
Rasterization, Transparency
& Texturing
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• Perspective Projection wrapup

• Drawing a Line

• Drawing a Triangle

• Supersampling

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending
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Map A Harder Frustrum To Cube

z
x

y

With perspective projection, we end up dividing out the z coordinate.
Full perspective matrix takes geometry of view frustum into account:
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Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[ Rasterization Stage ]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)

Coordinates stretched to image dims.
Image flipped upside down.
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• Perspective Projection wrapup

• Drawing a Line

• Drawing a Triangle

• Supersampling
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The Bresenham Line Algorithm

• Consider the case when 𝑚 is in range 0,1
• Implies ∆𝑥 ≥  ∆𝑦

• We will traverse up the x-axis
• Each step of x we take, decide if we keep y 

the same or move y up one step
• Since 0 < 𝑚 < 1, a positive move in x 

causes a positive move in y 

Ensure the x-coordinate of (𝑥1, 𝑦1) is smaller
Let y’ be our current vertical component along the line
Let y be the initial 𝑦1

For each x value in range [𝑥1, 𝑥2] with step 1:
     Shade (x, y)
     Add m to y’ (if x takes step 1, y’ takes step m)
     If the new y’ is closer to the row of pixels above:
          Add 1 to y

If 𝑥1 > 𝑥2 : 
     Swap(𝑥1, 𝑥2),     Swap(𝑦1, 𝑦2) 
𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 𝑚| > 0.5):
          𝜀 ← 𝜀 + 𝑚 − 1,  𝑦 ← 𝑦 + 1
     Else:
          𝜀 ← 𝜀 + 𝑚

[ pseudocode ] [ code ]
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The Bresenham Line Algorithm

• What if 𝑚 is in range −1,0 ?

𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 𝑚| > 0.5):
          𝜀 ← 𝜀 + 𝑚 + 1,  𝑦 ← 𝑦 − 1
     Else:
          𝜀 ← 𝜀 + 𝑚

• What if 𝑚 > 1?

𝜀 ← 0, 𝑥 ← 𝑥1

For 𝑦 ← 𝑦1to 𝑦2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 1/𝑚| > 0.5):
          𝜀 ← 𝜀 + 1/𝑚 − 1,  𝑥 ← 𝑥 + 1
     Else:
          𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 < −1?

𝜀 ← 0, 𝑥 ← 𝑥1

For 𝑦 ← 𝑦1to 𝑦2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 1/𝑚| > 0.5):
          𝜀 ← 𝜀 + 1/𝑚 + 1,  𝑥 ← 𝑥 − 1
     Else:
          𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 is in range 0,1 ?

𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 𝑚| > 0.5):
          𝜀 ← 𝜀 + 𝑚 − 1,  𝑦 ← 𝑦 + 1
     Else:
          𝜀 ← 𝜀 + 𝑚

**When traversing x-axis, x1 must be smaller. When traversing y-axis, y1 must be smaller
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That’s kinda complicated…
Can we make it easier somehow?
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The [Nicer] Bresenham Line Algorithm

𝑎 = < 𝑥1, 𝑦1 >, 𝑏 = < 𝑥2, 𝑦2 >
∆𝑥 ← 𝑥2 − 𝑥1 , ∆𝑦 ← |𝑦2 − 𝑦1|

If (∆𝑥 > ∆𝑦):
     𝑖 ← 0,       𝑗 ← 1
If (∆𝑥 < ∆𝑦):
     𝑖 ← 1,       𝑗 ← 0

If (𝑎𝑖 > 𝑏𝑖):
     𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡1 ← 𝑓𝑙𝑜𝑜𝑟(𝑎𝑖), 𝑡2← 𝑓𝑙𝑜𝑜𝑟(𝑏𝑖)

For 𝑢 ← 𝑡1 to 𝑡2 do:

     𝑤 ←
𝑢+0.5 −𝑎𝑖

(𝑏𝑖−𝑎𝑖)

     𝑣 ← 𝑤 ∗ 𝑏𝑗 − 𝑎𝑗 + 𝑎𝑗 

     Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

setup coordinates

compute the longer axis 𝑖 
and the shorter axis 𝑗 

the starting coordinate should be the 
smaller value along the longer axis

for each step taken along the longer axis, 
compute the percent distance traveled 𝑤 
and project that percentage onto the 
shorter axis. Then convert to half-integer 
coordinates

compute long axis bounds 
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Introduction To The Line

• Bresenham algorithm only works if both the 
start and end coordinates lie on half-integer 
coordinates

• Instead we will consider a line to intersect a 
pixel if the line intersects the diamond inside 
the pixel

• 𝑥 − 𝑝𝑥 + 𝑦 − 𝑝𝑦 <
1

2

• Checks if point (𝑥, 𝑦) lies in the 
diamond of pixel 𝑝

• Still the same idea as before! The only 
difference is that we need to check if the 
endpoints correctly intersect the last pixels
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The [Even Nicer] Bresenham Line Algorithm

