Wrapping up Part 1 of
Computer Graphics




* Mip maps

* Depth Testing

* Alpha Blending

e Revisiting the Graphics pipeline

3D Rotations
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Mip-Map (L. williams ‘83]

* Rough idea: precompute a prefiltered image at

every possible scale
* The image at depth d is the result of A m

applying a 2x2 avg filter on the image at vV Vv L
depth d-1

* The image at depth O is the base

image u, 7

Level 0 = 128x128 Level 1 X evel3=16X
* Mip-Map generates log,[min(wth, hgt)] + 1
levels
* Each level the width and height gets
halved

* Memory overhead: (1+1/3)x original texture
Y ( / ) 8 Level 4 =8x8 Level 5 = 4x4 Level 6 =2x2 Level7=1x1

1 1
1+4_L+1_6+m_ Y= = ===
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Which mip-map level do we use?
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Computing MipMap Depth

Correlation between distance of surface to camera .
and level of mip-map accessed (o)
* More specifically, correlation between screen- o
space movement across the surface

L)

ﬁooob_

compared to texture movement and level of
mip-map access e 2101010
L] J10]0]0]0
If moving over a pixel in screen space is a big jump _ v]| \f0|0]| 01010
in texture space, then we call it minification 51T
* Sample from a lower level of mip-map u

If moving over a pixel in screen space is a small
jump in texture space, then we call it magnification
* Sample from a higher level of mip-map




Computing MipMap Depth

More formally:

du du

— =U1p— U — = Un1 — U
dx 0 00 dy 01 00
dv dv

- =Vio—V —— = Vo1~ Voo
dx 10 00 dy

Where dx and dy measure the change in screen space
and du and dv measure the change in texture space

. du2+ dv\* du2+ dv\*
¥ \dx dx Y \dy dy

L= \/ max (L%, L3)

d = log,L

L measures the Euclidean distance of the change.
We take the max to get a single number. [ final level d ]



The mipmap level is not an integer...
Which level do we use?
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Trilinear Interpolation Sampling

* Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results

together

* Requires:
e 8 memory lookup
e 7 linear interpolations

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)
—

Bilerp (3 Lerps)

> L] [ ]

(1 Lerp)
—>

L2 du® . dv”
x dx  dx

L2 du® N dv
Y dy dy

L « \/max(sz,Lyz)
d < log, L

d' < floor(d)
Ad «d —d’

tq < tex[d']. bilinear(x,y)
tgrq < tex[d' + 1].bilinear(x,y)
t (1 —Ad) *ty;+Ad * t .1



Trilinear Interpolation Sampling

* |dea: Perform bilinear interpolation on two

2 2
layers of the mip-map that represents proper sz - d_u + @
minification/magnification, blending the results )g?"z dxz
together u dv

* Requires:

8 memory lookup
e 7 linear interpolations

Level ceil(d)

d' < floor(d)

Ad «d —d'
- . Bilerp (3 Lerps)| o ty < tex[d']. bilinear(x,y)
erp , o
- Level floor(d) Bilerp (3 Lerps) N td+1 o t@X[d + 1] blllnear(x; Y)
- o t —(1—Ad) *ty+Ad * t .1
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Trilinear Assumption

Trilinear filtering assumes that samples shrink at the
same rate along u and v
e Taking the max says we would rather
overcompensate than undercompensate filtering

Bilinear and Trilinear filtering are isotropic filtering
methods
* jso—same, tropic — direction
* Values should be same regardless of viewing
direction

What does it mean for samples to shrink at very
different rates along u and v?
e Think of a plane rotated away from the camera
 Changes in v larger than changes inu

* Bilinegra
filteriig
LI S

Ut we would

:are isbtropic

’
* Values should be same regardless of

viewing direction

different rates Io$
* Think of a
camera

€

dv?
ted away from the

* What does it rr‘ean for samples to shrink at very

* Changes in v larger than changesin u

i)

29

o
R
ol



Anisotropic Filtering

e Anisotropic filtering is dependent on direction
* an-not, iso — same, tropic — direction

* Idea: create a new texture map that downsamples
the x and y axis by 2 separately
* Instead of taking the max, use each coordinate
to index into correct location in map

