Introduction To Geometry

Implicit & Explicit Geometry

Manifold Geometry

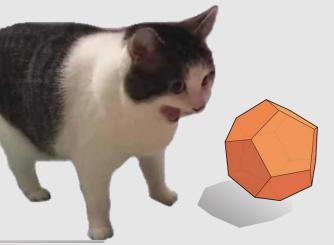
Local Geometric Operations

15-362/662 | Computer Graphics

Some Motivation

"I hate meshes. I cannot believe how hard this is. Geometry is hard."

"why won't you subdivide"

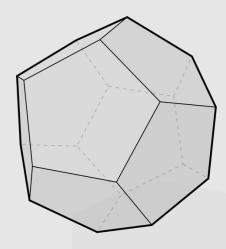


-- David Baraff

Senior Research Scientist Pixar Animation Studios (also a former CMU prof.)

What Is Geometry?

- 1. The study of shapes, sizes, patterns, and positions.
- 2. The study of spaces where some quantity (lengths, angles, etc.) can be *measured*.



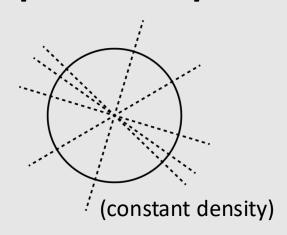
Remember that Computer Graphics is just operating on a bunch of numbers. If we can measure it, we can represent it as numbers on our computer!

How To Represent Geometry

[IMPLICIT]

$$x^2 + y^2 = 1$$

[TOMOGRAPHIC]



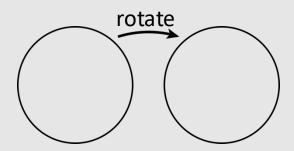
[CURVATURE]

$$\kappa = 1$$

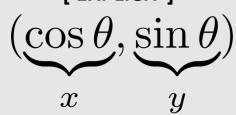
[LINGUISTIC]

"unit circle"

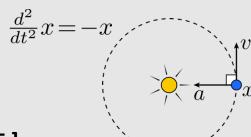
[SYMMETRIC]



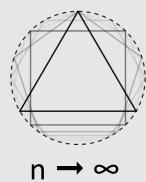
[EXPLICIT]



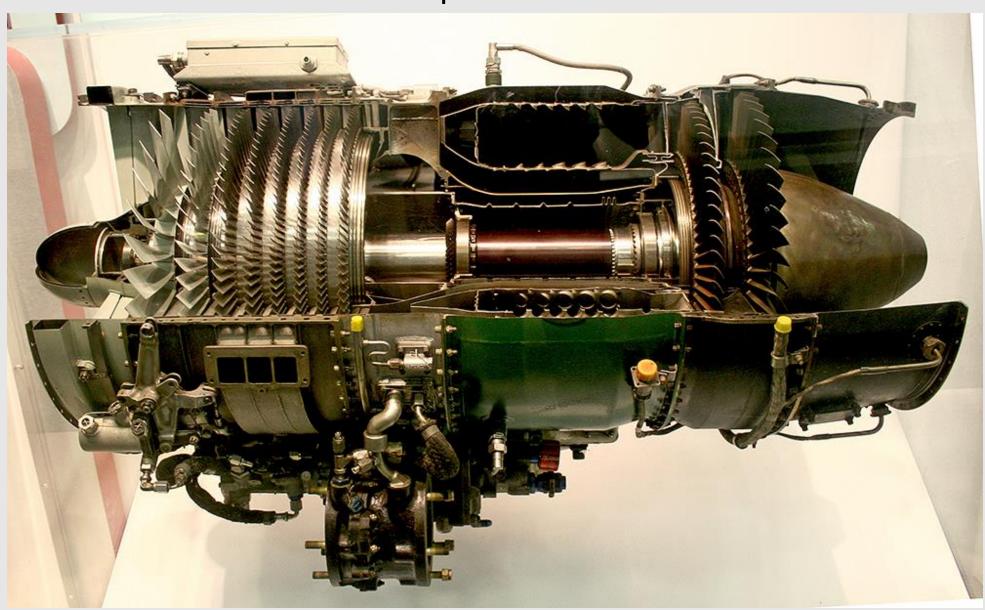
[DYNAMIC]



[DISCRETE]



How To Represent Machines



How To Represent Cloth



How To Represent Water

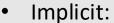
How To Represent Humans

How To Represent This Thing

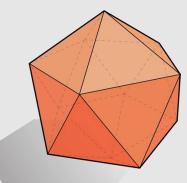
Many Ways To Encode Geometry

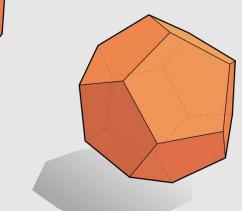
• Explicit:

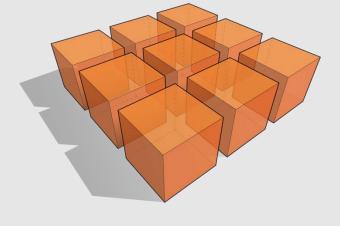
- point cloud
- polygon meshes
- subdivision surfaces
- NURBS

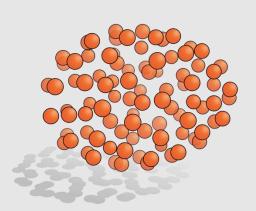


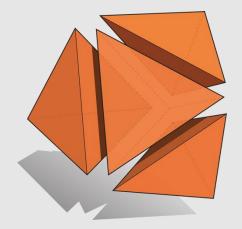
- level set
- constructive solid geometry
- algebraic surface
- L-systems
- Fractals
- Not one best geometric representation!
 - Each is suited for a different task
 - Tradeoffs between:
 - Accuracy
 - Memory
 - Performance (searching/operating)