𝑎 = < 𝑥1, 𝑦1 >, 𝑏 = < 𝑥2, 𝑦2 >
∆𝑥 ← 𝑥2 − 𝑥1 , ∆𝑦 ← |𝑦2 − 𝑦1|

If (∆𝑥 > ∆𝑦):
     𝑖 ← 0,       𝑗 ← 1
If (∆𝑥 < ∆𝑦):
     𝑖 ← 1,       𝑗 ← 0

If (𝑎𝑖 > 𝑏𝑖):
     𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡1 ← 𝑓𝑙𝑜𝑜𝑟(𝑎𝑖), 𝑡2← 𝑓𝑙𝑜𝑜𝑟(𝑏𝑖)

For 𝑢 ← 𝑡1 to 𝑡2 do:

     𝑤 ←
𝑢+0.5 −𝑎𝑖

(𝑏𝑖−𝑎𝑖)

     𝑣 ← 𝑤 ∗ 𝑏𝑗 − 𝑎𝑗 + 𝑎𝑗 

     Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

TODO: fix 𝑡1and 𝑡2 to properly account 
for OR discard the two edge fragments 
if the endpoints 𝑎 and 𝑏 are inside the 
‘diamond’ of the edge fragments

Remember: 𝑥 − 𝑝𝑥 + 𝑦 − 𝑝𝑦 <
1

2
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• Perspective Projection wrapup

• Drawing a Line

• Drawing a Triangle

• Supersampling
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Point-In-Triangle Test

a

b

c

q

• Which points do we check?
• Idea 1: check all points 𝑞 in the image

• For large images (1080p), we’re 
checking hundreds of thousands of 
points per triangle!

• Idea 2: check all points 𝑞 in the bounding 
box of the triangle:
• 𝑥𝑚𝑖𝑛 = min(𝑎𝑥, 𝑏𝑥, 𝑐𝑥)
• 𝑦𝑚𝑖𝑛 = min(𝑎𝑦, 𝑏𝑦, 𝑐𝑦)

• 𝑥𝑚𝑎𝑥 = max(𝑎𝑥, 𝑏𝑥, 𝑐𝑥)
• 𝑦𝑚𝑎𝑥 = max(𝑎𝑦, 𝑏𝑦, 𝑐𝑦)

• How to check if a point is inside a triangle?
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Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑏 side of 𝑎𝑐 

𝑎𝑐  × 𝑎𝑏  ∙ 𝑎𝑐  × 𝑎𝑞 > 0
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Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑎 side of 𝑐𝑏 

𝑐𝑏  × 𝑐𝑎  ∙ 𝑐𝑏  × 𝑐𝑞 > 0
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Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑐 side of 𝑏𝑐 

𝑏𝑎  × 𝑏𝑐  ∙ 𝑏𝑎  × 𝑏𝑞 > 0
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Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

𝑎𝑐  × 𝑎𝑏  ∙ 𝑎𝑐  × 𝑎𝑞 > 0 &&

𝑐𝑏  × 𝑐𝑎  ∙ 𝑐𝑏  × 𝑐𝑞 > 0 &&

𝑏𝑎  × 𝑏𝑐  ∙ 𝑏𝑎  × 𝑏𝑞 > 0

• What if b and c were swapped?

𝑎𝑏  × 𝑎𝑐  ∙ 𝑎𝑐  × 𝑎𝑞 < 0 

• Order of the cross product matters!
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Incremental Triangle Traversal

𝑃𝑖 = (𝑥𝑖/𝑤𝑖 𝑦𝑖/𝑤𝑖 𝑧𝑖/𝑤𝑖) = (𝑋𝑖 𝑌𝑖 𝑍𝑖)

𝑑𝑋𝑖 = 𝑋𝑖+1 − 𝑋𝑖

𝑑𝑌𝑖 = 𝑌𝑖+1 − 𝑌𝑖

𝐸𝑖 𝑥, 𝑦 = 𝑥 − 𝑋𝑖 𝑑𝑌𝑖 − 𝑦 − 𝑌𝑖 𝑑𝑋𝑖

𝐸𝑖 𝑥, 𝑦 = 0 : point on edge
𝐸𝑖 𝑥, 𝑦 > 0 : point outside edge
𝐸𝑖 𝑥, 𝑦 < 0 : point inside edge

𝑑𝐸𝑖 𝑥 + 1, 𝑦 = 𝐸𝑖 𝑥, 𝑦 + 𝑑𝑌𝑖

𝑑𝐸𝑖 𝑥, 𝑦 + 1 = 𝐸𝑖 𝑥, 𝑦 + 𝑑𝑋𝑖
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Parallel Coverage Tests

a

b

c
• Incremental traversal is very serial; modern 

hardware is highly parallel
• Test all samples in triangle bounding box in 

parallel

• All tests share some ‘setup’ calculations

• Computing 𝑎𝑐 , 𝑐𝑏 , 𝑏𝑎 

• Modern GPUs have special-purpose hardware 
for efficiently performing point-in-triangle tests
• Same set of instructions, regardless of 

which coordinate 𝑞 we are dealing with
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Hierarchical Coverage Tests

• Idea: work coarse-to-fine
• Check if large blocks are inside the triangle

• Early-in: every pixel is covered
• Early-out: every pixel is not covered
• Else: test each pixel coverage individually

• Early-in: if all 4 corners of the block are inside the triangle
• Else: if a triangle line intersects a block line
• Early-out: if neither Early-in nor Else