(dx,dy) = ( logz,/Li ,logs |L3)

e Texture map is now a grid of downsampled textures
* Known as a RipMap




Rip Map

 Same idea as MipMap, but for anisotropic filtering
* 4x memory footprint
w

e New width:w' =w + ;+%]+---=2w
. Newheight:h’=h+§+§+-~=2h
e New area: w'h’ = 4wh

* Fun fact: a MipMap is just the diagonal of a RipMap
* Ifdy = dy, then we have trilinear interpolation




Isotropic vs Anisotropic Filtering

overbluring in u direction

[ isotropic (trilinear) ] [ anisotropic ]

15-362/662 | Computer Graphics




Sampling Comparisons

[ Nearest ] [ Bilinear ] [ Trilinear ] [ Anisotropic ]
No. samples 1 4 8 16
No. interps 0 3 7 15
No. operations ~3 ~19 >54 >54
Texture locality good good bad very bad
Memory overhead 1x 1x 4/3x 4x
Anti-aliasing bad normal good great




.

Texture Sampling Pipeline

Compute u and v from screen sample (x,y) via barycentric —

interpolation

Approximate du/dx, du/dy, dv/dx, dv/dy by taking differences
of screen-adjacent samples

Compute mip map level d

Convert normalized [0,1] texture coordinate (u,v) to pixel
locations (U,V)E[W,H] in texture image

Determine addresses of texels needed for filter (e.g., eight
neighbors for trilinear)

Load texels into local registers

Perform tri-linear interpolation according to (U,V,d)
(...even more work for anisotropic filtering...)

Lot of repetitive work every time
we want to shade a pixel!

GPUs instead implement these
instructions on fixed-function
hardware.

This is why we have texture caches
and texture filtering units.



VHP-FASPS

* Depth Testing

* Alpha Blending

e Revisiting the Graphics pipeline

3D Rotations
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The “Simpler” Graphics Pipeline

w' h) ........

IR AES

- ) (010) ........
T ransform/position objects in Project objects onto
' It the screen

Sample triangle coverage

- A

Sample texture maps / Interpolate triangle
evaluate shaders attributes at covered samples
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Depth Buffer ( Z-buffer )

* For each sample, the depth buffer stores the depth of the
closest triangle seen so far
* Done at the sample granularity, not pixel granularity

far




Depth of a Triangle

(xi, i)
e Atriangle is composed of 3 different 3D points,
(XK, Yi) each with a depth value z
(xj’ yj) q. * To get the depth at any point (x, y) inside the
1

triangle, interpolate depth at vertices with
barycentric coordinates



Depth Buffer ( Z-buffer )

@ — sample passed depth test
(@) O O (@) O O O O O (@) O O (@) o O O O
O o o o o o O O O O O o ‘e e o
(@) O O (@) O O O (@) O O (@) o ([ ([ O
(@) O O (@) O (@) O O (@) o ([ ([ ( ]
O o o © 0 O O O O e e o o
(@) O O (@) O O o o ([ ([ ([
(@) O (@) O [ o o ([ ([ (
(@) O O (@) O O O O O (@) O O (@) o O O O
(@) O O (@) O O O O O (@) O O (@) o O O O
[ color buffer ] [ depth buffer ]

near [T far
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Depth Buffer ( Z-buffer )

@ — sample passed depth test
(@) O O (@) O O O O O (@) O O (@) o O O O
O o0 o© 0 o O O O O e o & 8 o
(@) O O O (@) O ([ o o ([ ([ O
(@) O O (@) O ( o ([ ([ ([ o
O o 0 O O e e o o o o
(@) (@) ([ ( o ([ ([ ([ ([
(@) (@) ( ( o ([ ([ ([ ([
(@) O O (@) O O O O O (@) O O (@) o O O O
(@) O O (@) O O O O O (@) O O (@) o O O O
[ color buffer ] [ depth buffer ]

near [T far
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Depth Buffer ( Z-buffer )

@ — sample passed depth test
(@) O O (@) O O O O O (@) O O (@) o O O O
O o0 o© o O O o o =« e e 8 o©
(@) O O O (@) O o o o ([ ([ O
(@) O O (@) O [ o o ([ ([ o
O o 0 O o/ & & e e o o
O (@) o [ { ] o o ([ ([
(@) (@) [ ( o ([ ([ ([ ([
(@) O O (@) O O O O O (@) O O (@) o O O O
(@) O O (@) O O O O O (@) O O (@) o O O O
[ color buffer ] [ depth buffer ]

near [T far
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Depth Buffer ( Z-buffer )