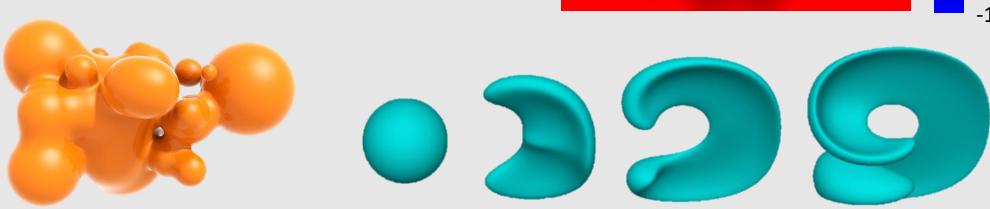


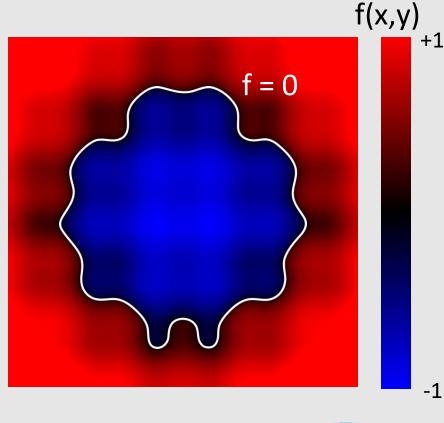




Implicit Geometry

- Points aren't known directly, but satisfy some relationship
 - Example: unit sphere is all points such that $x^2+y^2+z^2=1$
- More generally, in the form f(x,y,z) = 0
- Finding example points is **hard**
 - Requires solving equation
- Checking if points are inside/outside is <u>easy</u>
 - Just evaluate the function with a given point





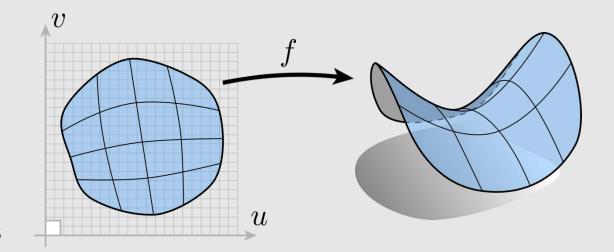
Explicit Geometry

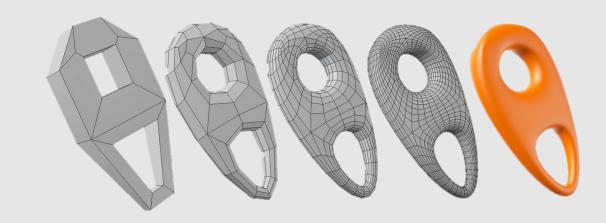
- All points are given directly
- More generally:

$$f: \mathbb{R}^2 \to \mathbb{R}^3; (u, v) \mapsto (x, y, z)$$

- Given any (u, v), we can find a point on the surface
- Can limit (u, v) to some range
 - **Example:** triangle with barycentric coordinates

- We are given them for free
- Checking if points are inside/outside is <u>hard</u>
 - We are given the output values and need to find input values that satisfy the geometry





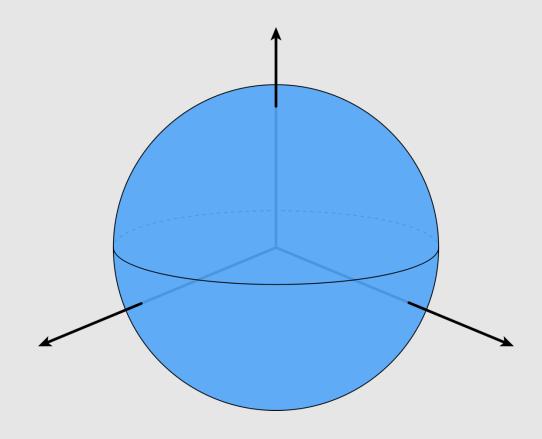
What does **easy** and **hard** mean?

Implicit Geometry [Hard]

• Given the unit sphere:

$$f(x, y, z) = x^2 + y^2 + z^2 = 1$$

- Find a point that exists on it.
- Answer: (1,0,0)
 - Not so difficult, but how did you arrive at the answer?
 - We are given a constraint, and need to find parameters (x, y, z) that satisfy the constraint
 - Keep guessing and checking

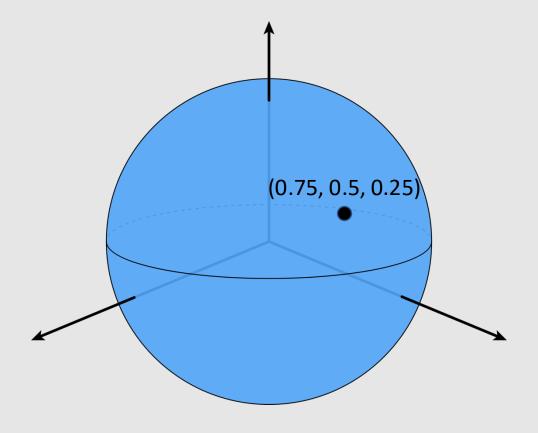


Implicit Geometry [Easy]

• Given the unit sphere:

$$f(x, y, z) = x^2 + y^2 + z^2 = 1$$

- Find if the point (0.75, 0.5, 0.25) lives inside it.
- **Answer:** yes!
 - $f(0.75, 0.5, 0.25) = 0.75^2 + 0.5^2 + 0.25^2 = 0.875 < 1$
 - Easy to check! Just evaluate the sign of the function at the desired point