• Careful! Best to represent block as smallest bounding box to 
pixel samples, not the pixels themselves! 

early out

early in
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Hierarchical Coverage Tests

• What is the right block size?
• Too big: very difficult to get an Early-in or 

Early-out
• Too small: blocks are too similar to pixels

• Idea: create a hierarchy of block sizes
• When entering the Else case, just drop 

down to the next smallest block size
• Checking coverage reduced to logarithmic 

(We will learn why in a future lecture)
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• Perspective Projection wrapup

• Drawing a Line

• Drawing a Triangle

• Supersampling
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Pixel Coverage

Pixel

1

2

3

4

Which triangles “cover” this pixel?
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Pixel Coverage

10%

35%

60%

85%

15%

• Compute fraction of pixel area 
covered by triangle, then color pixel 
according to this fraction
• Ex: a red triangle that covers 10% 

of a pixel should be 10% red

• Difficult to compute area of box 
covered by triangle
• Instead, consider coverage as an 

approximation
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Coverage Via Samples

• A sample is a discrete measurement of a signal
• Used to convert continuous data to discrete, but we 

can also take samples of discrete data too

• The more samples we take, the more accurate the image 
becomes
• Same idea as using a larger sensor to take a better-

quality photo

• Problem: each sample adds more work 
• What is the best way to use the least amount of 

samples to best approximate the original scene?
• Main idea of sample theory
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Sampling in 1D

𝑓(𝑥0)
𝑓(𝑥1) 𝑓(𝑥2) 𝑓(𝑥3)

𝑓(𝑥4)

𝑥1𝑥0 𝑥2 𝑥3 𝑥4

𝑓(𝑥)

𝑓′(𝑥)

𝑥1𝑥0 𝑥2 𝑥3 𝑥4

• Idea: take 5 random samples along the domain 
and evaluate 𝑓(𝑥)
• Many different ways to interpolate points:

• Piecewise
• Linear
• Cubic

• Where is the best place to put 5 samples?
• We know the answer because we can see 

the entire function 𝑓 
• 𝑓 has been evaluated over the entire 

domain
• What if we cannot see all of 𝑓?
• What if 𝑓 is expensive to evaluate?
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Sampling in 1D

• Idea: take more than 5 random samples along 
the domain and evaluate 𝑓(𝑥)
• Gets a better reconstruction of 𝑓 but…

• More evaluation calls needed
• More memory to save

• Still don’t know the best way to interpolate 
samples
• Need to guess based on the behavior of 𝑓
• Can consider things like gradients and 

such…

𝑥1𝑥0 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8



Pixel (x,y)

1

2

3
4
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Pixel Coverage

Which triangles “cover” this pixel?

(x+0.5, y+0.5) Here I chose the coverage sample 
point to be at a point 
corresponding to the pixel center

= triangle but with a red outline

= triangle
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Edge Case

1

2

• When edge falls directly on a screen sample, 
the sample is classified as within triangle if the 
edge is a “top edge” or “left edge”
• Top edge: horizontal edge that is above all 

other edges
• Left edge: an edge that is not exactly 

horizontal and is on the left side of the 
triangle 
• Triangle can have one or two left 

edges

• This is known as edge ownership

Direct3D Documentation (2020) Microsoft
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So how many samples do we take?
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Sampling Per Pixel

Idea: take as many samples as there are pixels on screen
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Sampling Per Pixel

Problem: Results look blocky against edges
(let’s take more samples!)
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Aliasing Artifacts

• Imperfect sampling + imperfect reconstruction 
leads to image artifacts
• Jagged edges
• Moiré patterns

• Does this remind you of old school video games?
• Old games took few samples and took few 

steps to prevent aliasing
• Expensive to take more samples
• Not enough compute to do filtering to 

interpolate samples
• Not enough memory to take more 

samples
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Supersampling Per Pixel

Idea: take many more samples than there are pixels on screen
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Resampling

Each pixel now holds n samples.
Average the n samples together to get 1 sample per pixel (1spp). 
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Resampling
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Resampling



100% 0%

50%

50%

100%

25%100%

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling
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Supersampling Artifacts

[ 1x1spp ] [ 4x4spp ] [ 32x32spp ]
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Supersampling Artifacts

In special cases, we can compute the exact coverage.
This occurs when what we are sampling matches our sampling 

pattern – very rare!
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• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

Now that we can sample the triangle, how do we set the pixel color?
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The “Simpler” Graphics Pipeline
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Interpolating Values for Triangles

Lecture 05 | Texturing

• Goal: interpolate triangle vertices for any point within 
triangle

• Coordinates (𝜙𝑖, 𝜙𝑗,𝜙𝑘) should represent weighted average

• 𝜙𝑖 + 𝜙𝑗 + 𝜙𝑘 = 1

• Similarly, 1 − 𝜙𝑖 − 𝜙𝑗 = 𝜙𝑘

• Gives a 2D parameterization of triangle point (𝜙𝑖, 𝜙𝑗)
• Known as barycentric coordinates

