
Perspective Projection
& Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Homogeneous Coordinates / Wrapping up Transformations

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling

15-362/662 | Computer Graphics Lecture 03 | Transformations

2D Transforms in Homogeneous Coordinate

[original] [2D rotation] [2D translate] [2D scale]

Original shape in 2D can be
viewed as many copies

along the z-axis

Rotate around the z-axis Shear in direction of
translation

Scale x-axis and y-axis,
preserve z-axis

Q: What about 3D homogeneous coordinates?

15-362/662 | Computer Graphics Lecture 03 | Transformations

3D Transforms in Homogeneous Coordinate

[point in 3D]

[rotate around 𝑦 by 𝜃] [shear by 𝑧 in (𝑠,𝑡) direction] [scale by 𝑎,𝑏,𝑐] [translate by (𝑢,𝑣,𝑤)]

Matrix representations of 3D linear transformations just get
an additional identity row/column:

15-362/662 | Computer Graphics Lecture 03 | Transformations

Points vs. Vectors

• Homogeneous coordinates should be used differently for points and vectors:
• Triangle vertices are “points” and should be translated and rotated

• But if we do the same for the normal, it no longer becomes a
normal

• Idea: normal is a “vector” and should just rotate!**
• Set homogeneous coordinate to 0

**translating or scaling a triangle should never change the normal

15-362/662 | Computer Graphics Lecture 03 | Transformations

Points vs. Vectors in Homogeneous Coordinates

• In general:
• A point has a nonzero homogeneous coordinate (c = 1)
• A vector has a zero homogeneous coordinate (c = 0)

• But wait… what division by c mean when it’s equal to zero?
• Well consider what happens as 𝑐 approaches 0…

(𝑥, 𝑦)/1 (𝑥, 𝑦)/0.5 (𝑥, 𝑦)/0.25 (𝑥, 𝑦)/0.001

• Can think of vectors as “points at infinity” (sometimes called “ideal points”)
• But don’t actually go dividing by zero…

15-362/662 | Computer Graphics Lecture 03 | Transformations

Where can we use transforms?

15-362/662 | Computer Graphics Lecture 03 | Transformations

Scene Graph

• Suppose we want to build a skeleton out of cubes
• Idea: transform cubes in world space

• Store transform of each cube

• Problem: If we rotate the left upper leg, the lower left
leg won’t track with it
• Better Idea: store a hierarchy of transforms

• Known as a scene graph
• Each edge (+root) stores a linear

transformation
• Composition of transformations gets applied

to nodes
• Keep transformations on a stack to

reduce redundant multiplication

• Lower left leg transform: 𝐴0𝐴1𝐴2

𝐴0

𝐴1

𝐴2

15-362/662 | Computer Graphics Lecture 03 | Transformations

Instancing

• What if we want many copies of the same object in a scene?
• Rather than have many copies of the geometry, scene

graph, we can just put a “pointer” node in our scene graph
• Saves a reference to a shared geometry
• Specify a transform for each reference

• Careful! Modifying the geometry will modify all
references to it

Realistic modeling and rendering of plant ecosystems
(1998) Deussen et al

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Homogeneous Coordinates / Wrapping up Transformations

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The “Simpler” Graphics Pipeline

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

distant objects
appear smaller

parallel lines
converge at
the horizon

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The Pinhole Camera

Pinhole
Camera
(0,0)

Virtual
Sensor

(x,z)

1

x/z
z-axis

x-axis

Our image seems to be upside down…

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The Pinhole Camera

Pinhole
Camera
(0,0)

Virtual
Sensor

(x,z)

1

x/z

z-axis

x-axis

Better!...but what if part of our scene is closer that 𝑧 < 1?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The Pinhole Camera

Pinhole
Camera
(0,0)

Virtual
Sensor

(x,z)

1

x/z
z-axis

x-axis

We’ll just go back to capturing content like this
We can always flip the image at the end

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(1,1,1)

(0, 0)

(w, h) (1,1)

[world coordinates] [view coordinates] [clip coordinates]

[normalized coordinates][image coordinates]

[Rasterization Stage]

(-1,-1,-1)

(-1,-1)

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[Rasterization Stage]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)

Coordinates stretched to image dims.
Image flipped upside down.