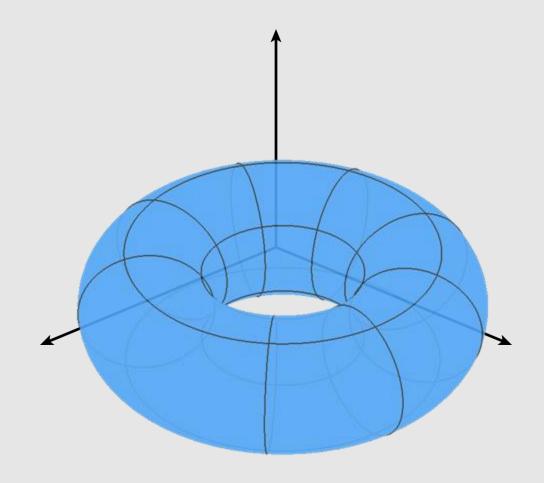


Explicit Geometry [Easy]

Given the torus:

$$f(u,v) = ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u)$$

- Find a point that exists on it.
- **Answer:** (3,0,0)
 - Just plug in any value of (u, v)!
 - We plugged in (u, v) = (0,0)

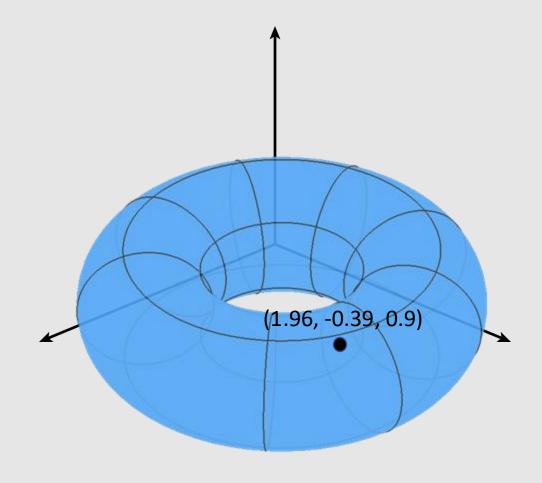


Explicit Geometry [Hard]

Given the torus:

$$f(u,v) = ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u)$$

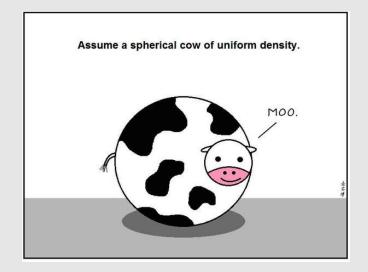
- Find if the point (1.96, -0.39, 0.9) lives inside it.
- **Answer:** no, I'm not computing that
 - We are given a constraint, and need to find parameters (u, v) that satisfy the constraint
 - Keep guessing and checking

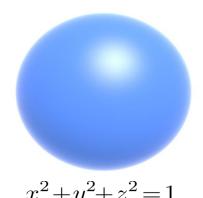


Let's look at some implicit examples...

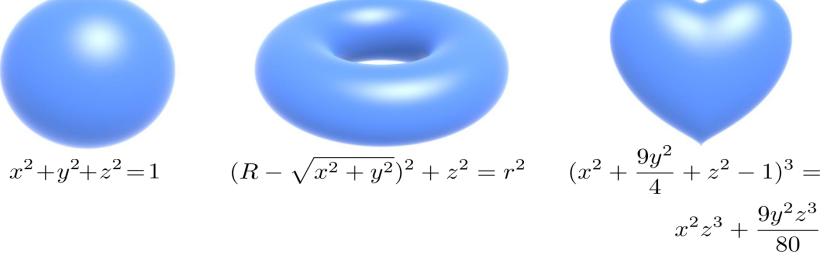
Algebraic Surfaces [Implicit]

- A surface built with algebra
 - Generally thought of as a surface where points are some radius r away from another point/line/surface
- [+] Generates smooth/symmetric surfaces
- [-] Cannot generate impurities/deformations



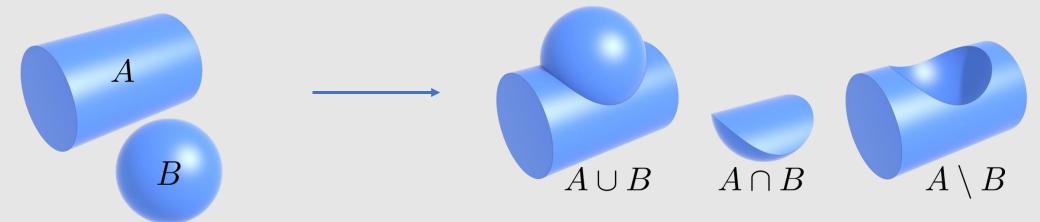


$$(R - \sqrt{x^2 + y^2})^2 + z^2 = r^2$$

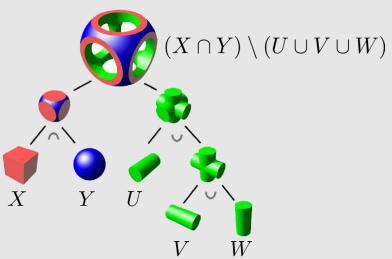


Constructive Solid Geometry [Implicit]

- Build more complicated shapes via Boolean operations
 - Basic operations:



Can be used to form complex shapes!



Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

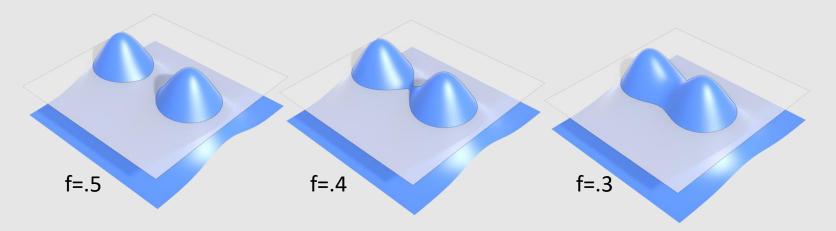
• Easier to understand in 2D:

$$\phi_p(x) \coloneqq e^{-|x-p|^2}$$

(Gaussian centered at p)

