Wrapping up Part 1 of
Computer Graphics

* Mip maps

* Depth Testing

* Alpha Blending

e Revisiting the Graphics pipeline

3D Rotations

15-362/662 | Computer Graphics

Mip-Map (L. williams ‘83]

* Rough idea: precompute a prefiltered image at

every possible scale
* The image at depth d is the result of A m

applying a 2x2 avg filter on the image at vV Vv L
depth d-1

* The image at depth O is the base

image u, 7

Level 0 = 128x128 Level 1 X evel3=16X
* Mip-Map generates log,[min(wth, hgt)] + 1
levels
* Each level the width and height gets
halved

* Memory overhead: (1+1/3)x original texture
Y (/) 8 Level 4 =8x8 Level 5 = 4x4 Level 6 =2x2 Level7=1x1

1 1
1+4_L+1_6+m_ Y= = ===

15-362/662 | Computer Graphics

Which mip-map level do we use?

15-362/662 | Computer Graphics

Computing MipMap Depth

Correlation between distance of surface to camera .
and level of mip-map accessed (o)
* More specifically, correlation between screen- o
space movement across the surface

L)

ﬁooob_

compared to texture movement and level of
mip-map access e 2101010
L] J10]0]0]0
If moving over a pixel in screen space is a big jump _ v]| \f0|0]| 01010
in texture space, then we call it minification 51T
* Sample from a lower level of mip-map u

If moving over a pixel in screen space is a small
jump in texture space, then we call it magnification
* Sample from a higher level of mip-map

Computing MipMap Depth

More formally:

du du

— =U1p— U — = Un1 — U
dx 0 00 dy 01 00
dv dv

- =Vio—V —— = Vo1~ Voo
dx 10 00 dy

Where dx and dy measure the change in screen space
and du and dv measure the change in texture space

. du2+ dv* du2+ dv*
¥ \dx dx Y \dy dy

L= \/ max (L%, L3)

d = log,L

L measures the Euclidean distance of the change.
We take the max to get a single number. [final level d]

The mipmap level is not an integer...
Which level do we use?

15-362/662 | Computer Graphics

Trilinear Interpolation Sampling

* Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results

together

* Requires:
e 8 memory lookup
e 7 linear interpolations

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)
—

Bilerp (3 Lerps)

> L] []

(1 Lerp)
—>

L2 du® . dv”
x dx dx

L2 du® N dv
Y dy dy

L « \/max(sz,Lyz)
d < log, L

d' < floor(d)
Ad «d —d’

tq < tex[d']. bilinear(x,y)
tgrq < tex[d' + 1].bilinear(x,y)
t (1 —Ad) *ty;+Ad * t .1

Trilinear Interpolation Sampling

* |dea: Perform bilinear interpolation on two

2 2
layers of the mip-map that represents proper sz - d_u + @
minification/magnification, blending the results)g?"z dxz
together u dv

* Requires:

8 memory lookup
e 7 linear interpolations

Level ceil(d)

d' < floor(d)

Ad «d —d'
- . Bilerp (3 Lerps)| o ty < tex[d']. bilinear(x,y)
erp , o
- Level floor(d) Bilerp (3 Lerps) N td+1 o t@X[d + 1] blllnear(x; Y)
- o t —(1—Ad) *ty+Ad * t .1

15-362/662 | Computer Graphics

Trilinear Assumption

Trilinear filtering assumes that samples shrink at the
same rate along u and v
e Taking the max says we would rather
overcompensate than undercompensate filtering

Bilinear and Trilinear filtering are isotropic filtering
methods
* jso—same, tropic — direction
* Values should be same regardless of viewing
direction

What does it mean for samples to shrink at very
different rates along u and v?
e Think of a plane rotated away from the camera
 Changes in v larger than changes inu

* Bilinegra
filteriig
LI S

Ut we would

:are isbtropic

’
* Values should be same regardless of

viewing direction

different rates Io$
* Think of a
camera

€

dv?
ted away from the

* What does it rr‘ean for samples to shrink at very

* Changes in v larger than changesin u

i)

29

o
R
ol

Anisotropic Filtering

e Anisotropic filtering is dependent on direction
* an-not, iso — same, tropic — direction

* Idea: create a new texture map that downsamples
the x and y axis by 2 separately
* Instead of taking the max, use each coordinate
to index into correct location in map