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Camera Example

𝑦

𝑧

𝑥

(4,2,0)

Consider camera at (4,2,0), looking down 𝑥-axis, object given in world coordinates:

Goal: find a spatial transformation that the object in a coordinate
system where the camera is at the origin, looking down the –z axis

1) Translate by (-4,-2,0)
2) Rotate by 90deg about the y-axis

𝑦

𝑧

𝑥

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Camera Example

Now consider a camera at the origin looking in a direction 𝐰 ∈ ℝ^3

Use Gram-Schmidt to “pick” 𝑣 and 𝑤. Then build a rotation
matrix 𝑅 and invert/transpose it to apply the transform

15-362/662 | Computer Graphics Lecture 04 | Rasterization

View Frustrum

Also known as the “region the camera can see”

“pinhole”
(0,0,0)

z

x

y

𝒛-near

𝒛-far

Q: Why is it important we have a z-near and z-far?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Logarithmic Distance

• Objects get smaller at a logarithmic rate as they
move farther from our eyes
• In this class, eyes == cameras
• Little change in size for objects already far

away as they get farther

• In computer graphics, we quantize everything:
• Colors
• Shapes
• Depth

• Providing a fixed precision for depth (usually 32
bits) means objects very far away may share the
same depth data
• Limited representable depth values
• Leads to unintentional clipping

Near and Far Clipping (2015) Udacity

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Near and Far Clipping Planes

• Idea: set a smaller range for possible depth values
• Min depth is the near clipping plane
• Max depth is the far clipping plane

• Logarithmic curve doesn’t give many possible
values for far objects…

• Problem: accidentally clip out objects important to our
scene if range set too small
• Near/Far clipping plane should encapsulate the

most important objects closest/farthest to the
camera

• Advantage: far clipping cuts out unimportant objects
from your scene early in the pipeline
• Examples: far-away trees in an already dense forest

Near and Far Clipping (2015) Udacity

floating point has more “resolution” near zero

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Clipping

• Clipping eliminates triangles not visible to the camera
(not in view frustum)
• Don’t waste time rasterizing primitives you can’t

see!
• Discarding individual fragments is expensive

• “Fine granularity”
• Makes more sense to toss out whole primitives

• “Coarse granularity”

• What if a primitive is partially clipped?
• Partially enclosed triangles are tessellated into

smaller triangles in the frustrum

• If part of a triangle is outside the frustrum, it means at
least one of its vertices are outside the frustrum
• Idea: check if vertices in frustrum

= in frustrum

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Map Orthographic View Frustrum To Cube

z

x

y

(-1,-1,-1)

(1,1,1)

𝑙 = left

𝑟 = right

𝑏 = bottom

𝑡 = top

𝑛 = near

𝑓 = far

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Map Orthographic Frustrum To Cube

[translate terms]

[scale terms]

subtract the midpoint to center the coordinate

𝑥 −
𝑙 + 𝑟

2

divide by the clipping range to normalize to [-0.5, 0.5]

𝑥

𝑟 − 𝑙
 −

𝑙 + 𝑟

2(𝑟 − 𝑙)

scale by 2 to expand range to [-1, 1]

2𝑥

𝑟 − 𝑙
 −

𝑙 + 𝑟

𝑟 − 𝑙

flip sign of second fraction to make translation additive

2

𝑟 − 𝑙
𝑥 +

𝑙 + 𝑟

𝑙 − 𝑟

• Q: why is the z-axis scalar term
2

𝑛−𝑓
?

• Camera looks down –z axis, so
we need to flip axis!