@ — sample passed depth test
(@) O O (@) O O O O O (@) O O (@) o O O O
O o o o O O o o © e e e o©
(@) O O O (@) O [ { o o o O
(@) O O (@) O o { o o o o
O O 0 O O o e e o o o
O (@) o o ® o o o o
O (@) o o ® o o o o
(@) O O (@) O O O O O (@) O O (@) o O O O
(@) O O (@) O O O O O (@) O O (@) o O O O
[ color buffer ] [ depth buffer ]

near [ far
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Depth Buffer ( Z-buffer ) Per Sample



Depth Buffer ( Z-buffer ) Per Sample

Able to capture triangle intersections by performing tests per sample
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Depth Buffer ( Z-buffer ) Sample Code

draw sample(x, y, d, ¢) //new depth d & color c at (x,Vy)
{
if(d < zbuffer[x][y])
{
// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.
zbuffer[x] [y] = d; // update zbuffer
color[x][y] = c; // update color buffer
}

// otherwise, we’ve seen something closer already;
// don’t update color or depth

Why is it that we first shade the pixel and then assign the resulting color after depth check?
Deferred shading (advanced algorithm) fixes this issue.
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« pMigrmaps

= Depthtestng

* Alpha Blending

* Revisiting the Graphics pipeline

3D Rotations
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Alpha Values

fully opaque

Another common image format: RGBA
* Alpha channel specifies ‘opacity’ of object
» Basically how transparent it is a=3/4
* Most common encoding is 8-bits per
channel (0-255)

a=1/2
* Compositing A over B I=B over A a=1/4
e Consider the extreme case of two opaque
objects [ koala over nyc ] [ nyc over...koala? ] a=0

fully transparent

where is
the koala...
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Non-Premultiplied Alpha

Goal: Composite image B with alpha ag over
image A with alpha ay4

B
= (Brr Bb)
B over A
 Composite RGB:  what B lets through  Composite Alpha:
C = (XBB + (1 — aB)aAA ac = ag + (1 _ aB)aA
I e
appearance of semi- - Jifte "
transparent B qua{\ons \“
appearance of semi- “eﬁ‘\c,\e“"'

transparent A
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Premultiplied Alpha

* Goal: Composite image B with alpha ag over
image A with alpha ay A

A = (C(AAT, afAAg, aAAb, aA)

B' = (apB,, apB,, arB;, a
(Br BPg»“*BPb B) B over A

e Composite RGBA: e  Un-Premultiply for Final Color:

C'=B"+ (1 — CZB)A’ (CTI Cg: Cbl aC) = (CT/aC' Cg/aC’ Cb/aC)



Why Premultiplied Matters [Upsample]

alpha color premultiplied

inging
Known as fring upsampled upsampled upsampled

alpha color premultiplied
. Something isn’t right...

new background 4 (a4 = 1) B over A B over A (premultiplied)




Why Premultiplied Matters [Downsample]

[RGB ] [A]

original downsampled
color alpha color alpha composite




Closed Under Composition

* Goal: Composite bright red image B with alpha 0.5
over bright red image A with alpha 0.5

A=(1,0,0,0.5)
B =(1,0,0,0.5)
B over A
* Non-Premultiplied: * Premultiplied:

0.5+ (1,0,0) + (1 —0.5)*0.5%(1,0,0) 0.5=%(0.5,0,0,0.5) + (1 —0.5) x(0.5,0,0,0.5)

color 1 1

(0.75,0,0) (0.75,0,0,0.75)
l divide out alpha
alpha 0.5+ (1 —0.5) = 0.5 = 0.75 (1,0,0)
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Blend Methods

When writing to color buffer, can use any blend method

Drgea = Sreea + Drgra Blend Add

Drgea = Sreea — DrGBa Blend Subtract

Dreea = — Srga + Drcpa Blend Reverse Subtract
Drgpa = min(Sggpa, Drepa) Blend Min

Drgga = max(Srgea» Drepa) Blend Max

Dreea = Srgea + Drgpa * (1 — Sa) Blend Over

Srcpa and Dpipy4 are pre-multiplied



Updated Depth Buffer ( Z-buffer ) Sample Code

draw sample(x, y, d, ¢) //new depth d & color c at (x,Vy)
{ i\ be
) st
S“d\gdd\';'\%\ Ziigedotx] 1))

