
Rasterization, Transparency
& Texturing

15-362/662 | Computer Graphics Lecture 05 | Texturing

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection wrapup

• Drawing a Line

• Drawing a Triangle

• Supersampling

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Map A Harder Frustrum To Cube

z
x

y

With perspective projection, we end up dividing out the z coordinate.
Full perspective matrix takes geometry of view frustum into account:

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[Rasterization Stage]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)

Coordinates stretched to image dims.
Image flipped upside down.

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection wrapup

• Drawing a Line

• Drawing a Triangle

• Supersampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The Bresenham Line Algorithm

• Consider the case when 𝑚 is in range 0,1
• Implies ∆𝑥 ≥ ∆𝑦

• We will traverse up the x-axis
• Each step of x we take, decide if we keep y

the same or move y up one step
• Since 0 < 𝑚 < 1, a positive move in x

causes a positive move in y

Ensure the x-coordinate of (𝑥1, 𝑦1) is smaller
Let y’ be our current vertical component along the line
Let y be the initial 𝑦1

For each x value in range [𝑥1, 𝑥2] with step 1:
 Shade (x, y)
 Add m to y’ (if x takes step 1, y’ takes step m)
 If the new y’ is closer to the row of pixels above:
 Add 1 to y

If 𝑥1 > 𝑥2 :
 Swap(𝑥1, 𝑥2), Swap(𝑦1, 𝑦2)
𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 𝑚| > 0.5):
 𝜀 ← 𝜀 + 𝑚 − 1, 𝑦 ← 𝑦 + 1
 Else:
 𝜀 ← 𝜀 + 𝑚

[pseudocode] [code]

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The Bresenham Line Algorithm

• What if 𝑚 is in range −1,0 ?

𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 𝑚| > 0.5):
 𝜀 ← 𝜀 + 𝑚 + 1, 𝑦 ← 𝑦 − 1
 Else:
 𝜀 ← 𝜀 + 𝑚

• What if 𝑚 > 1?

𝜀 ← 0, 𝑥 ← 𝑥1

For 𝑦 ← 𝑦1to 𝑦2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 1/𝑚| > 0.5):
 𝜀 ← 𝜀 + 1/𝑚 − 1, 𝑥 ← 𝑥 + 1
 Else:
 𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 < −1?

𝜀 ← 0, 𝑥 ← 𝑥1

For 𝑦 ← 𝑦1to 𝑦2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 1/𝑚| > 0.5):
 𝜀 ← 𝜀 + 1/𝑚 + 1, 𝑥 ← 𝑥 − 1
 Else:
 𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 is in range 0,1 ?

𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 𝑚| > 0.5):
 𝜀 ← 𝜀 + 𝑚 − 1, 𝑦 ← 𝑦 + 1
 Else:
 𝜀 ← 𝜀 + 𝑚

**When traversing x-axis, x1 must be smaller. When traversing y-axis, y1 must be smaller

15-362/662 | Computer Graphics Lecture 04 | Rasterization

That’s kinda complicated…
Can we make it easier somehow?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The [Nicer] Bresenham Line Algorithm

𝑎 = < 𝑥1, 𝑦1 >, 𝑏 = < 𝑥2, 𝑦2 >
∆𝑥 ← 𝑥2 − 𝑥1 , ∆𝑦 ← |𝑦2 − 𝑦1|

If (∆𝑥 > ∆𝑦):
 𝑖 ← 0, 𝑗 ← 1
If (∆𝑥 < ∆𝑦):
 𝑖 ← 1, 𝑗 ← 0

If (𝑎𝑖 > 𝑏𝑖):
 𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡1 ← 𝑓𝑙𝑜𝑜𝑟(𝑎𝑖), 𝑡2← 𝑓𝑙𝑜𝑜𝑟(𝑏𝑖)

For 𝑢 ← 𝑡1 to 𝑡2 do:

 𝑤 ←
𝑢+0.5 −𝑎𝑖

(𝑏𝑖−𝑎𝑖)

 𝑣 ← 𝑤 ∗ 𝑏𝑗 − 𝑎𝑗 + 𝑎𝑗

 Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

setup coordinates

compute the longer axis 𝑖
and the shorter axis 𝑗

the starting coordinate should be the
smaller value along the longer axis

for each step taken along the longer axis,
compute the percent distance traveled 𝑤
and project that percentage onto the
shorter axis. Then convert to half-integer
coordinates

compute long axis bounds

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Introduction To The Line

• Bresenham algorithm only works if both the
start and end coordinates lie on half-integer
coordinates

• Instead we will consider a line to intersect a
pixel if the line intersects the diamond inside
the pixel

• 𝑥 − 𝑝𝑥 + 𝑦 − 𝑝𝑦 <
1

2

• Checks if point (𝑥, 𝑦) lies in the
diamond of pixel 𝑝

• Still the same idea as before! The only
difference is that we need to check if the
endpoints correctly intersect the last pixels

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The [Even Nicer] Bresenham Line Algorithm

