
Wrapping up Part 1 of
Computer Graphics

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

15-362/662 | Computer Graphics Lecture 03 | Transformations

• Mip maps

• Depth Testing

• Alpha Blending

• Revisiting the Graphics pipeline

• 3D Rotations

15-362/662 | Computer Graphics

Mip-Map [L. Williams ‘83]

Lecture 05 | Texturing

• Rough idea: precompute a prefiltered image at
every possible scale
• The image at depth d is the result of

applying a 2x2 avg filter on the image at
depth d-1
• The image at depth 0 is the base

image

• Mip-Map generates 𝑙𝑜𝑔2 min 𝑤𝑡ℎ, ℎ𝑔𝑡 + 1
levels
• Each level the width and height gets

halved

• Memory overhead: (1+1/3)x original texture

• 1 +
1

4
+

1

16
+ ⋯ = σ

1

4

𝑗
=

1

1−
1

4

=
4

3

15-362/662 | Computer Graphics Lecture 05 | Texturing

Which mip-map level do we use?

15-362/662 | Computer Graphics

Computing MipMap Depth

Lecture 05 | Texturing

• Correlation between distance of surface to camera
and level of mip-map accessed
• More specifically, correlation between screen-

space movement across the surface
compared to texture movement and level of
mip-map access

• If moving over a pixel in screen space is a big jump
in texture space, then we call it minification
• Sample from a lower level of mip-map

• If moving over a pixel in screen space is a small
jump in texture space, then we call it magnification
• Sample from a higher level of mip-map

u

v

(𝒖, 𝒗)𝟏𝟎

(𝒖, 𝒗)𝟎𝟏

(𝒖, 𝒗)𝟎𝟎

15-362/662 | Computer Graphics

Computing MipMap Depth

Lecture 05 | Texturing

More formally:

L

du/dx

dv/dx
𝐿𝑥

𝐿𝑦

𝑑𝑢

𝑑𝑥
= 𝑢10 − 𝑢00

𝑑𝑣

𝑑𝑥
= 𝑣10 − 𝑣00

𝑑𝑢

𝑑𝑦
= 𝑢01 − 𝑢00

𝑑𝑣

𝑑𝑦
= 𝑣01 − 𝑣00

Where 𝑑𝑥 and 𝑑𝑦 measure the change in screen space
and 𝑑𝑢 and 𝑑𝑣 measure the change in texture space

𝐿𝑥
2 =

𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝐿𝑦
2 =

𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝐿 = 𝑚𝑎𝑥(𝐿𝑥
2 , 𝐿𝑦

2)

𝐿 measures the Euclidean distance of the change.
We take the max to get a single number.

𝑑 = log2𝐿

[final level 𝑑]

15-362/662 | Computer Graphics Lecture 05 | Texturing

The mipmap level is not an integer…
Which level do we use?

15-362/662 | Computer Graphics

Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results
together

• Requires:
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿𝑥
2 ←

𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝐿𝑦
2 ←

𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝐿 ← max(𝐿𝑥
2, 𝐿𝑦

2)

𝑑 ← 𝑙𝑜𝑔2 𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑 − 𝑑′

𝑡𝑑 ← 𝑡𝑒𝑥[𝑑′]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡𝑑+1 ← 𝑡𝑒𝑥[𝑑′ + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡𝑑 + ∆𝑑 ∗ 𝑡𝑑+1

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)

15-362/662 | Computer Graphics

Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results
together

• Requires:
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿𝑥
2 ←

𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝐿𝑦
2 ←

𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝐿 ← max(𝐿𝑥
2, 𝐿𝑦

2)

𝑑 ← 𝑙𝑜𝑔2 𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑 − 𝑑′

𝑡𝑑 ← 𝑡𝑒𝑥[𝑑′]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡𝑑+1 ← 𝑡𝑒𝑥[𝑑′ + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡𝑑 + ∆𝑑 ∗ 𝑡𝑑+1

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)

15-362/662 | Computer Graphics

Trilinear Assumption

• Trilinear filtering assumes that samples shrink at the
same rate along 𝑢 and 𝑣
• Taking the max says we would rather

overcompensate than undercompensate filtering

• Bilinear and Trilinear filtering are isotropic filtering
methods
• iso – same, tropic – direction
• Values should be same regardless of viewing

direction

• What does it mean for samples to shrink at very
different rates along 𝑢 and 𝑣?
• Think of a plane rotated away from the camera