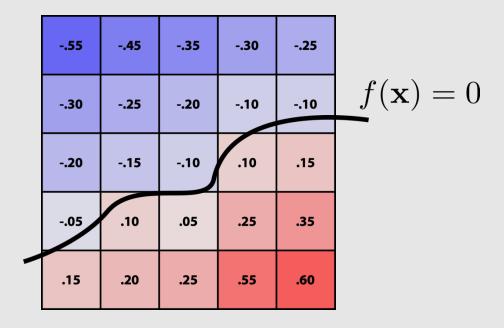
$$f := \phi_p + \phi_q$$

(Sum of Gaussians centered at different points)

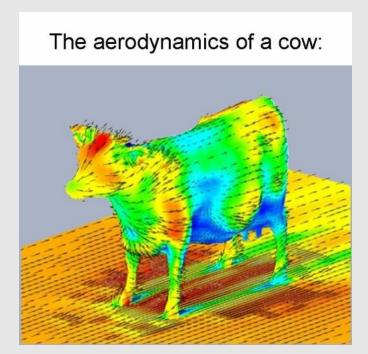


Level Set Methods [Implicit]

Store a grid of values approximating function

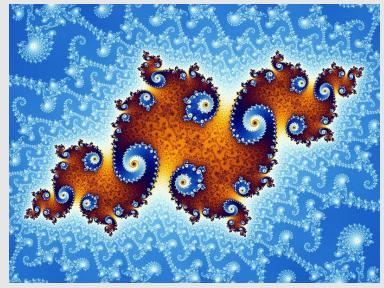


- Surface is found where interpolated values equal zero
- [+] Provides much more explicit control over shape
- [-] Runs into problems of <u>aliasing!</u>



Fractals [Implicit]

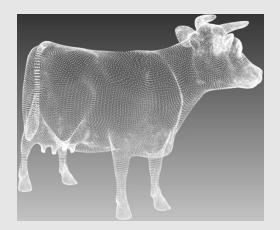
- No precise definition; exhibit self-similarity, detail at all scales
- [+] New "language" for describing natural phenomena
- [-] Hard to control shape!



Let's look at some explicit examples...

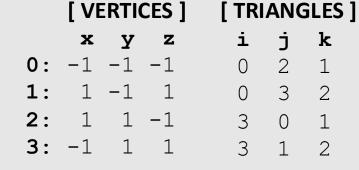
Point Cloud [Explicit]

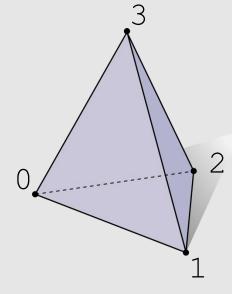
- A list of points (x, y, z)
 - Often augmented with normals
- [+] Easily represent any kind of geometry
- [+] Easy to draw dense cloud (>>1 point/pixel)
- [+] Easy for simulation
- [-] Large lookup time
- [-] Large memory overhead
 - Hard to interpolate undersampled regions
 - Hard to do processing / simulation /
 - Result is just as good as the scan

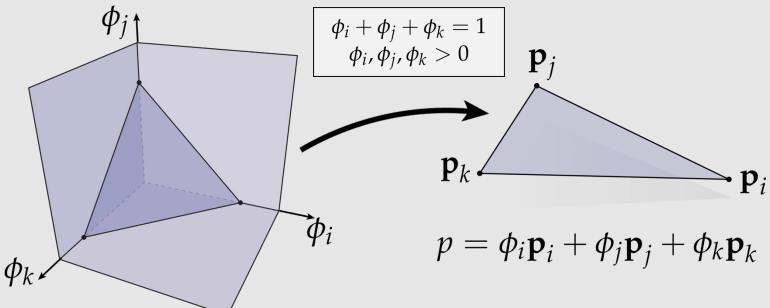


Triangle Mesh [Explicit]

- [+] Easy interpolation with good approximation
 - Use barycentric interpolation to define points inside triangles
- [-] Large memory overhead
 - Store vertices as triples of coordinates (x,y,z)
 - Store triangles as triples of indices (i,j,k)
- Polygonal Mesh: shapes do not need to be triangles
 - Ex: quads







Implicit & Explicit Geometry

Manifold Geometry

Local Geometric Operations

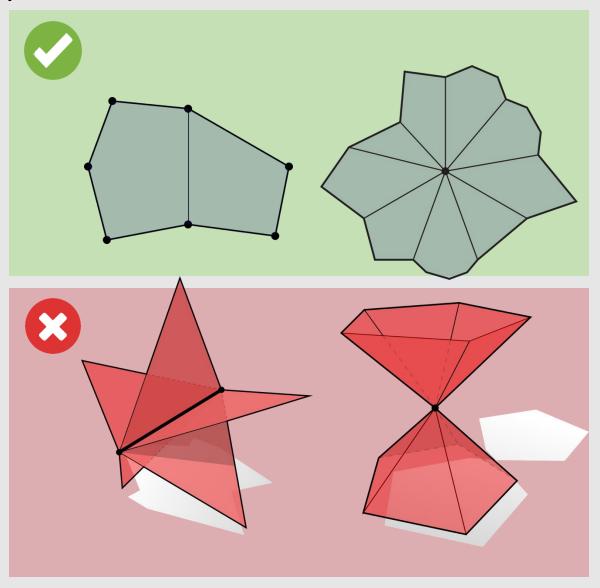
15-362/662 | Computer Graphics

Manifold Assumption

- A mesh is manifold if and only if it can exist in real life
 - Important for simulation/3D printing
- Everything in real life has volume to it
 - Likewise, every manifold surface has some volume it encases
 - Allows us to think of manifold surfaces as 'shells' to an inner volume
 - **Example:** M&Ms
- Everything in real life, when zoomed in far enough, should be able to have a rectangular coordinate grid
 - Likewise, every manifold surface should be planar when zoomed in far enough
 - **Example:** Planet Earth