𝑎 = < 𝑥1, 𝑦1 >, 𝑏 = < 𝑥2, 𝑦2 >
∆𝑥 ← 𝑥2 − 𝑥1 , ∆𝑦 ← |𝑦2 − 𝑦1|

If (∆𝑥 > ∆𝑦):
 𝑖 ← 0, 𝑗 ← 1
If (∆𝑥 < ∆𝑦):
 𝑖 ← 1, 𝑗 ← 0

If (𝑎𝑖 > 𝑏𝑖):
 𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡1 ← 𝑓𝑙𝑜𝑜𝑟(𝑎𝑖), 𝑡2← 𝑓𝑙𝑜𝑜𝑟(𝑏𝑖)

For 𝑢 ← 𝑡1 to 𝑡2 do:

 𝑤 ←
𝑢+0.5 −𝑎𝑖

(𝑏𝑖−𝑎𝑖)

 𝑣 ← 𝑤 ∗ 𝑏𝑗 − 𝑎𝑗 + 𝑎𝑗

 Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

TODO: fix 𝑡1and 𝑡2 to properly account
for OR discard the two edge fragments
if the endpoints 𝑎 and 𝑏 are inside the
‘diamond’ of the edge fragments

Remember: 𝑥 − 𝑝𝑥 + 𝑦 − 𝑝𝑦 <
1

2

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection wrapup

• Drawing a Line

• Drawing a Triangle

• Supersampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• Which points do we check?
• Idea 1: check all points 𝑞 in the image

• For large images (1080p), we’re
checking hundreds of thousands of
points per triangle!

• Idea 2: check all points 𝑞 in the bounding
box of the triangle:
• 𝑥𝑚𝑖𝑛 = min(𝑎𝑥, 𝑏𝑥, 𝑐𝑥)
• 𝑦𝑚𝑖𝑛 = min(𝑎𝑦, 𝑏𝑦, 𝑐𝑦)

• 𝑥𝑚𝑎𝑥 = max(𝑎𝑥, 𝑏𝑥, 𝑐𝑥)
• 𝑦𝑚𝑎𝑥 = max(𝑎𝑦, 𝑏𝑦, 𝑐𝑦)

• How to check if a point is inside a triangle?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑏 side of 𝑎𝑐

𝑎𝑐 × 𝑎𝑏 ∙ 𝑎𝑐 × 𝑎𝑞 > 0

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑎 side of 𝑐𝑏

𝑐𝑏 × 𝑐𝑎 ∙ 𝑐𝑏 × 𝑐𝑞 > 0

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑐 side of 𝑏𝑐

𝑏𝑎 × 𝑏𝑐 ∙ 𝑏𝑎 × 𝑏𝑞 > 0

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

𝑎𝑐 × 𝑎𝑏 ∙ 𝑎𝑐 × 𝑎𝑞 > 0 &&

𝑐𝑏 × 𝑐𝑎 ∙ 𝑐𝑏 × 𝑐𝑞 > 0 &&

𝑏𝑎 × 𝑏𝑐 ∙ 𝑏𝑎 × 𝑏𝑞 > 0

• What if b and c were swapped?

𝑎𝑏 × 𝑎𝑐 ∙ 𝑎𝑐 × 𝑎𝑞 < 0

• Order of the cross product matters!

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Incremental Triangle Traversal

𝑃𝑖 = (𝑥𝑖/𝑤𝑖 𝑦𝑖/𝑤𝑖 𝑧𝑖/𝑤𝑖) = (𝑋𝑖 𝑌𝑖 𝑍𝑖)

𝑑𝑋𝑖 = 𝑋𝑖+1 − 𝑋𝑖

𝑑𝑌𝑖 = 𝑌𝑖+1 − 𝑌𝑖

𝐸𝑖 𝑥, 𝑦 = 𝑥 − 𝑋𝑖 𝑑𝑌𝑖 − 𝑦 − 𝑌𝑖 𝑑𝑋𝑖

𝐸𝑖 𝑥, 𝑦 = 0 : point on edge
𝐸𝑖 𝑥, 𝑦 > 0 : point outside edge
𝐸𝑖 𝑥, 𝑦 < 0 : point inside edge

𝑑𝐸𝑖 𝑥 + 1, 𝑦 = 𝐸𝑖 𝑥, 𝑦 + 𝑑𝑌𝑖

𝑑𝐸𝑖 𝑥, 𝑦 + 1 = 𝐸𝑖 𝑥, 𝑦 + 𝑑𝑋𝑖

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Parallel Coverage Tests

a

b

c
• Incremental traversal is very serial; modern

hardware is highly parallel
• Test all samples in triangle bounding box in

parallel

• All tests share some ‘setup’ calculations

• Computing 𝑎𝑐 , 𝑐𝑏 , 𝑏𝑎

• Modern GPUs have special-purpose hardware
for efficiently performing point-in-triangle tests
• Same set of instructions, regardless of

which coordinate 𝑞 we are dealing with

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Hierarchical Coverage Tests

• Idea: work coarse-to-fine
• Check if large blocks are inside the triangle

• Early-in: every pixel is covered
• Early-out: every pixel is not covered
• Else: test each pixel coverage individually