• Changes in 𝑣 larger than changes in 𝑢

Lecture 05 | Texturing

𝑢

𝑣

.25

.5
.75

.5 .75.25

L

L

15-362/662 | Computer Graphics

Anisotropic Filtering

• Anisotropic filtering is dependent on direction
• an – not, iso – same, tropic – direction

• Idea: create a new texture map that downsamples
the x and y axis by 2 separately
• Instead of taking the max, use each coordinate

to index into correct location in map

Lecture 05 | Texturing

𝐿 = 𝑚𝑎𝑥(𝐿𝑥
2 , 𝐿𝑦

2)

(𝑑𝑥, 𝑑𝑦) = (𝑙𝑜𝑔2 𝐿𝑥
2 , 𝑙𝑜𝑔2 𝐿𝑦

2)

• Texture map is now a grid of downsampled textures
• Known as a RipMap

15-362/662 | Computer Graphics

Rip Map

Lecture 05 | Texturing

• Same idea as MipMap, but for anisotropic filtering
• 4x memory footprint

• New width: 𝑤′ = 𝑤 +
𝑤

2
+

𝑤

4
+ ⋯ = 2𝑤

• New height: ℎ′ = ℎ +
ℎ

2
+

ℎ

4
+ ⋯ = 2ℎ

• New area: 𝑤′ℎ′ = 4𝑤ℎ

• Fun fact: a MipMap is just the diagonal of a RipMap
• If 𝑑𝑥 = 𝑑𝑦, then we have trilinear interpolation

15-362/662 | Computer Graphics

Isotropic vs Anisotropic Filtering

Lecture 05 | Texturing

overbluring in 𝑢 direction

[isotropic (trilinear)] [anisotropic]

15-362/662 | Computer Graphics

Sampling Comparisons

Lecture 05 | Texturing

[Nearest] [Bilinear] [Trilinear]

No. samples

No. interps

1 4 8

0 3 7

Texture locality good good bad

Memory overhead 1x 1x 4/3x

No. operations ~3 ~19 >54

[Anisotropic]

>54

15

very bad

4x

16

Anti-aliasing bad normal good great

15-362/662 | Computer Graphics

Texture Sampling Pipeline

Lecture 05 | Texturing

1. Compute 𝑢 and 𝑣 from screen sample (𝑥,𝑦) via barycentric
interpolation

2. Approximate 𝑑𝑢/𝑑𝑥, 𝑑𝑢/𝑑𝑦, 𝑑𝑣/𝑑𝑥, 𝑑𝑣/𝑑𝑦 by taking differences
of screen-adjacent samples

3. Compute mip map level 𝑑
4. Convert normalized [0,1] texture coordinate (𝑢,𝑣) to pixel

locations (𝑈,𝑉)∈[𝑊,𝐻] in texture image
5. Determine addresses of texels needed for filter (e.g., eight

neighbors for trilinear)
6. Load texels into local registers
7. Perform tri-linear interpolation according to (𝑈,𝑉,𝑑)
8. (…even more work for anisotropic filtering…)

Lot of repetitive work every time
we want to shade a pixel!

GPUs instead implement these
instructions on fixed-function
hardware.

This is why we have texture caches
and texture filtering units.

15-362/662 | Computer Graphics Lecture 03 | Transformations

• Mip maps

• Depth Testing

• Alpha Blending

• Revisiting the Graphics pipeline

• 3D Rotations

15-362/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

• For each sample, the depth buffer stores the depth of the
closest triangle seen so far
• Done at the sample granularity, not pixel granularity

farnear

15-362/662 | Computer Graphics

Depth of a Triangle

Lecture 05 | Texturing

• A triangle is composed of 3 different 3D points,
each with a depth value 𝑧

• To get the depth at any point (𝑥, 𝑦) inside the
triangle, interpolate depth at vertices with
barycentric coordinates

sc
re

en

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer) Per Sample

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer) Per Sample

Lecture 05 | Texturing

Able to capture triangle intersections by performing tests per sample

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)

{

if(d < zbuffer[x][y])

{

// triangle is closest object seen so far at this

// sample point. Update depth and color buffers.

zbuffer[x][y] = d; // update zbuffer

color[x][y] = c; // update color buffer

}

// otherwise, we’ve seen something closer already;

// don’t update color or depth

}

Why is it that we first shade the pixel and then assign the resulting color after depth check?
Deferred shading (advanced algorithm) fixes this issue.