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Map A Harder Frustrum To Cube

z
x

y

With perspective projection, we end up dividing out the z coordinate.
Full perspective matrix takes geometry of view frustum into account:

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Map A Harder Frustrum To Cube

Same idea as above: w divides out the depth, so we set it equal to the depth 𝑧
Small difference: we are looking down the –z axis, so we set 𝑤 = −𝑧

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Map A Harder Frustrum To Cube

the projection of x linearly approaches 0 as it is
projected closer to the camera

𝑛

−𝑧
𝑥

use the same equation as before, subbing in new projection

2(
𝑛

−𝑧
𝑥)

𝑟 − 𝑙
+

𝑟 + 𝑙

𝑙 − 𝑟

simplify first term, multiply 𝑧/𝑧 to second term

2𝑛

(𝑟 − 𝑙)(−𝑧)
𝑥 +

(𝑟 + 𝑙)𝑧

𝑟 − 𝑙 (−𝑧)

extract – 𝑧 from denominator

2𝑛
𝑟 − 𝑙

𝑥 +
𝑟 + 𝑙
𝑟 − 𝑙

𝑧

−𝑧

By setting 𝑤 = −𝑧, we will do this last division step
when dividing out the depth**see http://www.songho.ca/opengl/gl_projectionmatrix.html for a full derivation

http://www.songho.ca/opengl/gl_projectionmatrix.html

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Map A Harder Frustrum To Cube

𝑧𝑛 =
𝐴𝑧 + 𝐵𝑤

−𝑧

to solve for 𝐴 and 𝐵, solve for the fact that
-n maps to -1 and -f maps to 1**

−𝐴𝑛 + 𝐵

𝑛
= −1

−𝐴𝑓 + 𝐵

𝑓
= 1

2 equations, 2 unknowns, use your favorite linear solver

𝐴 =
−(𝑓 + 𝑛)

𝑓 − 𝑛

𝐵 =
−2𝑓𝑛

𝑓 − 𝑛

the final normalized 𝑧𝑛 is a function of the initial 𝑧 and 𝑤,
divided by the negative depth (projection):

**remember w is a homogeneous coordinate, so w=1

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Screen Transform

• We now have a way of going from camera view
frustrum to normalized screen space:
• Apply projection matrix
• Divide out w-coordinate (set to –z)

• Last transform: image space
• Take points from [-1,1] x [-1,1] to a W x H pixel

image

• Step 1: reflect about x-axis
• Step 2: translate by (1,1)
• Step 3: scale by (W/2, H/2)

(0,0)

(1,1)

(-1,-1)

W

H (W,H)

(0,0)

[normalized coordinates]

[image coordinates]

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[Rasterization Stage]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)

Coordinates stretched to image dims.
Image flipped upside down.

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Problem: displays don’t know what a triangle is or
how to display one
• But they do know how to display a buffer of

pixels!

• Goal: convert draw instructions into an image of
pixels to show on the display
• Example:

Rasterization

Direct3D Documentation (2020) Microsoft

<polygon fill="#ED18ED"
points="464.781,631.819 478.417,309.091 471.599,642.045 "/>

• The above is a valid svg instruction

• Requires turning shapes into pixels
• Need to check which shapes overlap which

pixels

color

3 x (2D points)

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Rasterization

For Each Triangle:
 For Each Pixel:
 If Pixel In Triangle:
 Pixel Color = Triangle Color

• How to check if a pixel is inside a triangle?

• A pixel is a little square, check if the square
exists inside the triangle**
• Expensive/hard to compute!

• A pixel is a point, check if the point exists inside
the triangle
• Put the point at the pixel’s center
• We will refer to these as half-integer

coordinates (Ex: [1.5, 4.5])

**”A pixel is not a little square” Alvy Ray Smith

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Before that,
Let’s learn how to draw a line!