• If each point has some attribute (𝛼𝑖, 𝛼𝑗, 𝛼𝑘), can linearly 

interpolate 𝛼𝑖𝜙𝑖 + 𝛼𝑗𝜙𝑗 + 𝛼𝑘𝜙𝑘

• Example: [black]𝜙𝑖 + [green]𝜙𝑗 + [red] 𝜙𝑘

[ black ]

[ green ]

[ red ]
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Barycentric Coordinates

Lecture 05 | Texturing

• Inversely proportional to the distance between the 
target point and a point within the triangle

• Can be computed as:

• How would you compute ℎ𝑖? 𝑑𝑖(𝑥)? 
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Barycentric Coordinates [ Another Way ]

Lecture 05 | Texturing

• Directly proportional to the area created by the triangle 
composed of the other two target points and a point 
within the triangle

• Can be computed as:

** Interesting read of barycentric coordinates for n-gons: https://www.inf.usi.ch/hormann/barycentric/
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Perspective-Incorrect Interpolation

Lecture 05 | Texturing

• Due to perspective projection (homogeneous divide), 
barycentric interpolation of values on a triangle with 
different depths is not an affine function of screen XY 
coordinates

• Want to interpolate attribute values linearly in 3D 
object space, not image space.𝑎0

𝑎1

(𝑎0 + 𝑎1)/2

Halfway in real life!

Not actually halfway in screen!
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Perspective-Incorrect Interpolation

Lecture 05 | Texturing

If we compute barycentric coordinates using 2D 
(projected) coordinates, leads to (derivative) 
discontinuity in interpolation where quad was split
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Perspective-Correct Interpolation

Lecture 05 | Texturing

• Goal: interpolate some attribute 𝑣 at vertices
• Compute depth 𝑧 at each vertex
• Evaluate 𝑍 ∶=  1/𝑧 and 𝑃 ≔ 𝑣/𝑧 at each vertex
• Interpolate 𝑍 and 𝑃 using standard (2D) 

barycentric coordinates
• At each fragment, divide interpolated 𝑃 by 

interpolated 𝑍 to get final value
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Perspective-Correct Interpolation

Lecture 05 | Texturing

(0,0,1) (0,3,2)

(0,5,4)

𝜙(0,0,1) = 0.2

𝜙(0,3,2) = 0.1

𝜙(0,5,4) = 0.7

𝑍(0,0,1) = 1

𝑍(0,3,2) = 1/2

𝑍(0,5,4) = 1/4

What if z is equal to 0?

Remember the near clipping plane!

𝑃(0,0,1) = (0,0,0)/1

𝑃(0,3,2) = (1,0,0)/2

𝑃(0,5,4) = (0,1,0)/4

𝑃𝑖𝑛𝑡𝑒𝑟𝑝 = 0.2 ∗ [(0,0,0)/1] + 0.1 ∗ [(1,0,0)/2] + 0.7 ∗ [(0,1,0)/4]

𝑃𝑖𝑛𝑡𝑒𝑟𝑝 = (0.05, 0.175, 0) 

𝑍𝑖𝑛𝑡𝑒𝑟𝑝 = 0.2 ∗ [1/1] + 0.1 ∗ [1/2] + 0.7 ∗ [1/4]

𝑍𝑖𝑛𝑡𝑒𝑟𝑝 = 0.425 

𝑞 = (0.05, 0.175, 0)/0.425
𝑞 = (0.12, 0.412, 0)

q
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• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

Lecture 05 | Texturing
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The “Simpler” Graphics Pipeline
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Textures in Graphics

• Textures are buffers of data (images) that are read 
into the graphics pipeline and are used for:
• Coloring mapping
• Normal mapping
• Displacement mapping
• Roughness mapping
• Occlusion mapping
• Reflection mapping

• Textures can also be written into
• Think a scratch pad for data

• Useful for maximizing quality while minimizing the 
number of polygons
• Rough surfaces can be approximated by 

smooth surfaces with rough textures

• A single pixel of a texture is known as a texel

The Last of Us Part II (2020) Naughty Dog

Lecture 05 | Texturing



15-362/662 | Computer Graphics

Textures in Graphics

Lecture 05 | Texturing

[ fluffy geometry ] [ monochrome texture ] [ textured geometry ]+ =

preserves geometric fluffchanges the visual 
appearance (color of fur)
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Texture Coordinates

• Goal: map surface geometry coordinates to 
image coordinates

• Barycentric coordinates let us represent 3D 
geometry in 2D by their surface coordinates
• Known as surface parameterization

• Not always a 1-to-1 map!
• A surface only half the number of pixels of 

a texture may only use up half the texels**

Lecture 05 | Texturing

**We will learn ways that surfaces may use more texels than there are pixels on the surface

[ texture ] [ geometry ] [ render ]
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Texture Example

Each vertex has a coordinate (u,v) in texture space

[ texture coordinates on surface ] [ texture coordinates on texture ]

v

u

Lecture 05 | Texturing
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Texture Example
[ rendered results ] [  texture data ]

v

u

Each triangle “copies” a piece of the image back to the surface

Lecture 05 | Texturing
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Periodic Texturing

Why do you think texture coordinates might repeat over the surface?