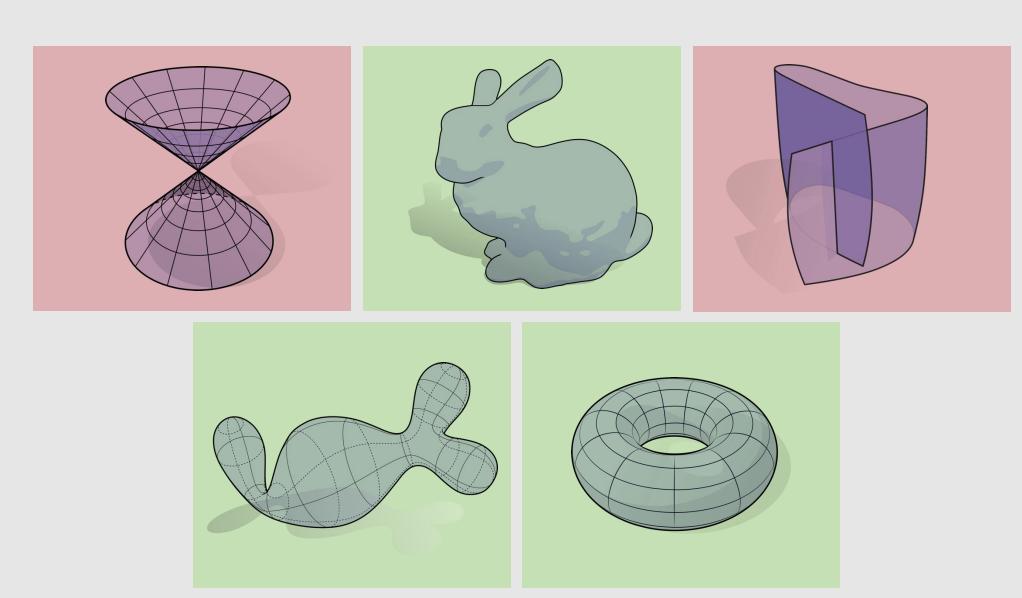
Manifold Properties

- For polygonal surfaces, check for "fins" and "fans"
- Every edge is contained in only two polygons (no "fins")
 - The extra 3rd or 4th or 5th or so forth polygon is the fin of a fish
- The polygons containing each vertex make a single "fan"
 - We should be able to loop around the faces around a vertex in a clear way

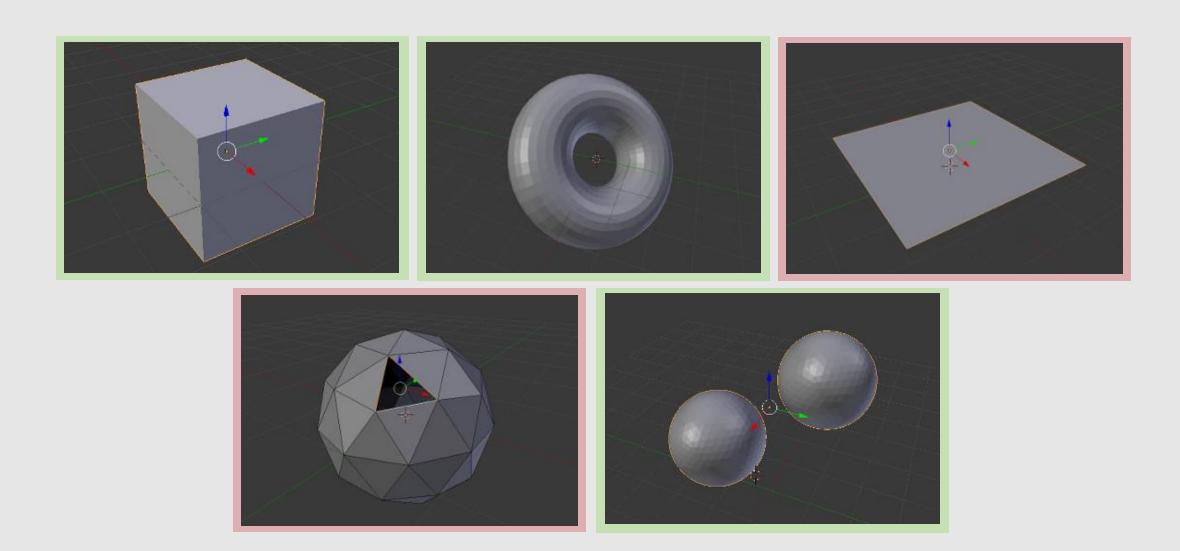


15-362/662 Computer Graphics

Manifold Check



Manifold Check

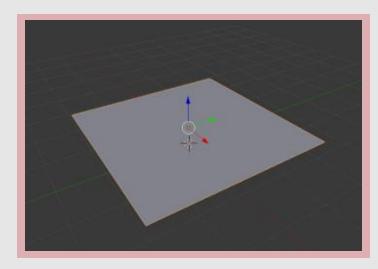


^{**}https://github.com/rlguy/Blender-FLIP-Fluids/wiki/Manifold-Meshes

15-362/662 | Computer Graphics Lecture 06 | Geometr

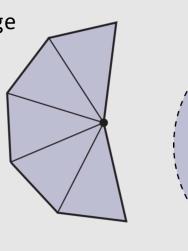
Planes Are Not Manifold?