-ng AP . 5g?
do\“é // ﬁm\;%ele 1s closest object seen so far at this

a\P“/a/p ple point. date depth and color buffers.
uffer[x] [y] = d;
CcO .rgba + (l-c.a) * color[x]I[y];

}

// otherwise, we’ve seen something closer already;

// don’t update color or depth
}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B |=B over A
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Blend Render Order

* For mixtures of opaque and transparent triangles:

* Step 1: render opaque primitives (in any order)
using depth-buffered occlusion
* |If pass depth test, triangle overwrites value in
color buffer at sample
* Depth READ and WRITE

* Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
* |If pass depth test, triangle is composited
OVER contents of color buffer at sample
e Depth READ only
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s Peogth-tostine
2 fleha-Blepding
e Revisiting the Graphics pipeline

3D Rotations
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The “Simpler” Graphics Pipeline

w' h) ........

A I

........
(0,0

e‘: S Z‘I’ransfomt/posmon objects in Project objects onto
“o\N v P\\\ the world the screen Sample triangle coverage
eut w o’
1o%e‘“ ‘
Combine samples into ﬁnal Sample texture maps / Interpolate triangle
image (depth, alpha, .. evaluate shaders attributes at covered samples
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positions

v0x,
vlix,
V2X,
v3X,
vidx,
vOXx,

ke

Object-to-camera-space transform T €

= {

v0y,
vly,
V2V,
v3y,
vay,
VoY,

[ vertices ]

v0z,
vlix,
v2z,
v3x,
vdz,
vOx

The Inputs

texcoords ={

vOou,
viu,
v2u,
v3u,
vidu,
vou,

vOv,
viv,
V2V,
v3v,
viv,
VOV

]R4><4

Perspective projection transform P € R***
Output image (W, H)
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[ camera properties ]

ALY

[ textures ]

[ machine ]




Step 1: Transform

Transform triangle vertices into camera space

?y
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Step 2: Perspective Projection

Apply perspective projection transform to transform
triangle vertices into normalized coordinate space

[ 3D camera space position ] [ normalized space position ]



Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

X8

X2

[ pre-clipping ] [ post-clipping ]



Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates
into screen coordinates (based on screen [w, h]).
(w, h)

(0, 0)



Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.



Step 6: Compute Color

Texture lookups, color interpolation, etc.

°® ® ® o
[u(x,y), v(x,y) ]
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Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

o
PASS

® e
PASS  PASS

°
FalL  PASS PASS

FAIL  PASS PASS PASS

FAIL  FAIL  PASS PASS PASS

FAIL  FAIL  PASS PASS PASS
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Step 8: Color Blending

Update color buffer with correct blending operation.
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2 fleha-Blepding
Revisiting the Graphics pioali

e 3D Rotations



3D Rotations

Rotating in 2D is the same as rotating around the z-axis
Idea: independently rotate around each (x,y,z)-axis for
3D rotations

Problem: order of rotation matters!
* Rotate a Rubik’s cube 90deg around the y-axis and
90deg around the z-axis
* Rotate a Rubik’s cube 90deg around the z-axis and
90deg around the y-axis
e They will not be the same!
* Order of rotation must be specified




3D Rotations in Matrix Form

Idea: independently rotate around each (x,y,z)-axis for 3D rotations:

[ 1 0 0 - cosf, 0 sinf, [ cosf, —sinf, 0 |
Ry,=1 0 cosf, —sinfy Ry = 0 1 0 R, = | sinf, cosf, 0
| 0 sinfy cosfy | —sinfy, 0 cos6, | 0 0 1
Combining the matrices:
i cos 0, cos 0, — cos By, sin 6, sin 6, 1
RxRyR; = cos 0, sin By sin 6, + cos Oy sinf;  cosby cost, — sin by sinbysinf, — cos b, sin by
| —cos by cost;sinfy +sinbysinf; cosb;sinby + cosbysinb,sinf,; cosbycost, |

Consider the special case 8y = /2 (so, cos By = 0, sin By = 1):

| 0 0 1 ]
— cos 0, sin 0, + cosfy,sinf, cosBy,cosb, —sinb,sinf, 0O
— €08 0y cos 0; +sinfy sinb; cosb,sinby + costysinb, 0 |




Gimbal Lock

* No matter how we adjust 0x, 0z, can only rotate in one plane!
* We are now “locked” into a single axis of rotation
* Not a great design for airplane controls!