Lecture 05 | Texturing



15-362/662 | Computer Graphics

Periodic Texturing

Used for tiling textures

Lecture 05 | Texturing
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How Texturing Is Done

• An artist goes into a program and 
drags/paints/stretches/warps textures onto 
surfaces
• The resulting distortion of the texture on 

the surface is saved as the surface 
parameterization

• Computing the texture mapping function is 
never done by hand! 
• Always use an interactive program to do it

• Also known as uv mapping
• u and v are the two barycentric 

coordinates that we want to map onto 
texture space

Lecture 05 | Texturing

Texturing (2017) Blender
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Texture mapping maps a non-integer coordinate to another non-integer coordinate.
But textures can only be accessed via integer…

How do we know what texel(s) to sample?
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Nearest Neighbor Sampling

• Idea: Grab texel nearest to requested location in 
texture

• Requires: 
• 1 memory lookup
• 0 linear interpolations

Lecture 05 | Texturing

𝑥′ ← 𝑟𝑜𝑢𝑛𝑑 𝑥 − 0.5 , 𝑦′ ← 𝑟𝑜𝑢𝑛𝑑 𝑦 − 0.5

𝑡 ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′, 𝑦′

𝒙’ and 𝒚’ are half-integer coordinates
Helps account for 0.5 offset from texture coordinate centers
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Bilinear Interpolation Sampling

• Idea: Grab nearest 4 texels and blend them 
together based on their inverse distance from 
the requested location
• Blend two sets of pixels along one axis, 

then blend the remaining pixels

• Requires: 
• 4 memory lookup
• 3 linear interpolations
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𝑥′ ← 𝑓𝑙𝑜𝑜𝑟 𝑥 − 0.5 , 𝑦′ ← 𝑓𝑙𝑜𝑜𝑟 𝑦 − 0.5

∆𝑥 ← 𝑥 − 𝑥′
∆𝑦 ← 𝑦 − 𝑦′

𝑡(𝑥,𝑦) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′, 𝑦′

𝑡(𝑥+1,𝑦) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′ + 1, 𝑦′

𝑡(𝑥,𝑦+1) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′, 𝑦′ + 1

𝑡(𝑥+1,𝑦+1) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′, +1 𝑦′ + 1

𝑡𝑥 ← 1 − ∆𝑥 ∗ 𝑡(𝑥,𝑦) + ∆𝑥 ∗ 𝑡(𝑥+1,𝑦)

𝑡𝑦 ← 1 − ∆𝑥 ∗ 𝑡(𝑥,𝑦+1) + ∆𝑥 ∗ 𝑡(𝑥+1,𝑦+1)

𝑡 ← 1 − ∆𝑦 ∗ 𝑡𝑥 + ∆𝑦 ∗ 𝑡𝑦

Lerp 1 & 2 Lerp 3
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Minification vs. Magnification

Lecture 05 | Texturing

• Magnification [ Nearest Neighbor, Bilinear ]:
• Example: camera is very close to scene object
• Single screen pixel maps to tiny region of texture
• Can just interpolate value at screen pixel center

• Minification [ ??? ]
• Example: scene object is very far away
• Single screen pixel maps to large region of texture
• Need to compute average texture value over pixel to avoid aliasing
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Aliasing Due To Minification

Lecture 05 | Texturing
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Pre-Filtering Texture

Lecture 05 | Texturing
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Texture Pre-Filtering

Lecture 05 | Texturing

• Texture aliasing occurs because a single pixel 
on the screen covers many pixels of the 
texture

• Ideally, want to average a bunch of texels in a 
very large region (expensive!)
• Instead, we can pre-compute the 

averages (once) and just look up these 
averages (many times) at run-time

• Q: Which averages to pre-compute
• A: a lot of them!
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Mip-Map [L. Williams ‘83]

Lecture 05 | Texturing

• Rough idea: precompute a prefiltered image at 
every possible scale
• The image at depth d is the result of 

applying a 2x2 avg filter on the image at 
depth d-1
• The image at depth 0 is the base 

image

• Mip-Map generates 𝑙𝑜𝑔2 min 𝑤𝑡ℎ, ℎ𝑔𝑡 + 1 
levels
• Each level the width and height gets 

halved 

• Memory overhead: (1+1/3)x original texture

• 1 +
1

4
+

1

16
+ ⋯ =  σ

1

4

𝑗
=

1

1−
1

4

=
4

3
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Mip-Map [L. Williams ‘83]

Lecture 05 | Texturing

• Storing an RGB Mip-Map can be fit into an 
image twice the width and twice the height of 
the original image
• See diagram for proof : )
• Does not work as nicely for RGBA!