• Early-in: if all 4 corners of the block are inside the triangle
• Else: if a triangle line intersects a block line
• Early-out: if neither Early-in nor Else

• Careful! Best to represent block as smallest bounding box to
pixel samples, not the pixels themselves!

early out

early in

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Hierarchical Coverage Tests

• What is the right block size?
• Too big: very difficult to get an Early-in or

Early-out
• Too small: blocks are too similar to pixels

• Idea: create a hierarchy of block sizes
• When entering the Else case, just drop

down to the next smallest block size
• Checking coverage reduced to logarithmic

(We will learn why in a future lecture)

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection wrapup

• Drawing a Line

• Drawing a Triangle

• Supersampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

Pixel

1

2

3

4

Which triangles “cover” this pixel?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

10%

35%

60%

85%

15%

• Compute fraction of pixel area
covered by triangle, then color pixel
according to this fraction
• Ex: a red triangle that covers 10%

of a pixel should be 10% red

• Difficult to compute area of box
covered by triangle
• Instead, consider coverage as an

approximation

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Coverage Via Samples

• A sample is a discrete measurement of a signal
• Used to convert continuous data to discrete, but we

can also take samples of discrete data too

• The more samples we take, the more accurate the image
becomes
• Same idea as using a larger sensor to take a better-

quality photo

• Problem: each sample adds more work
• What is the best way to use the least amount of

samples to best approximate the original scene?
• Main idea of sample theory

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Sampling in 1D

𝑓(𝑥0)
𝑓(𝑥1) 𝑓(𝑥2) 𝑓(𝑥3)

𝑓(𝑥4)

𝑥1𝑥0 𝑥2 𝑥3 𝑥4

𝑓(𝑥)

𝑓′(𝑥)

𝑥1𝑥0 𝑥2 𝑥3 𝑥4

• Idea: take 5 random samples along the domain
and evaluate 𝑓(𝑥)
• Many different ways to interpolate points:

• Piecewise
• Linear
• Cubic

• Where is the best place to put 5 samples?
• We know the answer because we can see

the entire function 𝑓
• 𝑓 has been evaluated over the entire

domain
• What if we cannot see all of 𝑓?
• What if 𝑓 is expensive to evaluate?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Sampling in 1D

• Idea: take more than 5 random samples along
the domain and evaluate 𝑓(𝑥)
• Gets a better reconstruction of 𝑓 but…

• More evaluation calls needed
• More memory to save

• Still don’t know the best way to interpolate
samples
• Need to guess based on the behavior of 𝑓
• Can consider things like gradients and

such…

𝑥1𝑥0 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

Pixel (x,y)

1

2

3
4

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

Which triangles “cover” this pixel?

(x+0.5, y+0.5) Here I chose the coverage sample
point to be at a point
corresponding to the pixel center

= triangle but with a red outline

= triangle

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Edge Case

1

2

• When edge falls directly on a screen sample,
the sample is classified as within triangle if the
edge is a “top edge” or “left edge”
• Top edge: horizontal edge that is above all

other edges
• Left edge: an edge that is not exactly

horizontal and is on the left side of the
triangle
• Triangle can have one or two left

edges

• This is known as edge ownership

Direct3D Documentation (2020) Microsoft

15-362/662 | Computer Graphics Lecture 04 | Rasterization

So how many samples do we take?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Sampling Per Pixel

Idea: take as many samples as there are pixels on screen

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Sampling Per Pixel

Problem: Results look blocky against edges
(let’s take more samples!)

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Aliasing Artifacts

• Imperfect sampling + imperfect reconstruction
leads to image artifacts
• Jagged edges
• Moiré patterns

• Does this remind you of old school video games?
• Old games took few samples and took few

steps to prevent aliasing
• Expensive to take more samples
• Not enough compute to do filtering to

interpolate samples
• Not enough memory to take more

samples

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Supersampling Per Pixel

Idea: take many more samples than there are pixels on screen

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

Each pixel now holds n samples.
Average the n samples together to get 1 sample per pixel (1spp).

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

100% 0%

50%

50%

100%

25%100%

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Supersampling Artifacts

[1x1spp] [4x4spp] [32x32spp]

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Supersampling Artifacts

In special cases, we can compute the exact coverage.
This occurs when what we are sampling matches our sampling

pattern – very rare!

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

Now that we can sample the triangle, how do we set the pixel color?

15-362/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

15-362/662 | Computer Graphics

Interpolating Values for Triangles

Lecture 05 | Texturing

• Goal: interpolate triangle vertices for any point within
triangle

• Coordinates (𝜙𝑖, 𝜙𝑗,𝜙𝑘) should represent weighted average

• 𝜙𝑖 + 𝜙𝑗 + 𝜙𝑘 = 1

• Similarly, 1 − 𝜙𝑖 − 𝜙𝑗 = 𝜙𝑘

• Gives a 2D parameterization of triangle point (𝜙𝑖, 𝜙𝑗)
• Known as barycentric coordinates

• If each point has some attribute (𝛼𝑖, 𝛼𝑗, 𝛼𝑘), can linearly

interpolate 𝛼𝑖𝜙𝑖 + 𝛼𝑗𝜙𝑗 + 𝛼𝑘𝜙𝑘

• Example: [black]𝜙𝑖 + [green]𝜙𝑗 + [red] 𝜙𝑘

[black]

[green]

[red]

15-362/662 | Computer Graphics

Barycentric Coordinates

Lecture 05 | Texturing

• Inversely proportional to the distance between the
target point and a point within the triangle

• Can be computed as:

• How would you compute ℎ𝑖? 𝑑𝑖(𝑥)?