Surely it can’t be difficult…it’s just a line

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Introduction To The Line

• A line is defined by 𝑥1, 𝑦1 , (𝑥2, 𝑦2)

• Slope given as m =
𝑦2−𝑦1

𝑥2−𝑥1

• What does it mean for a line to overlap a pixel?
• A pixel is just a point
• A line has no thickness

• Neither have a notion of area

• Instead, we will reinterpret pixels as squares
• A pixel lights up if the line intersects it

• Checking if a line intersects a pixel can
be expensive!

• Find a linear algorithm ~O(n) where n is the
number of output fragments
• Everything we check should be everything

in the output

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The Bresenham Line Algorithm

• Consider the case when 𝑚 is in range 0,1
• Implies ∆𝑥 ≥ ∆𝑦

• We will traverse up the x-axis
• Each step of x we take, decide if we keep y

the same or move y up one step
• Since 0 < 𝑚 < 1, a positive move in x

causes a positive move in y

Ensure the x-coordinate of (𝑥1, 𝑦1) is smaller
Let y’ be our current vertical component along the line
Let y be the initial 𝑦1

For each x value in range [𝑥1, 𝑥2] with step 1:
 Shade (x, y)
 Add m to y’ (if x takes step 1, y’ takes step m)
 If the new y’ is closer to the row of pixels above:
 Add 1 to y

If 𝑥1 > 𝑥2 :
 Swap(𝑥1, 𝑥2), Swap(𝑦1, 𝑦2)
𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 𝑚| > 0.5):
 𝜀 ← 𝜀 + 𝑚 − 1, 𝑦 ← 𝑦 + 1
 Else:
 𝜀 ← 𝜀 + 𝑚

[pseudocode] [code]

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The Bresenham Line Algorithm

• What if 𝑚 is in range −1,0 ?

𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 𝑚| > 0.5):
 𝜀 ← 𝜀 + 𝑚 + 1, 𝑦 ← 𝑦 − 1
 Else:
 𝜀 ← 𝜀 + 𝑚

• What if 𝑚 > 1?

𝜀 ← 0, 𝑥 ← 𝑥1

For 𝑦 ← 𝑦1to 𝑦2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 1/𝑚| > 0.5):
 𝜀 ← 𝜀 + 1/𝑚 − 1, 𝑥 ← 𝑥 + 1
 Else:
 𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 < −1?

𝜀 ← 0, 𝑥 ← 𝑥1

For 𝑦 ← 𝑦1to 𝑦2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 1/𝑚| > 0.5):
 𝜀 ← 𝜀 + 1/𝑚 + 1, 𝑥 ← 𝑥 − 1
 Else:
 𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 is in range 0,1 ?

𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
 Shade(𝑥, 𝑦)
 If (|𝜀 + 𝑚| > 0.5):
 𝜀 ← 𝜀 + 𝑚 − 1, 𝑦 ← 𝑦 + 1
 Else:
 𝜀 ← 𝜀 + 𝑚

**When traversing x-axis, x1 must be smaller. When traversing y-axis, y1 must be smaller

15-362/662 | Computer Graphics Lecture 04 | Rasterization

That’s kinda complicated…
Can we make it easier somehow?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The [Nicer] Bresenham Line Algorithm

𝑎 = < 𝑥1, 𝑦1 >, 𝑏 = < 𝑥2, 𝑦2 >
∆𝑥 ← 𝑥2 − 𝑥1 , ∆𝑦 ← |𝑦2 − 𝑦1|

If (∆𝑥 > ∆𝑦):
 𝑖 ← 0, 𝑗 ← 1
If (∆𝑥 < ∆𝑦):
 𝑖 ← 1, 𝑗 ← 0

If (𝑎𝑖 > 𝑏𝑖):
 𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡1 ← 𝑓𝑙𝑜𝑜𝑟(𝑎𝑖), 𝑡2← 𝑓𝑙𝑜𝑜𝑟(𝑏𝑖)