• Issue: bad spatial locality
• Requesting a texel requires lookup in 3 

very different regions of an image
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Which mip-map level do we use?
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Sponza Bilinear Interpolation [ Level 0 ]

Lecture 05 | Texturing
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Sponza Bilinear Interpolation [ Level 2 ]

Lecture 05 | Texturing
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Sponza Bilinear Interpolation [ Level 4 ]

Lecture 05 | Texturing
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Sponza Bilinear Interpolation [ Varying Level ]

Lecture 05 | Texturing

retains detail in the 
foreground

nicely filters the 
background



15-362/662 | Computer Graphics

Sponza Visualization of Level

Lecture 05 | Texturing



15-362/662 | Computer Graphics

Computing MipMap Depth

Lecture 05 | Texturing

• Correlation between distance of surface to camera 
and level of mip-map accessed 
• More specifically, correlation between screen-

space movement across the surface 
compared to texture movement and level of 
mip-map access

• If moving over a pixel in screen space is a big jump 
in texture space, then we call it minification
• Sample from a lower level of mip-map

• If moving over a pixel in screen space is a small 
jump in texture space, then we call it magnification
• Sample from a higher level of mip-map

u

v



(𝒖, 𝒗)𝟏𝟎

(𝒖, 𝒗)𝟎𝟏

(𝒖, 𝒗)𝟎𝟎
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Computing MipMap Depth

Lecture 05 | Texturing

More formally:

L

du/dx

dv/dx
𝐿𝑥

𝐿𝑦

𝑑𝑢

𝑑𝑥
= 𝑢10 − 𝑢00

𝑑𝑣

𝑑𝑥
= 𝑣10 − 𝑣00

𝑑𝑢

𝑑𝑦
= 𝑢01 − 𝑢00

𝑑𝑣

𝑑𝑦
= 𝑣01 − 𝑣00

Where 𝑑𝑥 and 𝑑𝑦 measure the change in screen space 
and 𝑑𝑢 and 𝑑𝑣 measure the change in texture space

𝐿𝑥
2 =

𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝐿𝑦
2 =

𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝐿 = 𝑚𝑎𝑥(𝐿𝑥
2 , 𝐿𝑦

2 )

𝐿 measures the Euclidean distance of the change.
We take the max to get a single number.

𝑑 = log2𝐿

[ final level 𝑑 ]
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The mipmap level is not an integer…
Which level do we use?
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Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two 
layers of the mip-map that represents proper 
minification/magnification, blending the results 
together

• Requires: 
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿𝑥
2 ←

𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝐿𝑦
2 ←

𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝐿 ← max(𝐿𝑥
2, 𝐿𝑦

2)

𝑑 ← 𝑙𝑜𝑔2 𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑 − 𝑑′

𝑡𝑑 ← 𝑡𝑒𝑥[𝑑′]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡𝑑+1 ← 𝑡𝑒𝑥[𝑑′ + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡𝑑 + ∆𝑑 ∗ 𝑡𝑑+1

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)
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Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two 
layers of the mip-map that represents proper 
minification/magnification, blending the results 
together

• Requires: 
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿𝑥
2 ←

𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝐿𝑦
2 ←

𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝐿 ← max(𝐿𝑥
2, 𝐿𝑦

2)

𝑑 ← 𝑙𝑜𝑔2 𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑 − 𝑑′

𝑡𝑑 ← 𝑡𝑒𝑥[𝑑′]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡𝑑+1 ← 𝑡𝑒𝑥[𝑑′ + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡𝑑 + ∆𝑑 ∗ 𝑡𝑑+1

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)
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Trilinear Assumption

• Trilinear filtering assumes that samples shrink at the 
same rate along 𝑢 and 𝑣
• Taking the max says we would rather 

overcompensate than undercompensate filtering

• Bilinear and Trilinear filtering are isotropic filtering 
methods
• iso – same, tropic – direction
• Values should be same regardless of viewing 

direction

• What does it mean for samples to shrink at very 
different rates along 𝑢 and 𝑣?
• Think of a plane rotated away from the camera

• Changes in 𝑣 larger than changes in 𝑢 

Lecture 05 | Texturing

𝑢

𝑣

.25

.5
.75

.5 .75.25

L

L
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Anisotropic Filtering

• Anisotropic filtering is dependent on direction
• an – not, iso – same, tropic – direction

• Idea: create a new texture map that downsamples 
the x and y axis by 2 separately
• Instead of taking the max, use each coordinate 

to index into correct location in map

Lecture 05 | Texturing

𝐿 = 𝑚𝑎𝑥(𝐿𝑥
2 , 𝐿𝑦

2 )

(𝑑𝑥, 𝑑𝑦) = ( 𝑙𝑜𝑔2 𝐿𝑥
2 , 𝑙𝑜𝑔2 𝐿𝑦

2 )

• Texture map is now a grid of downsampled textures
• Known as a RipMap 
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Rip Map

Lecture 05 | Texturing

• Same idea as MipMap, but for anisotropic filtering
• 4x memory footprint

• New width: 𝑤′ = 𝑤 +
𝑤

2
+

𝑤

4
+ ⋯ = 2𝑤

• New height: ℎ′ = ℎ +
ℎ

2
+

ℎ

4
+ ⋯ = 2ℎ

• New area: 𝑤′ℎ′ = 4𝑤ℎ

• Fun fact: a MipMap is just the diagonal of a RipMap
• If 𝑑𝑥 = 𝑑𝑦, then we have trilinear interpolation
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Isotropic vs Anisotropic Filtering

Lecture 05 | Texturing

overbluring in 𝑢 direction

[ isotropic (trilinear) ] [ anisotropic ]
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Sampling Comparisons

Lecture 05 | Texturing

[ Nearest ] [ Bilinear ] [ Trilinear ]