15-362/662 | Computer Graphics

Barycentric Coordinates [Another Way]

Lecture 05 | Texturing

• Directly proportional to the area created by the triangle
composed of the other two target points and a point
within the triangle

• Can be computed as:

** Interesting read of barycentric coordinates for n-gons: https://www.inf.usi.ch/hormann/barycentric/

15-362/662 | Computer Graphics

Perspective-Incorrect Interpolation

Lecture 05 | Texturing

• Due to perspective projection (homogeneous divide),
barycentric interpolation of values on a triangle with
different depths is not an affine function of screen XY
coordinates

• Want to interpolate attribute values linearly in 3D
object space, not image space.𝑎0

𝑎1

(𝑎0 + 𝑎1)/2

Halfway in real life!

Not actually halfway in screen!

15-362/662 | Computer Graphics

Perspective-Incorrect Interpolation

Lecture 05 | Texturing

If we compute barycentric coordinates using 2D
(projected) coordinates, leads to (derivative)
discontinuity in interpolation where quad was split

15-362/662 | Computer Graphics

Perspective-Correct Interpolation

Lecture 05 | Texturing

• Goal: interpolate some attribute 𝑣 at vertices
• Compute depth 𝑧 at each vertex
• Evaluate 𝑍 ∶= 1/𝑧 and 𝑃 ≔ 𝑣/𝑧 at each vertex
• Interpolate 𝑍 and 𝑃 using standard (2D)

barycentric coordinates
• At each fragment, divide interpolated 𝑃 by

interpolated 𝑍 to get final value

15-362/662 | Computer Graphics

Perspective-Correct Interpolation

Lecture 05 | Texturing

(0,0,1) (0,3,2)

(0,5,4)

𝜙(0,0,1) = 0.2

𝜙(0,3,2) = 0.1

𝜙(0,5,4) = 0.7

𝑍(0,0,1) = 1

𝑍(0,3,2) = 1/2

𝑍(0,5,4) = 1/4

What if z is equal to 0?

Remember the near clipping plane!

𝑃(0,0,1) = (0,0,0)/1

𝑃(0,3,2) = (1,0,0)/2

𝑃(0,5,4) = (0,1,0)/4

𝑃𝑖𝑛𝑡𝑒𝑟𝑝 = 0.2 ∗ [(0,0,0)/1] + 0.1 ∗ [(1,0,0)/2] + 0.7 ∗ [(0,1,0)/4]

𝑃𝑖𝑛𝑡𝑒𝑟𝑝 = (0.05, 0.175, 0)

𝑍𝑖𝑛𝑡𝑒𝑟𝑝 = 0.2 ∗ [1/1] + 0.1 ∗ [1/2] + 0.7 ∗ [1/4]

𝑍𝑖𝑛𝑡𝑒𝑟𝑝 = 0.425

𝑞 = (0.05, 0.175, 0)/0.425
𝑞 = (0.12, 0.412, 0)

q

15-362/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

Lecture 05 | Texturing

15-362/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

15-362/662 | Computer Graphics

Textures in Graphics

• Textures are buffers of data (images) that are read
into the graphics pipeline and are used for:
• Coloring mapping
• Normal mapping
• Displacement mapping
• Roughness mapping
• Occlusion mapping
• Reflection mapping

• Textures can also be written into
• Think a scratch pad for data

• Useful for maximizing quality while minimizing the
number of polygons
• Rough surfaces can be approximated by

smooth surfaces with rough textures

• A single pixel of a texture is known as a texel

The Last of Us Part II (2020) Naughty Dog

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Textures in Graphics

Lecture 05 | Texturing

[fluffy geometry] [monochrome texture] [textured geometry]+ =

preserves geometric fluffchanges the visual
appearance (color of fur)

15-362/662 | Computer Graphics

Texture Coordinates

• Goal: map surface geometry coordinates to
image coordinates

• Barycentric coordinates let us represent 3D
geometry in 2D by their surface coordinates
• Known as surface parameterization

• Not always a 1-to-1 map!
• A surface only half the number of pixels of

a texture may only use up half the texels**

Lecture 05 | Texturing

**We will learn ways that surfaces may use more texels than there are pixels on the surface

[texture] [geometry] [render]

15-362/662 | Computer Graphics

Texture Example

Each vertex has a coordinate (u,v) in texture space

[texture coordinates on surface] [texture coordinates on texture]

v

u

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Texture Example
[rendered results] [texture data]

v

u

Each triangle “copies” a piece of the image back to the surface

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Periodic Texturing

Why do you think texture coordinates might repeat over the surface?