15-362/662 | Computer Graphics Lecture 03 | Transformations

• Mip maps

• Depth Testing

• Alpha Blending

• Revisiting the Graphics pipeline

• 3D Rotations

15-362/662 | Computer Graphics

Alpha Values

Lecture 05 | Texturing

• Another common image format: RGBA
• Alpha channel specifies ‘opacity’ of object
• Basically how transparent it is
• Most common encoding is 8-bits per

channel (0-255)

• Compositing A over B != B over A
• Consider the extreme case of two opaque

objects…

𝛼 = 3/4

𝛼 = 1/2

𝛼 = 1/4

𝛼 = 1

fully opaque

𝛼 = 0

fully transparent

[nyc over…koala?][koala over nyc]

where is
the koala…

15-362/662 | Computer Graphics

Non-Premultiplied Alpha

Lecture 05 | Texturing

𝐵
𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼𝐵 over
image 𝐴 with alpha 𝛼𝐴

𝐴 = (𝐴𝑟, 𝐴𝑔, 𝐴𝑏)

𝐵 = (𝐵𝑟, 𝐵𝑔, 𝐵𝑏)

𝐶 = 𝛼𝐵𝐵 + (1 − 𝛼𝐵)𝛼𝐴𝐴

appearance of semi-
transparent B

what B lets through

appearance of semi-
transparent A

𝛼𝐶 = 𝛼𝐵 + (1 − 𝛼𝐵)𝛼𝐴

• Composite RGB: • Composite Alpha:

15-362/662 | Computer Graphics

Premultiplied Alpha

Lecture 05 | Texturing

𝐵
𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼𝐵 over
image 𝐴 with alpha 𝛼𝐴

𝐴′ = (𝛼𝐴𝐴𝑟, 𝛼𝐴𝐴𝑔, 𝛼𝐴𝐴𝑏, 𝛼𝐴)

𝐵′ = (𝛼𝐵𝐵𝑟, 𝛼𝐵𝐵𝑔, 𝛼𝐵𝐵𝑏, 𝛼𝐵)

𝐶′ = 𝐵′ + (1 − 𝛼𝐵)𝐴′ (𝐶𝑟, 𝐶𝑔, 𝐶𝑏, 𝛼𝐶) ⟹ (𝐶𝑟/𝛼𝐶, 𝐶𝑔/𝛼𝐶 , 𝐶𝑏/𝛼𝐶)

• Composite RGBA: • Un-Premultiply for Final Color:

15-362/662 | Computer Graphics

Why Premultiplied Matters [Upsample]

Lecture 05 | Texturing

coloralpha premultiplied

upsampled
color

upsampled
alpha

upsampled
premultiplied

new background 𝐴 (𝛼𝐴 = 1) 𝐵 over 𝐴 𝐵 over 𝐴 (premultiplied)

upsample

Something isn’t right…

15-362/662 | Computer Graphics

Why Premultiplied Matters [Downsample]

Lecture 05 | Texturing

color alpha color alpha
original downsampled

composite

regular

premultiplied

[RGB] [A]

15-362/662 | Computer Graphics

Closed Under Composition

Lecture 05 | Texturing

𝐵
𝐴

B over A

• Goal: Composite bright red image 𝐵 with alpha 0.5
over bright red image 𝐴 with alpha 0.5

𝐴 = (1, 0, 0, 0.5)
𝐵 = (1, 0, 0, 0.5)

0.5 ∗ 1,0,0 + (1 − 0.5) ∗ 0.5 ∗ 1,0,0

• Non-Premultiplied: • Premultiplied:

(0.75, 0, 0)

0.5 + 1 − 0.5 ∗ 0.5 = 0.75

color

alpha

0.5 ∗ 0.5,0,0,0.5 + 1 − 0.5 ∗ 0.5,0,0,0.5

(0.75, 0, 0, 0.75)

