfedge = h->next;

v2->halfedge = t->next;

f1->halfedge = h;

f2->halfedge = t;

// connect

t->vertex = v3;

h->vertex = v4;

// are we done? What is missing?

f1

f2

15-362/662 | Computer Graphics Lecture 06 | Geometry

Edge Vertex Split

Goal: Insert edge between vertex v and midpoint of edge e:

• Creates a new vertex, new edge, and new face
• Involves much more pointer reassignments

15-362/662 | Computer Graphics Lecture 06 | Geometry

Edge Collapse

Goal: Replace edge (c,d) with a single vertex m:

• Deletes a vertex, (up to) 3 edges, and (up to) 2 faces
• Depends on the degree of the original faces

15-362/662 | Computer Graphics Lecture 06 | Geometry

Local Operations

Many other local operations you will explore in your homework…

15-362/662 | Computer Graphics Lecture 06 | Geometry

Local Operation Tips

• Always draw out a diagram
• We’ve given you some unlabeled diagrams
• With pen + paper, label the elements you’ll need to

collect/create

• Stage your code in the following way:
• Create
• Collect
• Disconnect
• Connect
• Delete

• Write asserts around your code
• Check if elements that should be deleted were deleted
• Make sure there are no dangling references to anything

that has been deleted
• Make sure every element that you disconnected or

reconnected is still valid
• What it means for a vertex to be valid is not the same

as what it means for an edge to be valid, etc.

	Slide 1: Introduction To Geometry
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