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Periodic Texturing

Used for tiling textures

Lecture 05 | Texturing

15-362/662 | Computer Graphics

How Texturing Is Done

• An artist goes into a program and
drags/paints/stretches/warps textures onto
surfaces
• The resulting distortion of the texture on

the surface is saved as the surface
parameterization

• Computing the texture mapping function is
never done by hand!
• Always use an interactive program to do it

• Also known as uv mapping
• u and v are the two barycentric

coordinates that we want to map onto
texture space

Lecture 05 | Texturing

Texturing (2017) Blender

15-362/662 | Computer Graphics Lecture 05 | Texturing

Texture mapping maps a non-integer coordinate to another non-integer coordinate.
But textures can only be accessed via integer…

How do we know what texel(s) to sample?

15-362/662 | Computer Graphics

Nearest Neighbor Sampling

• Idea: Grab texel nearest to requested location in
texture

• Requires:
• 1 memory lookup
• 0 linear interpolations

Lecture 05 | Texturing

𝑥′ ← 𝑟𝑜𝑢𝑛𝑑 𝑥 − 0.5 , 𝑦′ ← 𝑟𝑜𝑢𝑛𝑑 𝑦 − 0.5

𝑡 ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′, 𝑦′

𝒙’ and 𝒚’ are half-integer coordinates
Helps account for 0.5 offset from texture coordinate centers

15-362/662 | Computer Graphics

Bilinear Interpolation Sampling

• Idea: Grab nearest 4 texels and blend them
together based on their inverse distance from
the requested location
• Blend two sets of pixels along one axis,

then blend the remaining pixels

• Requires:
• 4 memory lookup
• 3 linear interpolations

Lecture 05 | Texturing

𝑥′ ← 𝑓𝑙𝑜𝑜𝑟 𝑥 − 0.5 , 𝑦′ ← 𝑓𝑙𝑜𝑜𝑟 𝑦 − 0.5

∆𝑥 ← 𝑥 − 𝑥′
∆𝑦 ← 𝑦 − 𝑦′

𝑡(𝑥,𝑦) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′, 𝑦′

𝑡(𝑥+1,𝑦) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′ + 1, 𝑦′

𝑡(𝑥,𝑦+1) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′, 𝑦′ + 1

𝑡(𝑥+1,𝑦+1) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥′, +1 𝑦′ + 1

𝑡𝑥 ← 1 − ∆𝑥 ∗ 𝑡(𝑥,𝑦) + ∆𝑥 ∗ 𝑡(𝑥+1,𝑦)

𝑡𝑦 ← 1 − ∆𝑥 ∗ 𝑡(𝑥,𝑦+1) + ∆𝑥 ∗ 𝑡(𝑥+1,𝑦+1)

𝑡 ← 1 − ∆𝑦 ∗ 𝑡𝑥 + ∆𝑦 ∗ 𝑡𝑦

Lerp 1 & 2 Lerp 3

15-362/662 | Computer Graphics

Minification vs. Magnification

Lecture 05 | Texturing

• Magnification [Nearest Neighbor, Bilinear]:
• Example: camera is very close to scene object
• Single screen pixel maps to tiny region of texture
• Can just interpolate value at screen pixel center

• Minification [???]
• Example: scene object is very far away
• Single screen pixel maps to large region of texture
• Need to compute average texture value over pixel to avoid aliasing

15-362/662 | Computer Graphics

Aliasing Due To Minification

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Pre-Filtering Texture

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Texture Pre-Filtering

Lecture 05 | Texturing

• Texture aliasing occurs because a single pixel
on the screen covers many pixels of the
texture

• Ideally, want to average a bunch of texels in a
very large region (expensive!)
• Instead, we can pre-compute the

averages (once) and just look up these
averages (many times) at run-time

• Q: Which averages to pre-compute
• A: a lot of them!

15-362/662 | Computer Graphics

Mip-Map [L. Williams ‘83]

Lecture 05 | Texturing

• Rough idea: precompute a prefiltered image at
every possible scale
• The image at depth d is the result of

applying a 2x2 avg filter on the image at
depth d-1
• The image at depth 0 is the base

image

• Mip-Map generates 𝑙𝑜𝑔2 min 𝑤𝑡ℎ, ℎ𝑔𝑡 + 1
levels
• Each level the width and height gets

halved

• Memory overhead: (1+1/3)x original texture

• 1 +
1

4
+

1

16
+ ⋯ = σ

1

4

𝑗
=

1

1−
1

4

=
4

3

15-362/662 | Computer Graphics

Mip-Map [L. Williams ‘83]

Lecture 05 | Texturing

• Storing an RGB Mip-Map can be fit into an
image twice the width and twice the height of
the original image
• See diagram for proof :)
• Does not work as nicely for RGBA!

• Issue: bad spatial locality
• Requesting a texel requires lookup in 3

very different regions of an image

15-362/662 | Computer Graphics Lecture 05 | Texturing

Which mip-map level do we use?