No. samples

No. interps

1 4 8

0 3 7

Texture locality good good bad

Memory overhead 1x 1x 4/3x

No. operations ~3 ~19 >54

[ Anisotropic ]

>54

15

very bad

4x

16

Anti-aliasing bad normal good great
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Texture Sampling Pipeline

Lecture 05 | Texturing

1. Compute 𝑢 and 𝑣 from screen sample (𝑥,𝑦) via barycentric 
interpolation

2. Approximate 𝑑𝑢/𝑑𝑥, 𝑑𝑢/𝑑𝑦, 𝑑𝑣/𝑑𝑥, 𝑑𝑣/𝑑𝑦 by taking differences 
of screen-adjacent samples

3. Compute mip map level 𝑑
4. Convert normalized [0,1] texture coordinate (𝑢,𝑣) to pixel 

locations (𝑈,𝑉)∈[𝑊,𝐻] in texture image
5. Determine addresses of texels needed for filter (e.g., eight 

neighbors for trilinear)
6. Load texels into local registers
7. Perform tri-linear interpolation according to (𝑈,𝑉,𝑑)
8. (…even more work for anisotropic filtering…)

Lot of repetitive work every time 
we want to shade a pixel!

GPUs instead implement these 
instructions on fixed-function 
hardware.

This is why we have texture caches 
and texture filtering units.
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• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

Lecture 05 | Texturing
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The “Simpler” Graphics Pipeline
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Depth Buffer ( Z-buffer )

Lecture 05 | Texturing

• For each sample, the depth buffer stores the depth of the 
closest triangle seen so far
• Done at the sample granularity, not pixel granularity

farnear
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Depth of a Triangle

Lecture 05 | Texturing

• A triangle is composed of 3 different 3D points, 
each with a depth value 𝑧

• To get the depth at any point (𝑥, 𝑦) inside the 
triangle, interpolate depth at vertices with 
barycentric coordinates

sc
re

en
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Depth Buffer ( Z-buffer )

Lecture 05 | Texturing

[ depth buffer ][ color buffer ]

— sample passed depth test

farnear
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Depth Buffer ( Z-buffer )

Lecture 05 | Texturing

[ depth buffer ][ color buffer ]

— sample passed depth test

farnear
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Depth Buffer ( Z-buffer )

Lecture 05 | Texturing

[ depth buffer ][ color buffer ]

— sample passed depth test

farnear



15-362/662 | Computer Graphics

Depth Buffer ( Z-buffer )

Lecture 05 | Texturing

[ depth buffer ][ color buffer ]

— sample passed depth test

farnear
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Depth Buffer ( Z-buffer ) Per Sample

Lecture 05 | Texturing
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Depth Buffer ( Z-buffer ) Per Sample

Lecture 05 | Texturing

Able to capture triangle intersections by performing tests per sample
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Depth Buffer ( Z-buffer ) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)

{

if(d < zbuffer[x][y])

{

// triangle is closest object seen so far at this

// sample point. Update depth and color buffers.  

zbuffer[x][y] = d;  // update zbuffer

color[x][y] = c;   // update color buffer

}

// otherwise, we’ve seen something closer already;

// don’t update color or depth

}

Why is it that we first shade the pixel and then assign the resulting color after depth check?
Deferred shading (advanced algorithm) fixes this issue.
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• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

Lecture 05 | Texturing



15-362/662 | Computer Graphics

Alpha Values

Lecture 05 | Texturing

• Another common image format: RGBA
• Alpha channel specifies ‘opacity’ of object
• Basically how transparent it is
• Most common encoding is 8-bits per 

channel (0-255)

• Compositing A over B != B over A
• Consider the extreme case of two opaque 

objects…

𝛼 = 3/4

𝛼 = 1/2

𝛼 = 1/4

𝛼 = 1

fully opaque

𝛼 = 0

fully transparent

[ nyc over…koala? ][ koala over nyc ]

where is 
the koala…
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Non-Premultiplied Alpha

Lecture 05 | Texturing

𝐵
𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼𝐵 over 
image 𝐴 with alpha 𝛼𝐴

𝐴 = (𝐴𝑟, 𝐴𝑔, 𝐴𝑏)

𝐵 = (𝐵𝑟, 𝐵𝑔, 𝐵𝑏)

𝐶 = 𝛼𝐵𝐵 + (1 − 𝛼𝐵)𝛼𝐴𝐴

appearance of semi-
transparent B

what B lets through

appearance of semi-
transparent A

𝛼𝐶 = 𝛼𝐵 + (1 − 𝛼𝐵)𝛼𝐴

• Composite RGB: • Composite Alpha:
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Premultiplied Alpha

Lecture 05 | Texturing

𝐵
𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼𝐵 over 
image 𝐴 with alpha 𝛼𝐴

𝐴′ = (𝛼𝐴𝐴𝑟, 𝛼𝐴𝐴𝑔, 𝛼𝐴𝐴𝑏, 𝛼𝐴)

𝐵′ = (𝛼𝐵𝐵𝑟, 𝛼𝐵𝐵𝑔, 𝛼𝐵𝐵𝑏, 𝛼𝐵)