(dx,dy) = (logz,/Li ,logs |L3)

e Texture map is now a grid of downsampled textures
* Known as a RipMap

Rip Map

 Same idea as MipMap, but for anisotropic filtering
* 4x memory footprint
w

e New width:w' =w + ;+%]+---=2w
. Newheight:h’=h+§+§+-~=2h
e New area: w'h’ = 4wh

* Fun fact: a MipMap is just the diagonal of a RipMap
* Ifdy = dy, then we have trilinear interpolation

Isotropic vs Anisotropic Filtering

overbluring in u direction

[isotropic (trilinear)] [anisotropic]

15-362/662 | Computer Graphics

Sampling Comparisons

[Nearest] [Bilinear] [Trilinear] [Anisotropic]
No. samples 1 4 8 16
No. interps 0 3 7 15
No. operations ~3 ~19 >54 >54
Texture locality good good bad very bad
Memory overhead 1x 1x 4/3x 4x
Anti-aliasing bad normal good great

.

Texture Sampling Pipeline

Compute u and v from screen sample (x,y) via barycentric —

interpolation

Approximate du/dx, du/dy, dv/dx, dv/dy by taking differences
of screen-adjacent samples

Compute mip map level d

Convert normalized [0,1] texture coordinate (u,v) to pixel
locations (U,V)E[W,H] in texture image

Determine addresses of texels needed for filter (e.g., eight
neighbors for trilinear)

Load texels into local registers

Perform tri-linear interpolation according to (U,V,d)
(...even more work for anisotropic filtering...)

Lot of repetitive work every time
we want to shade a pixel!

GPUs instead implement these
instructions on fixed-function
hardware.

This is why we have texture caches
and texture filtering units.

VHP-FASPS

* Depth Testing

* Alpha Blending

e Revisiting the Graphics pipeline

3D Rotations

15-362/662 | Computer Graphics

The “Simpler” Graphics Pipeline

w' h)

IR AES

-) (010)
T ransform/position objects in Project objects onto
' It the screen

Sample triangle coverage

- A

Sample texture maps / Interpolate triangle
evaluate shaders attributes at covered samples

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

* For each sample, the depth buffer stores the depth of the
closest triangle seen so far
* Done at the sample granularity, not pixel granularity

far

Depth of a Triangle

(xi, i)
e Atriangle is composed of 3 different 3D points,
(XK, Yi) each with a depth value z
(xj’ yj) q. * To get the depth at any point (x, y) inside the
1

triangle, interpolate depth at vertices with
barycentric coordinates

Depth Buffer (Z-buffer)

@ — sample passed depth test
(@) O O (@) O O O O O (@) O O (@) o O O O
O o o o o o O O O O O o ‘e e o
(@) O O (@) O O O (@) O O (@) o ([([O
(@) O O (@) O (@) O O (@) o ([([(]
O o o © 0 O O O O e e o o
(@) O O (@) O O o o ([([([
(@) O (@) O [o o ([([(
(@) O O (@) O O O O O (@) O O (@) o O O O
(@) O O (@) O O O O O (@) O O (@) o O O O
[color buffer] [depth buffer]

near [T far
15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

@ — sample passed depth test
(@) O O (@) O O O O O (@) O O (@) o O O O
O o0 o© 0 o O O O O e o & 8 o
(@) O O O (@) O ([o o ([([O
(@) O O (@) O (o ([([([o
O o 0 O O e e o o o o
(@) (@) ([(o ([([([([
(@) (@) ((o ([([([([
(@) O O (@) O O O O O (@) O O (@) o O O O
(@) O O (@) O O O O O (@) O O (@) o O O O
[color buffer] [depth buffer]

near [T far
15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

@ — sample passed depth test
(@) O O (@) O O O O O (@) O O (@) o O O O
O o0 o© o O O o o =« e e 8 o©
(@) O O O (@) O o o o ([([O
(@) O O (@) O [o o ([([o
O o 0 O o/ & & e e o o
O (@) o [{] o o ([([
(@) (@) [(o ([([([([
(@) O O (@) O O O O O (@) O O (@) o O O O
(@) O O (@) O O O O O (@) O O (@) o O O O
[color buffer] [depth buffer]

near [T far
15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

@ — sample passed depth test
(@) O O (@) O O O O O (@) O O (@) o O O O
O o o o O O o o © e e e o©
(@) O O O (@) O [{ o o o O
(@) O O (@) O o { o o o o
O O 0 O O o e e o o o
O (@) o o ® o o o o
O (@) o o ® o o o o
(@) O O (@) O O O O O (@) O O (@) o O O O
(@) O O (@) O O O O O (@) O O (@) o O O O
[color buffer] [depth buffer]

near [far
15-362/662 | Computer Graphics

Depth Buffer (Z-buffer) Per Sample

Depth Buffer (Z-buffer) Per Sample

Able to capture triangle intersections by performing tests per sample

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer) Sample Code

draw sample(x, y, d, ¢) //new depth d & color c at (x,Vy)
{
if(d < zbuffer[x][y])
{
// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.
zbuffer[x] [y] = d; // update zbuffer
color[x][y] = c; // update color buffer
}