15-362/662 | Computer Graphics

Sponza Bilinear Interpolation [Level 0]

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Sponza Bilinear Interpolation [Level 2]

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Sponza Bilinear Interpolation [Level 4]

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Sponza Bilinear Interpolation [Varying Level]

Lecture 05 | Texturing

retains detail in the
foreground

nicely filters the
background

15-362/662 | Computer Graphics

Sponza Visualization of Level

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Computing MipMap Depth

Lecture 05 | Texturing

• Correlation between distance of surface to camera
and level of mip-map accessed
• More specifically, correlation between screen-

space movement across the surface
compared to texture movement and level of
mip-map access

• If moving over a pixel in screen space is a big jump
in texture space, then we call it minification
• Sample from a lower level of mip-map

• If moving over a pixel in screen space is a small
jump in texture space, then we call it magnification
• Sample from a higher level of mip-map

u

v

(𝒖, 𝒗)𝟏𝟎

(𝒖, 𝒗)𝟎𝟏

(𝒖, 𝒗)𝟎𝟎

15-362/662 | Computer Graphics

Computing MipMap Depth

Lecture 05 | Texturing

More formally:

L

du/dx

dv/dx
𝐿𝑥

𝐿𝑦

𝑑𝑢

𝑑𝑥
= 𝑢10 − 𝑢00

𝑑𝑣

𝑑𝑥
= 𝑣10 − 𝑣00

𝑑𝑢

𝑑𝑦
= 𝑢01 − 𝑢00

𝑑𝑣

𝑑𝑦
= 𝑣01 − 𝑣00

Where 𝑑𝑥 and 𝑑𝑦 measure the change in screen space
and 𝑑𝑢 and 𝑑𝑣 measure the change in texture space

𝐿𝑥
2 =

𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝐿𝑦
2 =

𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝐿 = 𝑚𝑎𝑥(𝐿𝑥
2 , 𝐿𝑦

2)

𝐿 measures the Euclidean distance of the change.
We take the max to get a single number.

𝑑 = log2𝐿

[final level 𝑑]

15-362/662 | Computer Graphics Lecture 05 | Texturing

The mipmap level is not an integer…
Which level do we use?

15-362/662 | Computer Graphics

Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results
together

• Requires:
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿𝑥
2 ←

𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝐿𝑦
2 ←

𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝐿 ← max(𝐿𝑥
2, 𝐿𝑦

2)

𝑑 ← 𝑙𝑜𝑔2 𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑 − 𝑑′

𝑡𝑑 ← 𝑡𝑒𝑥[𝑑′]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡𝑑+1 ← 𝑡𝑒𝑥[𝑑′ + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡𝑑 + ∆𝑑 ∗ 𝑡𝑑+1

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)

15-362/662 | Computer Graphics

Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results
together

• Requires:
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿𝑥
2 ←

𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝐿𝑦
2 ←

𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝐿 ← max(𝐿𝑥
2, 𝐿𝑦

2)

𝑑 ← 𝑙𝑜𝑔2 𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑 − 𝑑′

𝑡𝑑 ← 𝑡𝑒𝑥[𝑑′]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡𝑑+1 ← 𝑡𝑒𝑥[𝑑′ + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡𝑑 + ∆𝑑 ∗ 𝑡𝑑+1

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)

15-362/662 | Computer Graphics

Trilinear Assumption

• Trilinear filtering assumes that samples shrink at the
same rate along 𝑢 and 𝑣
• Taking the max says we would rather

overcompensate than undercompensate filtering

• Bilinear and Trilinear filtering are isotropic filtering
methods
• iso – same, tropic – direction
• Values should be same regardless of viewing

direction

• What does it mean for samples to shrink at very
different rates along 𝑢 and 𝑣?
• Think of a plane rotated away from the camera

• Changes in 𝑣 larger than changes in 𝑢

Lecture 05 | Texturing

𝑢

𝑣

.25

.5
.75

.5 .75.25

L

L

15-362/662 | Computer Graphics

Anisotropic Filtering

• Anisotropic filtering is dependent on direction
• an – not, iso – same, tropic – direction

• Idea: create a new texture map that downsamples
the x and y axis by 2 separately
• Instead of taking the max, use each coordinate

to index into correct location in map

Lecture 05 | Texturing

𝐿 = 𝑚𝑎𝑥(𝐿𝑥
2 , 𝐿𝑦

2)

(𝑑𝑥, 𝑑𝑦) = (𝑙𝑜𝑔2 𝐿𝑥
2 , 𝑙𝑜𝑔2 𝐿𝑦

2)

• Texture map is now a grid of downsampled textures
• Known as a RipMap

15-362/662 | Computer Graphics

Rip Map

Lecture 05 | Texturing

• Same idea as MipMap, but for anisotropic filtering
• 4x memory footprint

• New width: 𝑤′ = 𝑤 +
𝑤

2
+

𝑤

4
+ ⋯ = 2𝑤

• New height: ℎ′ = ℎ +
ℎ

2
+

ℎ

4
+ ⋯ = 2ℎ

• New area: 𝑤′ℎ′ = 4𝑤ℎ

• Fun fact: a MipMap is just the diagonal of a RipMap
• If 𝑑𝑥 = 𝑑𝑦, then we have trilinear interpolation

