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Some Motivation

“I hate meshes. 
I cannot believe how hard this is. 
Geometry is hard.”

-- David Baraff
Senior Research Scientist

Pixar Animation Studios
(also a former CMU prof.)

“why won’t you subdivide”
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What Is Geometry?

g  e • o m • e t • r y   /jēˈämətrē/ n.

1. The study of shapes, sizes, patterns, and positions.

2. The study of spaces where some quantity (lengths,

    angles, etc.) can be measured.

“Earth” “measure”

Remember that Computer Graphics is just operating on a bunch of numbers.
If we can measure it, we can represent it as numbers on our computer!
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How To Represent Geometry

[ IMPLICIT ] [ EXPLICIT ]

[ CURVATURE ]

[ LINGUISTIC ]

“unit circle”

[ SYMMETRIC ]

rotate

[ DYNAMIC ]

[ TOMOGRAPHIC ]

(constant density)
[ DISCRETE ]

n ➞ ∞

which is best?
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How To Represent Machines
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How To Represent Cloth
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How To Represent Water
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How To Represent Humans
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How To Represent This Thing
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Many Ways To Encode Geometry

• Explicit:
• point cloud
• polygon meshes
• subdivision surfaces
• NURBS

• Implicit:
• level set
• constructive solid geometry
• algebraic surface
• L-systems
• Fractals

• Not one best geometric representation!
• Each is suited for a different task
• Tradeoffs between:

• Accuracy
• Memory
• Performance (searching/operating)
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Implicit Geometry

• Points aren’t known directly, but satisfy some 
relationship
• Example: unit sphere is all points such that 

x2+y2+z2=1

• More generally, in the form f(x,y,z) = 0

• Finding example points is hard
• Requires solving equation

• Checking if points are inside/outside is easy
• Just evaluate the function with a given point

f(x,y)

f = 0

+1

-1
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Explicit Geometry

• All points are given directly

• More generally:

• Given any (𝑢, 𝑣), we can find a point on the surface
• Can limit (𝑢, 𝑣) to some range

• Example: triangle with barycentric coordinates

• Finding example points is easy
• We are given them for free

• Checking if points are inside/outside is hard
• We are given the output values and need to find 

input values that satisfy the geometry
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What does easy and hard mean?
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Implicit Geometry [Hard]

• Given the unit sphere:

  𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 + 𝑧2 = 1

• Find a point that exists on it.

• Answer: (1,0,0)
• Not so difficult, but how did you arrive at the answer?
• We are given a constraint, and need to find parameters 

𝑥, 𝑦, 𝑧  that satisfy the constraint
• Keep guessing and checking
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Implicit Geometry [Easy]

• Given the unit sphere:

  𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 + 𝑧2 = 1

• Find if the point (0.75, 0.5, 0.25) lives inside it.

• Answer: yes!
•  𝑓 0.75, 0.5, 0.25 = 0.752 + 0.52 + 0.252 = 0.875 < 1
• Easy to check! Just evaluate the sign of the function at 

the desired point
(0.75, 0.5, 0.25) 
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Explicit Geometry [Easy]

• Given the torus:

  𝑓 𝑢, 𝑣 = ((2 + cos 𝑢) cos 𝑣 , (2 + cos 𝑢) sin 𝑣 , sin 𝑢)

• Find a point that exists on it.

• Answer: (3,0,0)
• Just plug in any value of 𝑢, 𝑣 !

• We plugged in 𝑢, 𝑣 = (0,0)
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Explicit Geometry [Hard]

• Given the torus:

  𝑓 𝑢, 𝑣 = ((2 + cos 𝑢) cos 𝑣 , (2 + cos 𝑢) sin 𝑣 , sin 𝑢)

• Find if the point (1.96, -0.39, 0.9) lives inside it.

• Answer: no, I’m not computing that
• We are given a constraint, and need to find parameters 

𝑢, 𝑣  that satisfy the constraint
• Keep guessing and checking

(1.96, -0.39, 0.9)
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Let’s look at some implicit examples…
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Algebraic Surfaces [Implicit]

• A surface built with algebra
• Generally thought of as a surface where points are some radius 

𝑟 away from another point/line/surface

• [+] Generates smooth/symmetric surfaces
• [-] Cannot generate impurities/deformations
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Constructive Solid Geometry [Implicit]

• Build more complicated shapes via Boolean operations
• Basic operations:

• Can be used to form complex shapes!