// otherwise, we’ve seen something closer already;
// don’t update color or depth

Why is it that we first shade the pixel and then assign the resulting color after depth check?
Deferred shading (advanced algorithm) fixes this issue.

15-362/662 | Computer Graphics

« pMigrmaps

= Depthtestng

* Alpha Blending

* Revisiting the Graphics pipeline

3D Rotations

15-362/662 | Computer Graphics

Alpha Values

fully opaque

Another common image format: RGBA
* Alpha channel specifies ‘opacity’ of object
» Basically how transparent it is a=3/4
* Most common encoding is 8-bits per
channel (0-255)

a=1/2
* Compositing A over B I=B over A a=1/4
e Consider the extreme case of two opaque
objects [koala over nyc] [nyc over...koala?] a=0

fully transparent

where is
the koala...

15-362/662 | Computer Graphics

Non-Premultiplied Alpha

Goal: Composite image B with alpha ag over
image A with alpha ay4

B
= (Brr Bb)
B over A
 Composite RGB: what B lets through Composite Alpha:
C = (XBB + (1 — aB)aAA ac = ag + (1 _ aB)aA
I e
appearance of semi- - Jifte "
transparent B qua{\ons \“
appearance of semi- “eﬁ‘\c,\e“"'

transparent A

15-362/662 | Computer Graphics

Premultiplied Alpha

* Goal: Composite image B with alpha ag over
image A with alpha ay A

A = (C(AAT, afAAg, aAAb, aA)

B' = (apB,, apB,, arB;, a
(Br BPg»“*BPb B) B over A

e Composite RGBA: e Un-Premultiply for Final Color:

C'=B"+ (1 — CZB)A’ (CTI Cg: Cbl aC) = (CT/aC' Cg/aC’ Cb/aC)

Why Premultiplied Matters [Upsample]

alpha color premultiplied

inging
Known as fring upsampled upsampled upsampled

alpha color premultiplied
. Something isn’t right...

new background 4 (a4 = 1) B over A B over A (premultiplied)

Why Premultiplied Matters [Downsample]

[RGB] [A]

original downsampled
color alpha color alpha composite

Closed Under Composition

* Goal: Composite bright red image B with alpha 0.5
over bright red image A with alpha 0.5

A=(1,0,0,0.5)
B =(1,0,0,0.5)
B over A
* Non-Premultiplied: * Premultiplied:

0.5+ (1,0,0) + (1 —0.5)*0.5%(1,0,0) 0.5=%(0.5,0,0,0.5) + (1 —0.5) x(0.5,0,0,0.5)

color 1 1

(0.75,0,0) (0.75,0,0,0.75)
l divide out alpha
alpha 0.5+ (1 —0.5) = 0.5 = 0.75 (1,0,0)

15-362/662 | Computer Graphics

Blend Methods

When writing to color buffer, can use any blend method

Drgea = Sreea + Drgra Blend Add

Drgea = Sreea — DrGBa Blend Subtract

Dreea = — Srga + Drcpa Blend Reverse Subtract
Drgpa = min(Sggpa, Drepa) Blend Min

Drgga = max(Srgea» Drepa) Blend Max

Dreea = Srgea + Drgpa * (1 — Sa) Blend Over

Srcpa and Dpipy4 are pre-multiplied

Updated Depth Buffer (Z-buffer) Sample Code

draw sample(x, y, d, ¢) //new depth d & color c at (x,Vy)
{ i\ be
) st
S“d\gdd\';'\%\ Ziigedotx] 1))

-ng AP . 5g?
do\“é // ﬁm\;%ele 1s closest object seen so far at this

a\P“/a/p ple point. date depth and color buffers.
uffer[x] [y] = d;
CcO .rgba + (l-c.a) * color[x]I[y];

}

// otherwise, we’ve seen something closer already;