0 O 1
cos 0, sin 0, + cosO0,sinf, cosO,cosb,; —sinb, sinb;
cos O, cos 0, + sin B, sinf, cosb,sinb, + cosH,sinb
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Rotation From Axis/Angle

Alternatively, there is a general expression for a matrix that
performs a rotation around a given axis u by a given angle 6:

" cosf+u2(1—cos0) uxtly (1 —cos®) —uysinf  uyu, (1 —cosf) + uy, sinf]
uyty (1 —cosB) + u;sin6 cos 6 + u% (1 —cosB) uylz (1 —cos @) — uy sinf
uztiy (1 —cosB) — uysin®  wuzuy (1 —cosB) + uysin®  cos®+uz (1—cosf) _

Just memorize this matrix! :)



Is there a better way to perform 3D rotations?
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Bridging The Rotation Gap

* Hamilton wanted to make a 3D equivalent for complex numbers

One day, when crossing a bridge, he realized he needed 4

(not 3) coordinates to describe 3D complex number space
* 1real and 3 complex components

He carved his findings onto a bridge (still there in Dublin)

Later known as quaternions

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication

i’= j*= R~ ijR = -1 ’
{ € cutit onastone of'thjs bridge

i s
-

William Rowan Hamilton
[1805 — 1865]



Quaternions For Math People

* 4 coordinates (1 real, 3 complex) comprise coordinates.
* Hisknown as the ‘Hamilton Space’ Vababavavaw b N o o o o ol s 1

H := span({1,1,7,k})
gq=a-+bi+c+dkecH

e Quaternion product determined by:
=12 =k =yk=—1

* Warning: product no longer commutes!

Forg,pcH, qp # pq

e With 3D rotations, order matters.




Quaternions For Non-Math People

* Recall axis-angle rotations
* Represent an axis with 3 coordinates (i, j, k)
* Represent an angle by some scalar a

gq=a+bi+cj+dkeH

e Just like how we multiply rotation matrices together, we can
also multiply complex components. If we represent:
* [ asa90deg rotation about x-axis
J as a 90deg rotation about y-axis
k as a 90deg rotation about z-axis

=712 =k*=yk= -1

Then two 90deg rotations about the same axis will
produce the inverted image, the same as scaling by -1
This can also be rewritten as:
ij=k
* A 90deg x-axis rotation and a 90deg y-axis rotation is
the same as a 90deg z-axis rotation
* Can be rewritten in any other way

TRYINGTO ROTATE ANOBIJE GAME ENGINE
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Multiplying Quaternions

Given two quaternions:

g=ai+bii+ci7+dik
p = ap + byt + co] + dok

Can express their product as:

/

qp = a1az — byby — c1cp —dqydy
+(a1by + brar + c1dy — dqcp)1
—|—(611C2 — bldz S C14» SE dlbz)]
—|—({11d2 + b1cr — c1by + dlaz)k

The result still looks like a quaternion
But there’s a better way to multiply...

recall

=12 =k =yk=—1



Multiplying Quaternions

Recall quaternions can be thought of as an axis and angle:
(x,y,2) = 0+ x1+yj + zk
( scalar, vector ) ¢ H

M M
R R3

Can express their product as:
(a,u)(b,v) = (ab—u-v,av+bu+u X v)

If the scalar components are 0, we get:

uv=u XxXxv—u-v



Rotating With Quaternions

Goal: rotate x by angle 8 around axisu = (x,y,2):
* Make x imaginary, and build g based on u and 6
* Note: components of g must be normalized!

x € Im(H)

gEeH, |qI>=1

g = cos(0/2) +sin(0/2)u
q now looks like:

g=a+bi+c)+dkeH

q is q with every complex component negative
Now just compute gxqto get final rotation




Interpolating With Quaternions

Interpolating Euler angles can yield strange-looking
paths, non-uniform rotation speed, etc.
* Simple solution w/ quaternions: “SLERP”
(spherical linear interpolation):

Slerp(qo,91,) = q0(qy 'q1)", ¢ € [0,1]

interpolate rotation
alonyg this arc

Flfa ‘15 (2014) Electronic Arts

D 6o

Animating Rotation with Quaternion Curves (1985) Shoemake



Texture Mapping With Quaternions

e Quaternions can be used to generate texture maps
coordinates
 Complex numbers are natural language for
angle-preserving (“conformal”) maps
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