𝐶′ = 𝐵′ + (1 − 𝛼𝐵)𝐴′ (𝐶𝑟, 𝐶𝑔, 𝐶𝑏, 𝛼𝐶) ⟹ (𝐶𝑟/𝛼𝐶, 𝐶𝑔/𝛼𝐶 , 𝐶𝑏/𝛼𝐶)

• Composite RGBA: • Un-Premultiply for Final Color:
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Why Premultiplied Matters [Upsample]

Lecture 05 | Texturing

coloralpha premultiplied

upsampled
color

upsampled
alpha

upsampled
premultiplied

new background 𝐴 (𝛼𝐴 = 1) 𝐵 over 𝐴 𝐵 over 𝐴 (premultiplied)

upsample

Something isn’t right…
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Why Premultiplied Matters [Downsample]

Lecture 05 | Texturing

color alpha color alpha
original downsampled

composite

regular

premultiplied

[ RGB ] [ A ]
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Closed Under Composition

Lecture 05 | Texturing

𝐵
𝐴

B over A

• Goal: Composite bright red image 𝐵 with alpha 0.5 
over bright red image 𝐴 with alpha 0.5

𝐴 = (1, 0, 0, 0.5)
𝐵 = (1, 0, 0, 0.5)

0.5 ∗ 1,0,0 + (1 − 0.5) ∗ 0.5 ∗ 1,0,0

• Non-Premultiplied: • Premultiplied:

(0.75, 0, 0)

0.5 + 1 − 0.5 ∗ 0.5 = 0.75

color

alpha

0.5 ∗ 0.5,0,0,0.5 + 1 − 0.5 ∗ 0.5,0,0,0.5

(0.75, 0, 0, 0.75)

(1, 0, 0)

divide out alpha
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Blend Methods

Lecture 05 | Texturing

𝐷𝑅𝐺𝐵𝐴 =  𝑆𝑅𝐺𝐵𝐴 + 𝐷𝑅𝐺𝐵𝐴

𝐷𝑅𝐺𝐵𝐴 =  𝑆𝑅𝐺𝐵𝐴 − 𝐷𝑅𝐺𝐵𝐴

𝐷𝑅𝐺𝐵𝐴 =  − 𝑆𝑅𝐺𝐵𝐴 + 𝐷𝑅𝐺𝐵𝐴

𝐷𝑅𝐺𝐵𝐴 =  min(𝑆𝑅𝐺𝐵𝐴,  𝐷𝑅𝐺𝐵𝐴 )
𝐷𝑅𝐺𝐵𝐴 = max(𝑆𝑅𝐺𝐵𝐴,  𝐷𝑅𝐺𝐵𝐴 )
𝐷𝑅𝐺𝐵𝐴 =  𝑆𝑅𝐺𝐵𝐴 + 𝐷𝑅𝐺𝐵𝐴 ∗ (1 − 𝑆𝐴)

Blend Add
Blend Subtract
Blend Reverse Subtract
Blend Min
Blend Max
Blend Over

𝑆𝑅𝐺𝐵𝐴 and 𝐷𝑅𝐺𝐵𝐴 are pre-multiplied

When writing to color buffer, can use any blend method
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Updated Depth Buffer ( Z-buffer ) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)

{

if(d < zbuffer[x][y])

{

// triangle is closest object seen so far at this

// sample point. Update depth and color buffers.  

zbuffer[x][y] = d;

color[x][y] = c.rgba + (1-c.a) * color[x][y];

}

// otherwise, we’ve seen something closer already;

// don’t update color or depth

}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B != B over A
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Blend Render Order

Lecture 05 | Texturing

• For mixtures of opaque and transparent triangles:

• Step 1: render opaque primitives (in any order) 
using depth-buffered occlusion
• If pass depth test, triangle overwrites value in 

color buffer at sample
• Depth READ and WRITE

• Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
• If pass depth test, triangle is composited 

OVER contents of color buffer at sample
• Depth READ only



15-362/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing
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The “Simpler” Graphics Pipeline
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The Inputs

positions = {

v0x, v0y, v0z, 

v1x, v1y, v1x,

v2x, v2y, v2z,

v3x, v3y, v3x,

v4x, v4y, v4z,

v5x, v5y, v5x

};

texcoords ={

v0u, v0v, 

v1u, v1v,

v2u, v2v,

v3u, v3v,

v4u, v4v,

v5u, v5v

};

[ vertices ] [ textures ]

Object-to-camera-space transform 𝑇 ∈ ℝ4×4

Perspective projection transform 𝑃 ∈ ℝ4×4

Output image (𝑊, 𝐻) 

[ camera properties ] [ machine ]
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Step 1: Transform

z

x

y

Transform triangle vertices into camera space
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Step 2: Perspective Projection 

Apply perspective projection transform to transform 
triangle vertices into normalized coordinate space

[ normalized space position ][ 3D camera space position ]
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Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

[ post-clipping ][ pre-clipping ]
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Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates 

into screen coordinates (based on screen [w, h]).

(0, 0)

(w, h)
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Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.
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Step 6: Compute Color

Texture lookups, color interpolation, etc.

u

v
[ u(x,y), v(x,y) ]
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Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS
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Step 8: Color Blending

Update color buffer with correct blending operation.
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