// don’t update color or depth
}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B |=B over A

15-362/662 | Computer Graphics

Blend Render Order

* For mixtures of opaque and transparent triangles:

* Step 1: render opaque primitives (in any order)
using depth-buffered occlusion
* |If pass depth test, triangle overwrites value in
color buffer at sample
* Depth READ and WRITE

* Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
* |If pass depth test, triangle is composited
OVER contents of color buffer at sample
e Depth READ only

15-362/662 | Computer Graphics

s Peogth-tostine
2 fleha-Blepding
e Revisiting the Graphics pipeline

3D Rotations

15-362/662 | Computer Graphics

The “Simpler” Graphics Pipeline

w' h)

A I

........
(0,0

e‘: S Z‘I’ransfomt/posmon objects in Project objects onto
“o\N v P\\\ the world the screen Sample triangle coverage
eut w o’
1o%e‘“ ‘
Combine samples into ﬁnal Sample texture maps / Interpolate triangle
image (depth, alpha, .. evaluate shaders attributes at covered samples

15-362/662 | Computer Graphics

positions

v0x,
vlix,
V2X,
v3X,
vidx,
vOXx,

ke

Object-to-camera-space transform T €

= {

v0y,
vly,
V2V,
v3y,
vay,
VoY,

[vertices]

v0z,
vlix,
v2z,
v3x,
vdz,
vOx

The Inputs

texcoords ={

vOou,
viu,
v2u,
v3u,
vidu,
vou,

vOv,
viv,
V2V,
v3v,
viv,
VOV

]R4><4

Perspective projection transform P € R***
Output image (W, H)

15-362/662 | Computer Graphics

[camera properties]

ALY

[textures]

[machine]

Step 1: Transform

Transform triangle vertices into camera space

?y

15-362/662 | Computer Graphics

Step 2: Perspective Projection

Apply perspective projection transform to transform
triangle vertices into normalized coordinate space

[3D camera space position] [normalized space position]

Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

X8

X2

[pre-clipping] [post-clipping]

Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates
into screen coordinates (based on screen [w, h]).
(w, h)

(0, 0)

Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.

Step 6: Compute Color

Texture lookups, color interpolation, etc.

°® ® ® o
[u(x,y), v(x,y)]

15-362/662 | Computer Graphics

Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

o
PASS

® e
PASS PASS

°
FalL PASS PASS

FAIL PASS PASS PASS

FAIL FAIL PASS PASS PASS

FAIL FAIL PASS PASS PASS

15-362/662 | Computer Graphics

Step 8: Color Blending

Update color buffer with correct blending operation.

15-362/662 | Computer Graphics

2 fleha-Blepding
Revisiting the Graphics pioali

e 3D Rotations

3D Rotations

Rotating in 2D is the same as rotating around the z-axis
Idea: independently rotate around each (x,y,z)-axis for
3D rotations

Problem: order of rotation matters!
* Rotate a Rubik’s cube 90deg around the y-axis and
90deg around the z-axis
* Rotate a Rubik’s cube 90deg around the z-axis and
90deg around the y-axis
e They will not be the same!
* Order of rotation must be specified

3D Rotations in Matrix Form

Idea: independently rotate around each (x,y,z)-axis for 3D rotations:

[1 0 0 - cosf, 0 sinf, [cosf, —sinf, 0 |
Ry,=1 0 cosf, —sinfy Ry = 0 1 0 R, = | sinf, cosf, 0
| 0 sinfy cosfy | —sinfy, 0 cos6, | 0 0 1
Combining the matrices:
i cos 0, cos 0, — cos By, sin 6, sin 6, 1
RxRyR; = cos 0, sin By sin 6, + cos Oy sinf; cosby cost, — sin by sinbysinf, — cos b, sin by
| —cos by cost;sinfy +sinbysinf; cosb;sinby + cosbysinb,sinf,; cosbycost, |

Consider the special case 8y = /2 (so, cos By = 0, sin By = 1):

| 0 0 1]
— cos 0, sin 0, + cosfy,sinf, cosBy,cosb, —sinb,sinf, 0O
— €08 0y cos 0; +sinfy sinb; cosb,sinby + costysinb, 0 |

Gimbal Lock

* No matter how we adjust 0x, 0z, can only rotate in one plane!
* We are now “locked” into a single axis of rotation
* Not a great design for airplane controls!