(1, 0, 0)

divide out alpha

15-362/662 | Computer Graphics

Blend Methods

Lecture 05 | Texturing

𝐷𝑅𝐺𝐵𝐴 = 𝑆𝑅𝐺𝐵𝐴 + 𝐷𝑅𝐺𝐵𝐴

𝐷𝑅𝐺𝐵𝐴 = 𝑆𝑅𝐺𝐵𝐴 − 𝐷𝑅𝐺𝐵𝐴

𝐷𝑅𝐺𝐵𝐴 = − 𝑆𝑅𝐺𝐵𝐴 + 𝐷𝑅𝐺𝐵𝐴

𝐷𝑅𝐺𝐵𝐴 = min(𝑆𝑅𝐺𝐵𝐴, 𝐷𝑅𝐺𝐵𝐴)
𝐷𝑅𝐺𝐵𝐴 = max(𝑆𝑅𝐺𝐵𝐴, 𝐷𝑅𝐺𝐵𝐴)
𝐷𝑅𝐺𝐵𝐴 = 𝑆𝑅𝐺𝐵𝐴 + 𝐷𝑅𝐺𝐵𝐴 ∗ (1 − 𝑆𝐴)

Blend Add
Blend Subtract
Blend Reverse Subtract
Blend Min
Blend Max
Blend Over

𝑆𝑅𝐺𝐵𝐴 and 𝐷𝑅𝐺𝐵𝐴 are pre-multiplied

When writing to color buffer, can use any blend method

15-362/662 | Computer Graphics

Updated Depth Buffer (Z-buffer) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)

{

if(d < zbuffer[x][y])

{

// triangle is closest object seen so far at this

// sample point. Update depth and color buffers.

zbuffer[x][y] = d;

color[x][y] = c.rgba + (1-c.a) * color[x][y];

}

// otherwise, we’ve seen something closer already;

// don’t update color or depth

}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B != B over A

15-362/662 | Computer Graphics

Blend Render Order

Lecture 05 | Texturing

• For mixtures of opaque and transparent triangles:

• Step 1: render opaque primitives (in any order)
using depth-buffered occlusion
• If pass depth test, triangle overwrites value in

color buffer at sample
• Depth READ and WRITE

• Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
• If pass depth test, triangle is composited

OVER contents of color buffer at sample
• Depth READ only

15-362/662 | Computer Graphics Lecture 03 | Transformations

• Mip maps

• Depth Testing

• Alpha Blending

• Revisiting the Graphics pipeline

• 3D Rotations

15-362/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

15-362/662 | Computer Graphics Lecture 05 | Texturing

The Inputs

positions = {

v0x, v0y, v0z,

v1x, v1y, v1x,

v2x, v2y, v2z,

v3x, v3y, v3x,

v4x, v4y, v4z,

v5x, v5y, v5x

};

texcoords ={

v0u, v0v,

v1u, v1v,

v2u, v2v,

v3u, v3v,

v4u, v4v,

v5u, v5v

};

[vertices] [textures]

Object-to-camera-space transform 𝑇 ∈ ℝ4×4

Perspective projection transform 𝑃 ∈ ℝ4×4

Output image (𝑊, 𝐻)

[camera properties] [machine]

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 1: Transform

z

x

y

Transform triangle vertices into camera space

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 2: Perspective Projection

Apply perspective projection transform to transform
triangle vertices into normalized coordinate space

[normalized space position][3D camera space position]

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

[post-clipping][pre-clipping]

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates

into screen coordinates (based on screen [w, h]).

(0, 0)

(w, h)

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 6: Compute Color

Texture lookups, color interpolation, etc.

u

v
[u(x,y), v(x,y)]

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 8: Color Blending

Update color buffer with correct blending operation.

15-362/662 | Computer Graphics Lecture 03 | Transformations

• Mip maps

• Depth Testing

• Alpha Blending

• Revisiting the Graphics pipeline

• 3D Rotations

15-362/662 | Computer Graphics Lecture 03 | Transformations

3D Rotations

• Rotating in 2D is the same as rotating around the z-axis
• Idea: independently rotate around each (x,y,z)-axis for

3D rotations

• Problem: order of rotation matters!
• Rotate a Rubik’s cube 90deg around the y-axis and

90deg around the z-axis
• Rotate a Rubik’s cube 90deg around the z-axis and

90deg around the y-axis
• They will not be the same!