15-362/662 | Computer Graphics Lecture 06 | Geometry

Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

f=.5 f=.4 f=.3

(Gaussian centered at p)

(Sum of Gaussians centered at different points)
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Level Set Methods [Implicit]

• Store a grid of values approximating function

• Surface is found where interpolated values equal zero

• [+] Provides much more explicit control over shape
• [-] Runs into problems of aliasing!
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Fractals [Implicit]

• No precise definition; exhibit self-similarity, detail at all scales

• [+] New “language” for describing natural phenomena
• [-] Hard to control shape!
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Let’s look at some explicit examples…
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Point Cloud [Explicit]

• A list of points (𝑥, 𝑦, 𝑧)
• Often augmented with normals

• [+] Easily represent any kind of geometry
• [+] Easy to draw dense cloud (>>1 point/pixel)
• [+] Easy for simulation
• [-] Large lookup time
• [-] Large memory overhead

• Hard to interpolate undersampled regions
• Hard to do processing / simulation /
• Result is just as good as the scan
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Triangle Mesh [Explicit]

• [+] Easy interpolation with good approximation
• Use barycentric interpolation to define points 

inside triangles
• [-] Large memory overhead

• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)

• Polygonal Mesh: shapes do not need to be 
triangles
• Ex: quads

0

1

2

3

x  y  z

0: -1 -1 -1

1:  1 -1  1

2:  1  1 -1

3: -1  1  1

[ VERTICES ]
i j k

0  2  1

0  3  2

3  0  1

3  1  2

[ TRIANGLES ]
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Manifold Assumption

• A mesh is manifold if and only if it can exist in real life
• Important for simulation/3D printing

• Everything in real life has volume to it
• Likewise, every manifold surface has some volume it encases
• Allows us to think of manifold surfaces as ‘shells’ to an inner 

volume
• Example: M&Ms

• Everything in real life, when zoomed in far enough, should be able 
to have a rectangular coordinate grid
• Likewise, every manifold surface should be planar when 

zoomed in far enough
• Example: Planet Earth
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Manifold Properties

• For polygonal surfaces, check for “fins” and ”fans”

• Every edge is contained in only two polygons (no “fins”)
• The extra 3rd or 4th or 5th or so forth polygon is the 

fin of a fish

• The polygons containing each vertex make a single “fan”
• We should be able to loop around the faces around a 

vertex in a clear way
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Manifold Check
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Manifold Check

**https://github.com/rlguy/Blender-FLIP-Fluids/wiki/Manifold-Meshes
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Planes Are Not Manifold?

• How to make manifold: add a second polygon that overlaps 
with the first plane, connecting all the edges
• Messy, two polygon will overlap, but will fix the 

manifold issue

• How to make manifold: add a new type of edge denoting it 
as a boundary
• The “boundary” edge
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Boundary Edges

• Objects in real life (Ex: pants) have boundaries
• Boundary geometry loops around to create the inner 

seams of the pants
• The volume enclosed by pants are not where your 

legs go, but the physical thickness of the pants

• Representing both the inside and outside of pants is 
expensive!
• Use boundary edges

• A boundary edge has 1 polygon per edge

YES

• This does not mean planes are 
manifold! This just gives us a way 
to represent complex manifold 
geometry as simpler non-
manifold geometry
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What are some ways to describe the connectivity of geometry?
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Polygon Soup

• Most basic idea imaginable:
• For each triangle, just store three coordinates
• No other information about connectivity
• Not much different from point cloud

• A “Triangle cloud”?

• Pros:
• [+] Really stupid simple

• Cons:
• [-] Really stupid
• [-] Redundant storage of vertices
• [-] Very difficult to find neighboring polygons

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0  x1,y1,z1  x3,y3,z3

x1,y1,z1  x2,y2,z2  x3,y3,z3



0

1

2

3
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Adjacency List

• A little more complicated:
• Store triples of coordinates (x,y,z)
• Store tuples of indices referencing the coordinates 

needed to build each triangle

• Pros: 
• [+] No duplicate coordinates
• [+] Lower memory footprint
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry
• [+] Easy to change connectivity of geometry

• Cons:
• [-] Very difficult to find neighboring polygons
• [-] Difficult to add/remove mesh elements

x  y  z

0: -1 -1 -1

1:  1 -1  1

2:  1  1 -1

3: -1  1  1

VERTICES
i j  k

0  2  1

0  3  2

3  0  1

3  1  2

POLYGONS
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Incidence Matrices

• If we want to know our neighbors, let’s store them:
• Store triples of coordinates (x,y,z) Store incidence 

matrix between vertices + edges, and edges + faces
• 1 means touch, 0 means no touch
• Store as sparse matrix

• Pros: 
• [+] No duplicate coordinates 
• [+] Finding neighbors is O(1)
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry

• Cons:
• [-] Larger memory footprint
• [-] Hard to change connectivity with fixed indices 
• [-] Difficult to add/remove mesh elements

v0 v1 v2 v3

e0 1  1  0  0

e1 0  1  1  0

e2 1  0  1  0

e3 1  0  0  1

e4 0  0  1  1

e5 0  1  0  1

VERTEX⬌EDGE

e0 e1 e2 e3 e4 e5

f0 1  0  0  1  0  1

f1 0  1  0  0  1  1

f2 1  1  1  0  0  0

f3 0  0  1  1  1  0

EDGE⬌FACE
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Halfedge Data Structure

• Let’s store a little, but not a lot, about our neighbors:
• Halfedge data structure added to our geometry
• Each edge gets 2 halfedges

• Each halfedge ”glues” an edge to a face

• Pros: 
• [+] No duplicate coordinates 
• [+] Finding neighbors is O(1)
• [+] Easy to traverse geometry
• [+] Easy to change mesh connectivity
• [+] Easy to add/remove mesh elements
• [+] Easy to keep geometry manifold

• Cons: 
• [-] Does not support nonmanifold geometry

struct Halfedge

{

Halfedge* twin;

Halfedge* next;

Vertex* vertex;

Edge* edge;

Face* face;

};
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Halfedge Data Structure

• Makes mesh traversal easy
• Use “twin” and “next” pointers to move around the mesh
• Use “vertex”, “edge”, and “face” pointers to grab element

Halfedge* h = f->halfedge;

do {

h = h->next;

// do something w/ h->vertex

}

while( h != f->halfedge );

Halfedge* h = v->halfedge;

do {

h = h->twin->next;

}

while( h != v->halfedge );

Example: visit all vertices in a face Example: visit all neighbors of a vertex

Note: only makes sense if mesh is manifold!

struct Halfedge

{

Halfedge* twin;

Halfedge* next;

Vertex* vertex;

Edge* edge;

Face* face;

};
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Halfedge Data Structure

• Halfedge meshes are always manifold!

• Halfedge data structures have the following constraints:

h->twin->twin == h // my twin’s twin is me

h->twin != h // I am not my own twin

h2->next = h //every h’s is someone’s “next”

• Keep following next and you’ll traverse a face
• Keep following twin and you’ll traverse an edge
• Keep following next->twin and you’ll traverse a vertex

• Q: Why, therefore, is it impossible to encode the red figures?
• First shape violates first 2 conditions
• Second shape violates 3rd condition
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Connectivity vs Geometry

• Recall manifold conditions (fans not fins):
• These conditions say nothing about vertex positions! Just 

connectivity

• Can have perfectly good (manifold) connectivity, even if 
geometry is awful 
• Can have perfectly good manifold connectivity for which 

any vertex positions give “bad” geometry!

• Leads to confusion when debugging: 
• Mesh looks “bad”, even though connectivity is fine

same connectivity, 
random vertex 

positions
cube 
(manifold)

non manifold 
connectivity?

…or just a really 
skinny triangle?
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Edge Flip

Goal: Move edge e around faces adjacent to it:

• No elements created/destroyed, just pointer reassignment
• Flipping the same edge multiple times yields original results
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Edge Flip

// collect

h = e->halfedge;

t = h->twin; 

v1 = h->next->vertex;

v2 = t->next->vertex;

v3 = h->next->next->vertex;

v4 = t->next->next->vertex;

f1 = h->face;

f2 = t->face;

// disconnect

v1->halfedge = h->next; 

v2->halfedge = t->next; 

f1->halfedge = h;

f2->halfedge = t;

// connect

t->vertex = v3;

h->vertex = v4;

// are we done?   What is missing?

f1

f2
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Edge Vertex Split

Goal: Insert edge between vertex v and midpoint of edge e:

• Creates a new vertex, new edge, and new face
• Involves much more pointer reassignments
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Edge Collapse

Goal: Replace edge (c,d) with a single vertex m:

• Deletes a vertex, (up to) 3 edges, and (up to) 2 faces
• Depends on the degree of the original faces
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Local Operations

Many other local operations you will explore in your homework…
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Local Operation Tips

• Always draw out a diagram
• We’ve given you some unlabeled diagrams
• With pen + paper, label the elements you’ll need to 

collect/create

• Stage your code in the following way:
• Create
• Collect
• Disconnect
• Connect
• Delete

• Write asserts around your code
• Check if elements that should be deleted were deleted
• Make sure there are no dangling references to anything 

that has been deleted
• Make sure every element that you disconnected or 

reconnected is still valid
• What it means for a vertex to be valid is not the same 

as what it means for an edge to be valid, etc.
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