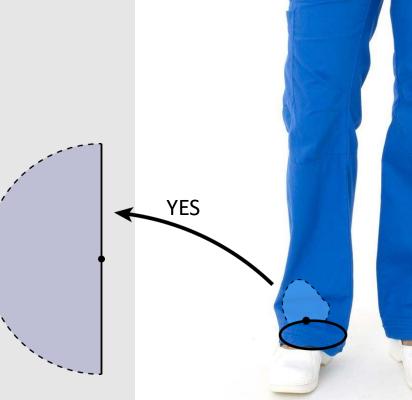
- How to make manifold: add a second polygon that overlaps with the first plane, connecting all the edges
 - Messy, two polygon will overlap, but will fix the manifold issue
- **How to make manifold:** add a new type of edge denoting it as a boundary
 - The "boundary" edge



Boundary Edges

- Objects in real life (Ex: pants) have boundaries
 - Boundary geometry loops around to create the inner seams of the pants
 - The volume enclosed by pants are not where your legs go, but the physical thickness of the pants
- Representing both the inside and outside of pants is expensive!
 - Use boundary edges
- A boundary edge has 1 polygon per edge
 - This does not mean planes are manifold! This just gives us a way to represent complex manifold geometry as simpler nonmanifold geometry

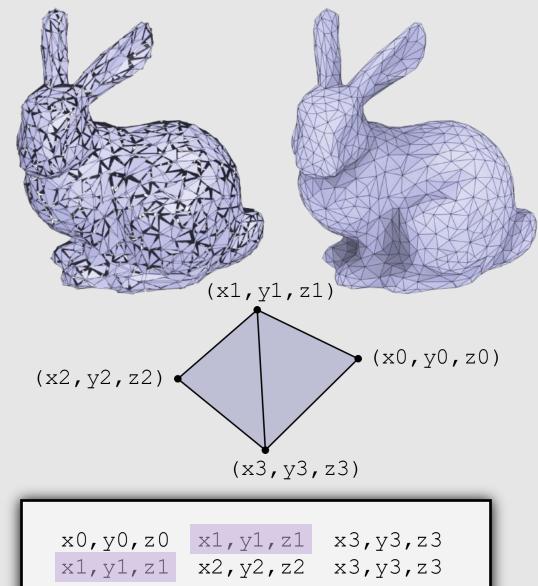




15-362/662 | Computer Graphics

Polygon Soup

- Most basic idea imaginable:
 - For each triangle, just store three coordinates
 - No other information about connectivity
 - Not much different from point cloud
 - A "Triangle cloud"?
- Pros:
 - [+] Really stupid simple
- Cons:
 - [-] Really stupid
 - [-] Redundant storage of vertices
 - [-] Very difficult to find neighboring polygons



Adjacency List

- A little more complicated:
 - Store triples of coordinates (x,y,z)
 - Store tuples of indices referencing the coordinates needed to build each triangle

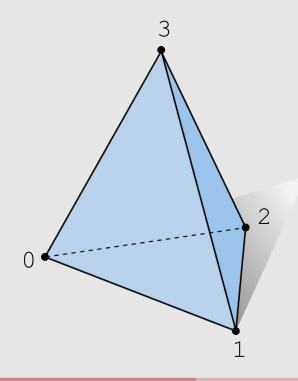
Pros:

- [+] No duplicate coordinates
- [+] Lower memory footprint
- [+] Easy to keep geometry manifold
- [+] Supports nonmanifold geometry
- [+] Easy to change connectivity of geometry

Cons:

- [-] Very difficult to find neighboring polygons
- [-] Difficult to add/remove mesh elements

<u>VERTICES</u>			<u>POLYGONS</u>			
	x	У	Z	i	j	k
0:	-1	-1	-1	0	2	1
1:	1	-1	1	0	3	2
2:	1	1	-1	3	0	1
3:	-1	1	1	3	1	2



Incidence Matrices

- If we want to know our neighbors, let's store them:
 - Store triples of coordinates (x,y,z) Store incidence matrix between vertices + edges, and edges + faces
 - 1 means touch, 0 means no touch
 - Store as sparse matrix

• Pros:

- [+] No duplicate coordinates
- [+] Finding neighbors is O(1)
- [+] Easy to keep geometry manifold
- [+] Supports nonmanifold geometry

Cons:

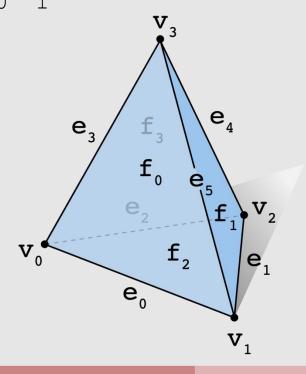
- [-] Larger memory footprint
- [-] Hard to change connectivity with fixed indices
- [-] Difficult to add/remove mesh elements

<u>VERTEX ← EDGE</u>

7	7 0	v1	v 2	\mathbf{v} 3	
e0	1	1	0	0	
e1	0	1	1	0	
e2	1	0	1	0	
e3	1	0	0	1	
e4	0	0	1	1	

EDGE ← FACE

•	90	e1	e2	e3	e 4	e 5
f0	1	0	0	1	0	1
f1	0	1	0	0	1	1
f2	1	1	1	0	0	0
f3	0	0	1	1	1	0



Halfedge Data Structure

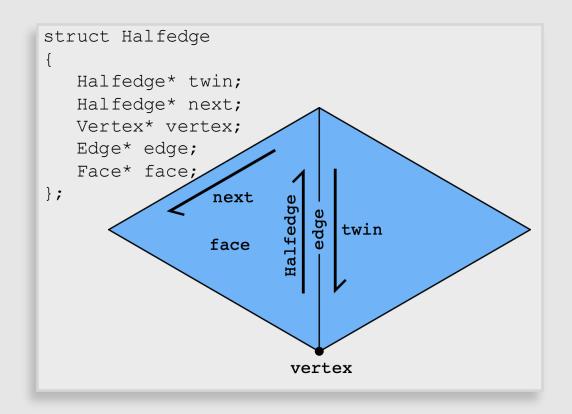
- Let's store a little, but not a lot, about our neighbors:
 - Halfedge data structure added to our geometry
 - Each edge gets 2 halfedges
 - Each halfedge "glues" an edge to a face

Pros:

- [+] No duplicate coordinates
- [+] Finding neighbors is O(1)
- [+] Easy to traverse geometry
- [+] Easy to change mesh connectivity
- [+] Easy to add/remove mesh elements
- [+] Easy to keep geometry manifold

Cons:

[-] Does not support nonmanifold geometry



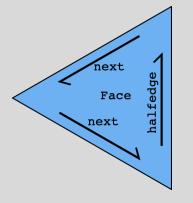
Halfedge Data Structure

- Makes mesh traversal easy
 - Use "twin" and "next" pointers to move around the mesh
 - Use "vertex", "edge", and "face" pointers to grab element

```
struct Halfedge
{
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};
```

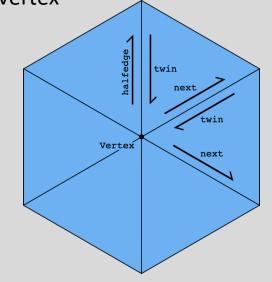
Example: visit all vertices in a face

```
Halfedge* h = f->halfedge;
do {
   h = h->next;
   // do something w/ h->vertex
}
while( h != f->halfedge );
```



Example: visit all neighbors of a vertex

```
Halfedge* h = v->halfedge;
do {
   h = h->twin->next;
}
while( h != v->halfedge );
```



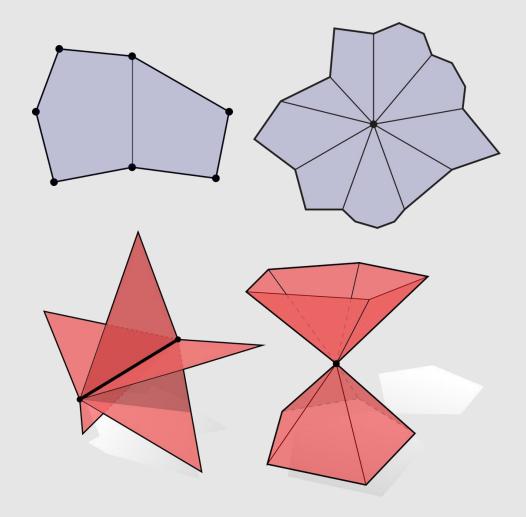
Note: only makes sense if mesh is manifold!

Halfedge Data Structure

- Halfedge meshes are always manifold!
- Halfedge data structures have the following constraints:

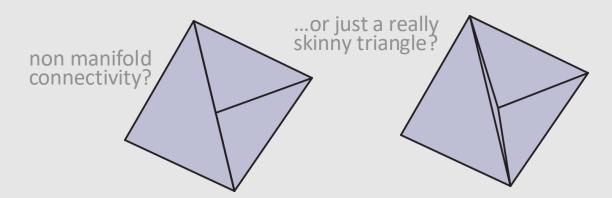
```
h->twin->twin == h // my twin's twin is me
h->twin != h // I am not my own twin
h2->next = h //every h's is someone's "next"
```

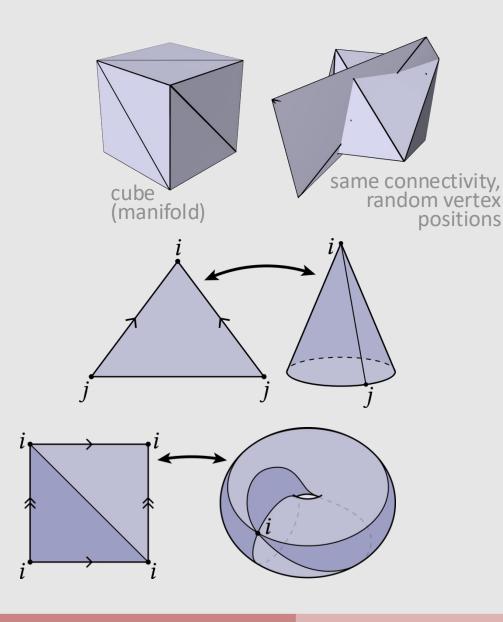
- Keep following next and you'll traverse a face
- Keep following twin and you'll traverse an edge
- Keep following next->twin and you'll traverse a vertex
- Q: Why, therefore, is it impossible to encode the red figures?
 - First shape violates first 2 conditions
 - Second shape violates 3rd condition



Connectivity vs Geometry

- Recall manifold conditions (fans not fins):
 - These conditions say nothing about vertex positions! Just connectivity
- Can have perfectly good (manifold) connectivity, even if geometry is awful
 - Can have perfectly good manifold connectivity for which any vertex positions give "bad" geometry!
- Leads to confusion when debugging:
 - Mesh looks "bad", even though connectivity is fine





Implicit & Explicit Geometry

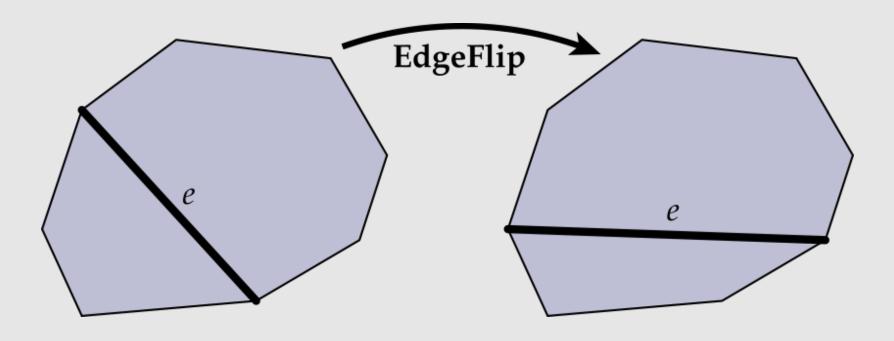
Manifold Geometry

Local Geometric Operations

15-362/662 | Computer Graphics

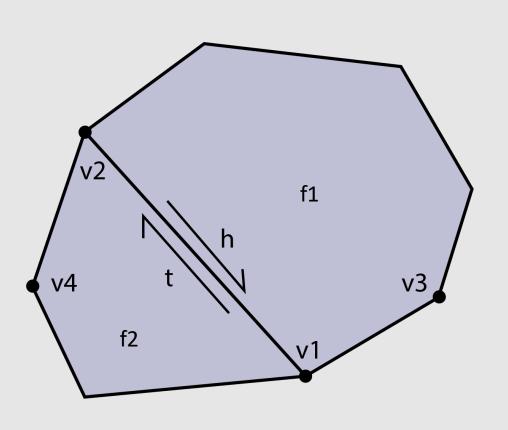
Edge Flip

Goal: Move edge e around faces adjacent to it:



- No elements created/destroyed, just pointer reassignment
- Flipping the same edge multiple times yields original results

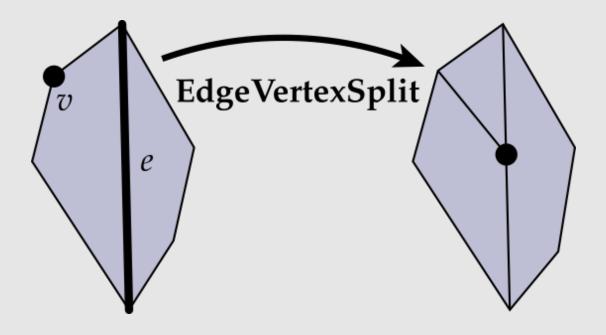
Edge Flip



```
// collect
h = e->halfedge;
t = h \rightarrow twin;
v1 = h->next->vertex;
v2 = t-next->vertex;
v3 = h-next->next->vertex;
v4 = t->next->next->vertex;
f1 = h - > face;
f2 = t - > face;
// disconnect
v1->halfedge = h->next;
v2->halfedge = t->next;
f1->halfedge = h;
f2->halfedge = t;
// connect
t->vertex = v3;
h->vertex = v4;
// are we done? What is missing?
```

Edge Vertex Split

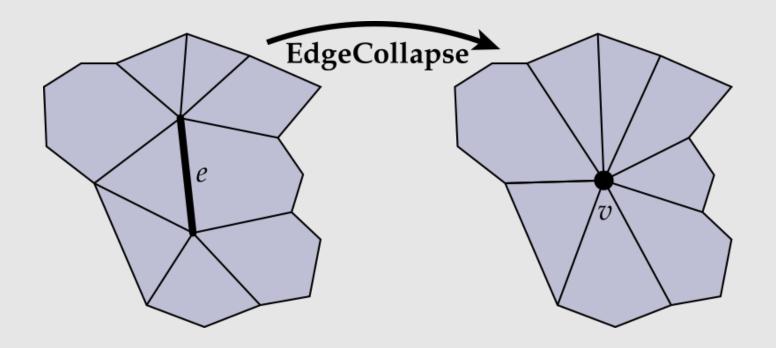
Goal: Insert edge between vertex v and midpoint of edge e:



- Creates a new vertex, new edge, and new face
- Involves much more pointer reassignments

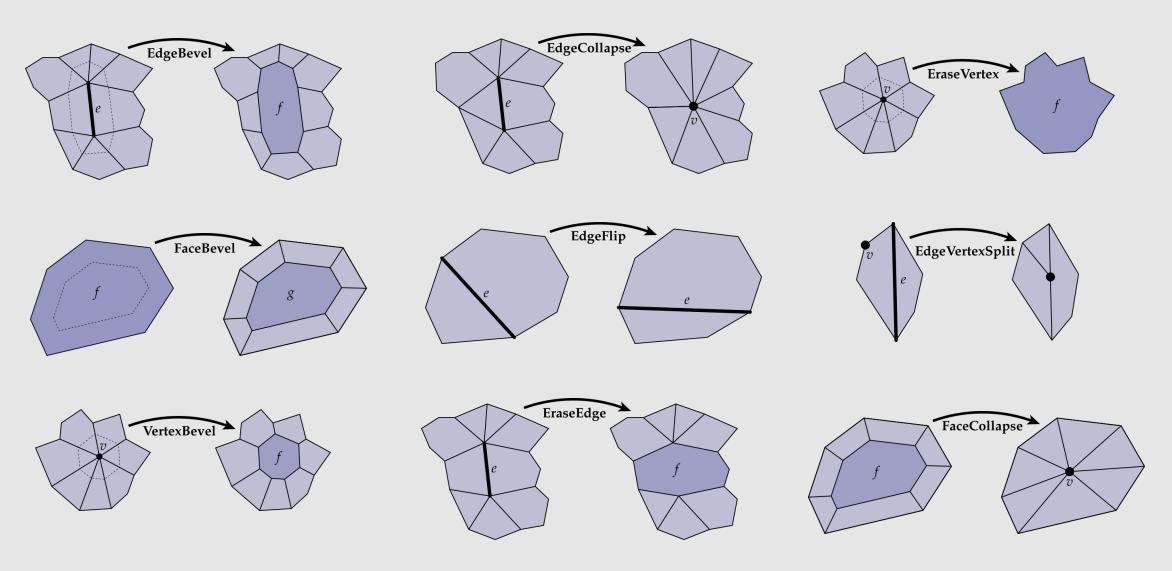
Edge Collapse

Goal: Replace edge (c,d) with a single vertex m:



- Deletes a vertex, (up to) 3 edges, and (up to) 2 faces
 - Depends on the degree of the original faces

Local Operations



Many other local operations you will explore in your homework...

15-362/662 | Computer Graphics Lecture 06 | Geometry

Local Operation Tips

- Always draw out a diagram
 - We've given you some unlabeled diagrams
 - With pen + paper, label the elements you'll need to collect/create
- Stage your code in the following way:
 - Create
 - Collect
 - Disconnect
 - Connect
 - Delete
- Write asserts around your code
 - Check if elements that should be deleted were deleted
 - Make sure there are no dangling references to anything that has been deleted
 - Make sure every element that you disconnected or reconnected is still valid
 - What it means for a vertex to be valid is not the same as what it means for an edge to be valid, etc.