For 𝑢 ← 𝑡1 to 𝑡2 do:

 𝑤 ←
𝑢+0.5 −𝑎𝑖

(𝑏𝑖−𝑎𝑖)

 𝑣 ← 𝑤 ∗ 𝑏𝑗 − 𝑎𝑗 + 𝑎𝑗

 Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

setup coordinates

compute the longer axis 𝑖
and the shorter axis 𝑗

the starting coordinate should be the
smaller value along the longer axis

for each step taken along the longer axis,
compute the percent distance traveled 𝑤
and project that percentage onto the
shorter axis. Then convert to half-integer
coordinates

compute long axis bounds

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Introduction To The Line

• Bresenham algorithm only works if both the
start and end coordinates lie on half-integer
coordinates

• Instead we will consider a line to intersect a
pixel if the line intersects the diamond inside
the pixel

• 𝑥 − 𝑝𝑥 + 𝑦 − 𝑝𝑦 <
1

2

• Checks if point (𝑥, 𝑦) lies in the
diamond of pixel 𝑝

• Still the same idea as before! The only
difference is that we need to check if the
endpoints correctly intersect the last pixels

In OpenGL/Scotty3D,
line needs to fully go
through diamond!

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The [Even Nicer] Bresenham Line Algorithm

𝑎 = < 𝑥1, 𝑦1 >, 𝑏 = < 𝑥2, 𝑦2 >
∆𝑥 ← 𝑥2 − 𝑥1 , ∆𝑦 ← |𝑦2 − 𝑦1|

If (∆𝑥 > ∆𝑦):
 𝑖 ← 0, 𝑗 ← 1
If (∆𝑥 < ∆𝑦):
 𝑖 ← 1, 𝑗 ← 0

If (𝑎𝑖 > 𝑏𝑖):
 𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡1 ← 𝑓𝑙𝑜𝑜𝑟(𝑎𝑖), 𝑡2← 𝑓𝑙𝑜𝑜𝑟(𝑏𝑖)

For 𝑢 ← 𝑡1 to 𝑡2 do:

 𝑤 ←
𝑢+0.5 −𝑎𝑖

(𝑏𝑖−𝑎𝑖)

 𝑣 ← 𝑤 ∗ 𝑏𝑗 − 𝑎𝑗 + 𝑎𝑗

 Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

TODO: fix 𝑡1and 𝑡2 to properly account
for OR discard the two edge fragments
if the endpoints 𝑎 and 𝑏 are inside the
‘diamond’ of the edge fragments

Remember: 𝑥 − 𝑝𝑥 + 𝑦 − 𝑝𝑦 <
1

2

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

The “Simpler” Graphics Pipeline

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• Which points do we check?
• Idea 1: check all points 𝑞 in the image

• For large images (1080p), we’re
checking hundreds of thousands of
points per triangle!

• Idea 2: check all points 𝑞 in the bounding
box of the triangle:
• 𝑥𝑚𝑖𝑛 = min(𝑎𝑥, 𝑏𝑥, 𝑐𝑥)
• 𝑦𝑚𝑖𝑛 = min(𝑎𝑦, 𝑏𝑦, 𝑐𝑦)

• 𝑥𝑚𝑎𝑥 = max(𝑎𝑥, 𝑏𝑥, 𝑐𝑥)
• 𝑦𝑚𝑎𝑥 = max(𝑎𝑦, 𝑏𝑦, 𝑐𝑦)

• How to check if a point is inside a triangle?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑏 side of 𝑎𝑐

𝑎𝑐 × 𝑎𝑏 ∙ 𝑎𝑐 × 𝑎𝑞 > 0

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑎 side of 𝑐𝑏

𝑐𝑏 × 𝑐𝑎 ∙ 𝑐𝑏 × 𝑐𝑞 > 0

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑐 side of 𝑏𝑐

𝑏𝑎 × 𝑏𝑐 ∙ 𝑏𝑎 × 𝑏𝑞 > 0

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

𝑎𝑐 × 𝑎𝑏 ∙ 𝑎𝑐 × 𝑎𝑞 > 0 &&

𝑐𝑏 × 𝑐𝑎 ∙ 𝑐𝑏 × 𝑐𝑞 > 0 &&

𝑏𝑎 × 𝑏𝑐 ∙ 𝑏𝑎 × 𝑏𝑞 > 0

• What if b and c were swapped?