• Order of rotation must be specified

xy

z

15-362/662 | Computer Graphics Lecture 03 | Transformations

3D Rotations in Matrix Form

Idea: independently rotate around each (x,y,z)-axis for 3D rotations:

Combining the matrices:

Consider the special case θy = π/2 (so, cos θy = 0, sin θy = 1):

15-362/662 | Computer Graphics Lecture 03 | Transformations

Gimbal Lock

• No matter how we adjust θx, θz, can only rotate in one plane!
• We are now “locked” into a single axis of rotation

• Not a great design for airplane controls!

15-362/662 | Computer Graphics Lecture 03 | Transformations

Rotation From Axis/Angle

Alternatively, there is a general expression for a matrix that
performs a rotation around a given axis u by a given angle θ:

Just memorize this matrix! :)

15-362/662 | Computer Graphics Lecture 03 | Transformations

Is there a better way to perform 3D rotations?

15-362/662 | Computer Graphics Lecture 03 | Transformations

Bridging The Rotation Gap

• Hamilton wanted to make a 3D equivalent for complex numbers
• One day, when crossing a bridge, he realized he needed 4

(not 3) coordinates to describe 3D complex number space
• 1 real and 3 complex components

• He carved his findings onto a bridge (still there in Dublin)
• Later known as quaternions

William Rowan Hamilton
[1805 – 1865]

15-362/662 | Computer Graphics Lecture 03 | Transformations

Quaternions For Math People

• 4 coordinates (1 real, 3 complex) comprise coordinates.
• Η is known as the ‘Hamilton Space’

• Quaternion product determined by:

• Warning: product no longer commutes!

• With 3D rotations, order matters.

15-362/662 | Computer Graphics Lecture 03 | Transformations

Quaternions For Non-Math People

• Recall axis-angle rotations
• Represent an axis with 3 coordinates (𝑖, 𝑗, 𝑘)
• Represent an angle by some scalar 𝑎

• Just like how we multiply rotation matrices together, we can
also multiply complex components. If we represent:
• 𝑖 as a 90deg rotation about 𝑥-axis
• 𝑗 as a 90deg rotation about 𝑦-axis
• 𝑘 as a 90deg rotation about 𝑧-axis

• Then two 90deg rotations about the same axis will
produce the inverted image, the same as scaling by -1

• This can also be rewritten as:
𝑖𝑗 = 𝑘

• A 90deg x-axis rotation and a 90deg y-axis rotation is
the same as a 90deg z-axis rotation

• Can be rewritten in any other way

15-362/662 | Computer Graphics Lecture 03 | Transformations

Multiplying Quaternions

Given two quaternions:

Can express their product as:

The result still looks like a quaternion
But there’s a better way to multiply…

recall

15-362/662 | Computer Graphics Lecture 03 | Transformations

Multiplying Quaternions

Recall quaternions can be thought of as an axis and angle:

Can express their product as:

If the scalar components are 0, we get:

15-362/662 | Computer Graphics Lecture 03 | Transformations

Rotating With Quaternions

• 𝑞 now looks like:

• Goal: rotate 𝑥 by angle 𝜃 around axis 𝑢 = (𝑥, 𝑦, 𝑧) :
• Make 𝑥 imaginary, and build 𝑞 based on 𝑢 and 𝜃

• Note: components of 𝑞 must be normalized!

• ത𝑞 is 𝑞 with every complex component negative
• Now just compute 𝑞𝑥 ത𝑞to get final rotation

_

15-362/662 | Computer Graphics Lecture 03 | Transformations

Interpolating With Quaternions

• Interpolating Euler angles can yield strange-looking
paths, non-uniform rotation speed, etc.
• Simple solution w/ quaternions: “SLERP”

(spherical linear interpolation):

Fifa ‘15 (2014) Electronic Arts

Animating Rotation with Quaternion Curves (1985) Shoemake

15-362/662 | Computer Graphics Lecture 03 | Transformations

Texture Mapping With Quaternions

• Quaternions can be used to generate texture maps
coordinates
• Complex numbers are natural language for

angle-preserving (“conformal”) maps

	Slide 1: Wrapping up Part 1 of Computer Graphics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