0 O 1
cos 0, sin 0, + cosO0,sinf, cosO,cosb,; —sinb, sinb;
cos O, cos 0, + sin B, sinf, cosb,sinb, + cosH,sinb

15-362/662 | Computer Graphics

Rotation From Axis/Angle

Alternatively, there is a general expression for a matrix that
performs a rotation around a given axis u by a given angle 6:

" cosf+u2(1—cos0) uxtly (1 —cos®) —uysinf uyu, (1 —cosf) + uy, sinf]
uyty (1 —cosB) + u;sin6 cos 6 + u% (1 —cosB) uylz (1 —cos @) — uy sinf
uztiy (1 —cosB) — uysin® wuzuy (1 —cosB) + uysin® cos®+uz (1—cosf) _

Just memorize this matrix! :)

Is there a better way to perform 3D rotations?

15-362/662 | Computer Graphics

Bridging The Rotation Gap

* Hamilton wanted to make a 3D equivalent for complex numbers

One day, when crossing a bridge, he realized he needed 4

(not 3) coordinates to describe 3D complex number space
* 1real and 3 complex components

He carved his findings onto a bridge (still there in Dublin)

Later known as quaternions

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication

i’= j*= R~ ijR = -1 ’
{ € cutit onastone of'thjs bridge

i s
-

William Rowan Hamilton
[1805 — 1865]

Quaternions For Math People

* 4 coordinates (1 real, 3 complex) comprise coordinates.
* Hisknown as the ‘Hamilton Space’ Vababavavaw b N o o o o ol s 1

H := span({1,1,7,k})
gq=a-+bi+c+dkecH

e Quaternion product determined by:
=12 =k =yk=—1

* Warning: product no longer commutes!

Forg,pcH, qp # pq

e With 3D rotations, order matters.

Quaternions For Non-Math People

* Recall axis-angle rotations
* Represent an axis with 3 coordinates (i, j, k)
* Represent an angle by some scalar a

gq=a+bi+cj+dkeH

e Just like how we multiply rotation matrices together, we can
also multiply complex components. If we represent:
* [asa90deg rotation about x-axis
J as a 90deg rotation about y-axis
k as a 90deg rotation about z-axis

=712 =k*=yk= -1

Then two 90deg rotations about the same axis will
produce the inverted image, the same as scaling by -1
This can also be rewritten as:
ij=k
* A 90deg x-axis rotation and a 90deg y-axis rotation is
the same as a 90deg z-axis rotation
* Can be rewritten in any other way

TRYINGTO ROTATE ANOBIJE GAME ENGINE

15-362/662 | Computer Graphics

Multiplying Quaternions

Given two quaternions:

g=ai+bii+ci7+dik
p = ap + byt + co] + dok

Can express their product as:

/

qp = a1az — byby — c1cp —dqydy
+(a1by + brar + c1dy — dqcp)1
—|—(611C2 — bldz S C14» SE dlbz)]
—|—({11d2 + b1cr — c1by + dlaz)k

The result still looks like a quaternion
But there’s a better way to multiply...

recall

=12 =k =yk=—1

Multiplying Quaternions

Recall quaternions can be thought of as an axis and angle:
(x,y,2) = 0+ x1+yj + zk
(scalar, vector) ¢ H

M M
R R3

Can express their product as:
(a,u)(b,v) = (ab—u-v,av+bu+u X v)

If the scalar components are 0, we get:

uv=u XxXxv—u-v

Rotating With Quaternions

Goal: rotate x by angle 8 around axisu = (x,y,2):
* Make x imaginary, and build g based on u and 6
* Note: components of g must be normalized!

x € Im(H)

gEeH, |qI>=1

g = cos(0/2) +sin(0/2)u
q now looks like:

g=a+bi+c)+dkeH

q is q with every complex component negative
Now just compute gxqto get final rotation

Interpolating With Quaternions

Interpolating Euler angles can yield strange-looking
paths, non-uniform rotation speed, etc.
* Simple solution w/ quaternions: “SLERP”
(spherical linear interpolation):

Slerp(qo,91,) = q0(qy 'q1)", ¢ € [0,1]

interpolate rotation
alonyg this arc

Flfa ‘15 (2014) Electronic Arts

D 6o

Animating Rotation with Quaternion Curves (1985) Shoemake

Texture Mapping With Quaternions

e Quaternions can be used to generate texture maps
coordinates
 Complex numbers are natural language for
angle-preserving (“conformal”) maps

	Slide 1: Wrapping up Part 1 of Computer Graphics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