𝑎𝑏 × 𝑎𝑐 ∙ 𝑎𝑐 × 𝑎𝑞 < 0

• Orientation matters!

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• Measurements must all either be positive or
negative for point to be in triangle

𝑎𝑐 × 𝑎𝑏 ∙ 𝑎𝑐 × 𝑎𝑞 > 0 &&

𝑐𝑏 × 𝑐𝑎 ∙ 𝑐𝑏 × 𝑐𝑞 > 0 &&

𝑏𝑎 × 𝑏𝑐 ∙ 𝑏𝑎 × 𝑏𝑞 > 0

𝑎𝑏 × 𝑎𝑐 ∙ 𝑎𝑐 × 𝑎𝑞 < 0 &&

𝑐𝑎 × 𝑐𝑏 ∙ 𝑐𝑏 × 𝑐𝑞 < 0 &&

𝑏𝑐 × 𝑏𝑎 ∙ 𝑏𝑎 × 𝑏𝑞 < 0

OR

• Orientation no longer matters
• Just be consistent!

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Incremental Triangle Traversal

𝑃𝑖 = (𝑥𝑖/𝑤𝑖 𝑦𝑖/𝑤𝑖 𝑧𝑖/𝑤𝑖) = (𝑋𝑖 𝑌𝑖 𝑍𝑖)

𝑑𝑋𝑖 = 𝑋𝑖+1 − 𝑋𝑖

𝑑𝑌𝑖 = 𝑌𝑖+1 − 𝑌𝑖

𝐸𝑖 𝑥, 𝑦 = 𝑥 − 𝑋𝑖 𝑑𝑌𝑖 − 𝑦 − 𝑌𝑖 𝑑𝑋𝑖

𝐸𝑖 𝑥, 𝑦 = 0 : point on edge
𝐸𝑖 𝑥, 𝑦 > 0 : point outside edge
𝐸𝑖 𝑥, 𝑦 < 0 : point inside edge

𝑑𝐸𝑖 𝑥 + 1, 𝑦 = 𝐸𝑖 𝑥, 𝑦 + 𝑑𝑌𝑖

𝑑𝐸𝑖 𝑥, 𝑦 + 1 = 𝐸𝑖 𝑥, 𝑦 + 𝑑𝑋𝑖

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Parallel Coverage Tests

a

b

c
• Incremental traversal is very serial; modern

hardware is highly parallel
• Test all samples in triangle bounding box in

parallel

• All tests share some ‘setup’ calculations

• Computing 𝑎𝑐 , 𝑐𝑏 , 𝑏𝑎

• Modern GPUs have special-purpose hardware
for efficiently performing point-in-triangle tests
• Same set of instructions, regardless of

which coordinate 𝑞 we are dealing with

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Hierarchical Coverage Tests

• Idea: work coarse-to-fine
• Check if large blocks are inside the triangle

• Early-in: every pixel is covered
• Early-out: every pixel is not covered
• Else: test each pixel coverage individually

• Early-in: if all 4 corners of the block are inside the triangle
• Else: if a triangle line intersects a block line
• Early-out: if neither Early-in nor Else

• Careful! Best to represent block as smallest bounding box to
pixel samples, not the pixels themselves!