15-362/662 | Computer Graphics

Isotropic vs Anisotropic Filtering

Lecture 05 | Texturing

overbluring in 𝑢 direction

[isotropic (trilinear)] [anisotropic]

15-362/662 | Computer Graphics

Sampling Comparisons

Lecture 05 | Texturing

[Nearest] [Bilinear] [Trilinear]

No. samples

No. interps

1 4 8

0 3 7

Texture locality good good bad

Memory overhead 1x 1x 4/3x

No. operations ~3 ~19 >54

[Anisotropic]

>54

15

very bad

4x

16

Anti-aliasing bad normal good great

15-362/662 | Computer Graphics

Texture Sampling Pipeline

Lecture 05 | Texturing

1. Compute 𝑢 and 𝑣 from screen sample (𝑥,𝑦) via barycentric
interpolation

2. Approximate 𝑑𝑢/𝑑𝑥, 𝑑𝑢/𝑑𝑦, 𝑑𝑣/𝑑𝑥, 𝑑𝑣/𝑑𝑦 by taking differences
of screen-adjacent samples

3. Compute mip map level 𝑑
4. Convert normalized [0,1] texture coordinate (𝑢,𝑣) to pixel

locations (𝑈,𝑉)∈[𝑊,𝐻] in texture image
5. Determine addresses of texels needed for filter (e.g., eight

neighbors for trilinear)
6. Load texels into local registers
7. Perform tri-linear interpolation according to (𝑈,𝑉,𝑑)
8. (…even more work for anisotropic filtering…)

Lot of repetitive work every time
we want to shade a pixel!

GPUs instead implement these
instructions on fixed-function
hardware.

This is why we have texture caches
and texture filtering units.

15-362/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

Lecture 05 | Texturing

15-362/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

• For each sample, the depth buffer stores the depth of the
closest triangle seen so far
• Done at the sample granularity, not pixel granularity

farnear

15-362/662 | Computer Graphics

Depth of a Triangle

Lecture 05 | Texturing

• A triangle is composed of 3 different 3D points,
each with a depth value 𝑧

• To get the depth at any point (𝑥, 𝑦) inside the
triangle, interpolate depth at vertices with
barycentric coordinates

sc
re

en

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer) Per Sample

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer) Per Sample

Lecture 05 | Texturing

Able to capture triangle intersections by performing tests per sample

15-362/662 | Computer Graphics

Depth Buffer (Z-buffer) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)

{

if(d < zbuffer[x][y])

{

// triangle is closest object seen so far at this

// sample point. Update depth and color buffers.

zbuffer[x][y] = d; // update zbuffer

color[x][y] = c; // update color buffer

}

// otherwise, we’ve seen something closer already;

// don’t update color or depth

}

Why is it that we first shade the pixel and then assign the resulting color after depth check?
Deferred shading (advanced algorithm) fixes this issue.

15-362/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

Lecture 05 | Texturing

15-362/662 | Computer Graphics

Alpha Values

Lecture 05 | Texturing

• Another common image format: RGBA
• Alpha channel specifies ‘opacity’ of object
• Basically how transparent it is
• Most common encoding is 8-bits per

channel (0-255)

• Compositing A over B != B over A
• Consider the extreme case of two opaque

objects…

𝛼 = 3/4

𝛼 = 1/2

𝛼 = 1/4

𝛼 = 1

fully opaque

𝛼 = 0

fully transparent

[nyc over…koala?][koala over nyc]

where is
the koala…

15-362/662 | Computer Graphics

Non-Premultiplied Alpha

Lecture 05 | Texturing

𝐵
𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼𝐵 over
image 𝐴 with alpha 𝛼𝐴

𝐴 = (𝐴𝑟, 𝐴𝑔, 𝐴𝑏)

𝐵 = (𝐵𝑟, 𝐵𝑔, 𝐵𝑏)

𝐶 = 𝛼𝐵𝐵 + (1 − 𝛼𝐵)𝛼𝐴𝐴

appearance of semi-
transparent B

what B lets through

appearance of semi-
transparent A

𝛼𝐶 = 𝛼𝐵 + (1 − 𝛼𝐵)𝛼𝐴

• Composite RGB: • Composite Alpha:

15-362/662 | Computer Graphics

Premultiplied Alpha

Lecture 05 | Texturing

𝐵
𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼𝐵 over
image 𝐴 with alpha 𝛼𝐴

𝐴′ = (𝛼𝐴𝐴𝑟, 𝛼𝐴𝐴𝑔, 𝛼𝐴𝐴𝑏, 𝛼𝐴)

𝐵′ = (𝛼𝐵𝐵𝑟, 𝛼𝐵𝐵𝑔, 𝛼𝐵𝐵𝑏, 𝛼𝐵)

𝐶′ = 𝐵′ + (1 − 𝛼𝐵)𝐴′ (𝐶𝑟, 𝐶𝑔, 𝐶𝑏, 𝛼𝐶) ⟹ (𝐶𝑟/𝛼𝐶, 𝐶𝑔/𝛼𝐶 , 𝐶𝑏/𝛼𝐶)

• Composite RGBA: • Un-Premultiply for Final Color:

15-362/662 | Computer Graphics

Why Premultiplied Matters [Upsample]

Lecture 05 | Texturing

coloralpha premultiplied

upsampled
color

upsampled
alpha

upsampled
premultiplied

new background 𝐴 (𝛼𝐴 = 1) 𝐵 over 𝐴 𝐵 over 𝐴 (premultiplied)

upsample

Something isn’t right…

15-362/662 | Computer Graphics

Why Premultiplied Matters [Downsample]

Lecture 05 | Texturing

color alpha color alpha
original downsampled

composite

regular

premultiplied

[RGB] [A]

15-362/662 | Computer Graphics

Closed Under Composition

Lecture 05 | Texturing

𝐵
𝐴

B over A

• Goal: Composite bright red image 𝐵 with alpha 0.5
over bright red image 𝐴 with alpha 0.5

𝐴 = (1, 0, 0, 0.5)
𝐵 = (1, 0, 0, 0.5)

0.5 ∗ 1,0,0 + (1 − 0.5) ∗ 0.5 ∗ 1,0,0

• Non-Premultiplied: • Premultiplied:

(0.75, 0, 0)

0.5 + 1 − 0.5 ∗ 0.5 = 0.75

color

alpha

0.5 ∗ 0.5,0,0,0.5 + 1 − 0.5 ∗ 0.5,0,0,0.5

(0.75, 0, 0, 0.75)

(1, 0, 0)

divide out alpha

15-362/662 | Computer Graphics

Blend Methods

Lecture 05 | Texturing

𝐷𝑅𝐺𝐵𝐴 = 𝑆𝑅𝐺𝐵𝐴 + 𝐷𝑅𝐺𝐵𝐴

𝐷𝑅𝐺𝐵𝐴 = 𝑆𝑅𝐺𝐵𝐴 − 𝐷𝑅𝐺𝐵𝐴

𝐷𝑅𝐺𝐵𝐴 = − 𝑆𝑅𝐺𝐵𝐴 + 𝐷𝑅𝐺𝐵𝐴

𝐷𝑅𝐺𝐵𝐴 = min(𝑆𝑅𝐺𝐵𝐴, 𝐷𝑅𝐺𝐵𝐴)
𝐷𝑅𝐺𝐵𝐴 = max(𝑆𝑅𝐺𝐵𝐴, 𝐷𝑅𝐺𝐵𝐴)
𝐷𝑅𝐺𝐵𝐴 = 𝑆𝑅𝐺𝐵𝐴 + 𝐷𝑅𝐺𝐵𝐴 ∗ (1 − 𝑆𝐴)

Blend Add
Blend Subtract
Blend Reverse Subtract
Blend Min
Blend Max
Blend Over

𝑆𝑅𝐺𝐵𝐴 and 𝐷𝑅𝐺𝐵𝐴 are pre-multiplied

When writing to color buffer, can use any blend method

15-362/662 | Computer Graphics

Updated Depth Buffer (Z-buffer) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)

{

if(d < zbuffer[x][y])

{

// triangle is closest object seen so far at this

// sample point. Update depth and color buffers.

zbuffer[x][y] = d;

color[x][y] = c.rgba + (1-c.a) * color[x][y];

}

// otherwise, we’ve seen something closer already;

// don’t update color or depth

}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B != B over A

15-362/662 | Computer Graphics

Blend Render Order

Lecture 05 | Texturing

• For mixtures of opaque and transparent triangles:

• Step 1: render opaque primitives (in any order)
using depth-buffered occlusion
• If pass depth test, triangle overwrites value in

color buffer at sample
• Depth READ and WRITE

• Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
• If pass depth test, triangle is composited

OVER contents of color buffer at sample
• Depth READ only

15-362/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing

15-362/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

15-362/662 | Computer Graphics Lecture 05 | Texturing

The Inputs

positions = {

v0x, v0y, v0z,

v1x, v1y, v1x,

v2x, v2y, v2z,

v3x, v3y, v3x,

v4x, v4y, v4z,

v5x, v5y, v5x

};

texcoords ={

v0u, v0v,

v1u, v1v,

v2u, v2v,

v3u, v3v,

v4u, v4v,

v5u, v5v

};

[vertices] [textures]

Object-to-camera-space transform 𝑇 ∈ ℝ4×4

Perspective projection transform 𝑃 ∈ ℝ4×4

Output image (𝑊, 𝐻)

[camera properties] [machine]

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 1: Transform

z

x

y

Transform triangle vertices into camera space

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 2: Perspective Projection

Apply perspective projection transform to transform
triangle vertices into normalized coordinate space

[normalized space position][3D camera space position]

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

[post-clipping][pre-clipping]

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates

into screen coordinates (based on screen [w, h]).

(0, 0)

(w, h)

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 6: Compute Color

Texture lookups, color interpolation, etc.

u

v
[u(x,y), v(x,y)]

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

15-362/662 | Computer Graphics Lecture 05 | Texturing

Step 8: Color Blending

Update color buffer with correct blending operation.

	Slide 1: Rasterization, Transparency & Texturing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122