early out

early in

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Hierarchical Coverage Tests

• What is the right block size?
• Too big: very difficult to get an Early-in or

Early-out
• Too small: blocks are too similar to pixels

• Idea: create a hierarchy of block sizes
• When entering the Else case, just drop

down to the next smallest block size
• Checking coverage reduced to logarithmic

(We will learn why in a future lecture)

15-362/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

Pixel

1

2

3

4

Which triangles “cover” this pixel?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

10%

35%

60%

85%

15%

• Compute fraction of pixel area
covered by triangle, then color pixel
according to this fraction
• Ex: a red triangle that covers 10%

of a pixel should be 10% red

• Difficult to compute area of box
covered by triangle
• Instead, consider coverage as an

approximation

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Coverage Via Samples

• A sample is a discrete measurement of a signal
• Used to convert continuous data to discrete, but we

can also take samples of discrete data too

• The more samples we take, the more accurate the image
becomes
• Same idea as using a larger sensor to take a better-

quality photo

• Problem: each sample adds more work
• What is the best way to use the least amount of

samples to best approximate the original scene?
• Main idea of sample theory

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Sampling in 1D

𝑓(𝑥0)
𝑓(𝑥1) 𝑓(𝑥2) 𝑓(𝑥3)

𝑓(𝑥4)

𝑥1𝑥0 𝑥2 𝑥3 𝑥4

𝑓(𝑥)

𝑓′(𝑥)

𝑥1𝑥0 𝑥2 𝑥3 𝑥4

• Idea: take 5 random samples along the domain
and evaluate 𝑓(𝑥)
• Many different ways to interpolate points:

• Piecewise
• Linear
• Cubic

• Where is the best place to put 5 samples?
• We know the answer because we can see

the entire function 𝑓
• 𝑓 has been evaluated over the entire

domain
• What if we cannot see all of 𝑓?
• What if 𝑓 is expensive to evaluate?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Sampling in 1D

• Idea: take more than 5 random samples along
the domain and evaluate 𝑓(𝑥)
• Gets a better reconstruction of 𝑓 but…

• More evaluation calls needed
• More memory to save

• Still don’t know the best way to interpolate
samples
• Need to guess based on the behavior of 𝑓
• Can consider things like gradients and

such…

𝑥1𝑥0 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

Pixel (x,y)

1

2

3
4

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

Which triangles “cover” this pixel?

(x+0.5, y+0.5) Here I chose the coverage sample
point to be at a point
corresponding to the pixel center

= triangle but with a red outline

= triangle

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Edge Case

1

2

• When edge falls directly on a screen sample,
the sample is classified as within triangle if the
edge is a “top edge” or “left edge”
• Top edge: horizontal edge that is above all

other edges
• Left edge: an edge that is not exactly

horizontal and is on the left side of the
triangle
• Triangle can have one or two left

edges

• This is known as edge ownership

Direct3D Documentation (2020) Microsoft

15-362/662 | Computer Graphics Lecture 04 | Rasterization

So how many samples do we take?

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Sampling Per Pixel

Idea: take as many samples as there are pixels on screen

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Sampling Per Pixel

Problem: Results look blocky against edges
(let’s take more samples!)

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Aliasing Artifacts

• Imperfect sampling + imperfect reconstruction
leads to image artifacts
• Jagged edges
• Moiré patterns

• Does this remind you of old school video games?
• Old games took few samples and took few

steps to prevent aliasing
• Expensive to take more samples
• Not enough compute to do filtering to

interpolate samples
• Not enough memory to take more

samples

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Supersampling Per Pixel

Idea: take many more samples than there are pixels on screen

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

Each pixel now holds n samples.
Average the n samples together to get 1 sample per pixel (1spp).

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

100% 0%

50%

50%

100%

25%100%

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Supersampling Artifacts

[1x1spp] [4x4spp] [32x32spp]

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Supersampling Artifacts

In special cases, we can compute the exact coverage.
This occurs when what we are sampling matches our sampling

pattern – very rare!

	Slide 1: Perspective Projection & Rasterization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

