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• Homogeneous Coordinates / Wrapping up Transformations

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling



15-362/662 | Computer Graphics Lecture 03 | Transformations

2D Transforms in Homogeneous Coordinate

[ original ] [ 2D rotation ] [ 2D translate ] [ 2D scale ]

Original shape in 2D can be 
viewed as many copies 

along the z-axis

Rotate around the z-axis Shear in direction of 
translation

Scale x-axis and y-axis,
preserve z-axis

Q: What about 3D homogeneous coordinates?
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3D Transforms in Homogeneous Coordinate

[ point in 3D ]

[ rotate around 𝑦 by 𝜃 ] [shear by 𝑧 in (𝑠,𝑡) direction ] [ scale by 𝑎,𝑏,𝑐 ] [ translate by (𝑢,𝑣,𝑤) ]

Matrix representations of 3D linear transformations just get 
an additional identity row/column: 
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Points vs. Vectors

• Homogeneous coordinates should be used differently for points and vectors:
• Triangle vertices are “points” and should be translated and rotated

• But if we do the same for the normal, it no longer becomes a 
normal

• Idea: normal is a “vector” and should just rotate!**
• Set homogeneous coordinate to 0

**translating or scaling a triangle should never change the normal
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Points vs. Vectors in Homogeneous Coordinates

• In general:
• A point has a nonzero homogeneous coordinate (c = 1)
• A vector has a zero homogeneous coordinate  (c = 0)

• But wait… what division by c mean when it’s equal to zero?
• Well consider what happens as 𝑐 approaches 0…

(𝑥, 𝑦)/1 (𝑥, 𝑦)/0.5 (𝑥, 𝑦)/0.25 (𝑥, 𝑦)/0.001

• Can think of vectors as “points at infinity” (sometimes called “ideal points”)
• But don’t actually go dividing by zero…
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Where can we use transforms?
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Scene Graph

• Suppose we want to build a skeleton out of cubes
• Idea: transform cubes in world space

• Store transform of each cube

• Problem: If we rotate the left upper leg, the lower left 
leg won’t track with it
• Better Idea: store a hierarchy of transforms

• Known as a scene graph
• Each edge (+root) stores a linear 

transformation
• Composition of transformations gets applied 

to nodes
• Keep transformations on a stack to 

reduce redundant multiplication

• Lower left leg transform: 𝐴0𝐴1𝐴2

𝐴0

𝐴1

𝐴2
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Instancing

• What if we want many copies of the same object in a scene?
• Rather than have many copies of the geometry, scene 

graph, we can just put a “pointer” node in our scene graph
• Saves a reference to a shared geometry
• Specify a transform for each reference

• Careful! Modifying the geometry will modify all 
references to it

Realistic modeling and rendering of plant ecosystems 
(1998) Deussen et al
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• Homogeneous Coordinates / Wrapping up Transformations

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling
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The “Simpler” Graphics Pipeline
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Perspective Projection

distant objects
appear smaller

parallel lines
converge at
the horizon
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The Pinhole Camera

Pinhole
Camera
(0,0)

Virtual 
Sensor

(x,z)

1

x/z
z-axis

x-axis

Our image seems to be upside down…
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The Pinhole Camera

Pinhole
Camera
(0,0)

Virtual 
Sensor

(x,z)

1

x/z

z-axis

x-axis

Better!...but what if part of our scene is closer that 𝑧 < 1?
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The Pinhole Camera

Pinhole
Camera
(0,0)

Virtual 
Sensor

(x,z)

1

x/z
z-axis

x-axis

We’ll just go back to capturing content like this
We can always flip the image at the end
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Perspective Projection

z
x

y

(1,1,1)

(0, 0)

(w, h) (1,1)

[ world coordinates ] [ view coordinates ] [ clip coordinates ]

[ normalized coordinates ][ image coordinates ]

[ Rasterization Stage ]

(-1,-1,-1)

(-1,-1)
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Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[ Rasterization Stage ]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)

Coordinates stretched to image dims.
Image flipped upside down.
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Camera Example

𝑦

𝑧

𝑥

(4,2,0)

Consider camera at (4,2,0), looking down 𝑥-axis, object given in world coordinates:

Goal: find a spatial transformation that the object in a coordinate 
system where the camera is at the origin, looking down the –z axis

1) Translate by (-4,-2,0)
2) Rotate by 90deg about the y-axis



𝑦

𝑧

𝑥
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Camera Example

Now consider a camera at the origin looking in a direction 𝐰 ∈ ℝ^3

Use Gram-Schmidt to “pick” 𝑣 and 𝑤. Then build a rotation 
matrix 𝑅 and invert/transpose it to apply the transform
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View Frustrum

Also known as the “region the camera can see”

“pinhole”
(0,0,0)

z

x

y

𝒛-near

𝒛-far

Q: Why is it important we have a z-near and z-far?
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Logarithmic Distance

• Objects get smaller at a logarithmic rate as they 
move farther from our eyes
• In this class, eyes == cameras
• Little change in size for objects already far 

away as they get farther

• In computer graphics, we quantize everything:
• Colors
• Shapes
• Depth

• Providing a fixed precision for depth (usually 32 
bits) means objects very far away may share the 
same depth data
• Limited representable depth values 
• Leads to unintentional clipping

Near and Far Clipping (2015) Udacity
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Near and Far Clipping Planes

• Idea: set a smaller range for possible depth values
• Min depth is the near clipping plane
• Max depth is the far clipping plane

• Logarithmic curve doesn’t give many possible 
values for far objects…

• Problem: accidentally clip out objects important to our 
scene if range set too small
• Near/Far clipping plane should encapsulate the 

most important objects closest/farthest to the 
camera

• Advantage: far clipping cuts out unimportant objects 
from your scene early in the pipeline
• Examples: far-away trees in an already dense forest

Near and Far Clipping (2015) Udacity

floating point has more “resolution” near zero
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Clipping

• Clipping eliminates triangles not visible to the camera 
(not in view frustum)
• Don’t waste time rasterizing primitives you can’t 

see!
• Discarding individual fragments is expensive 

• “Fine granularity”
• Makes more sense to toss out whole primitives

• “Coarse granularity”

• What if a primitive is partially clipped?
• Partially enclosed triangles are tessellated into 

smaller triangles in the frustrum

• If part of a triangle is outside the frustrum, it means at 
least one of its vertices are outside the frustrum
• Idea: check if vertices in frustrum

= in frustrum
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Map Orthographic View Frustrum To Cube

z

x

y

(-1,-1,-1)

(1,1,1)

𝑙 = left

𝑟 = right

𝑏 = bottom

𝑡 = top

𝑛 = near

𝑓 = far
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Map Orthographic Frustrum To Cube

[ translate terms ]

[ scale terms ]

subtract the midpoint to center the coordinate

𝑥 −
𝑙 + 𝑟

2

divide by the clipping range to normalize to [-0.5, 0.5]

𝑥

𝑟 − 𝑙
 −

𝑙 + 𝑟

2(𝑟 − 𝑙)

scale by 2 to expand range to [-1, 1]

2𝑥

𝑟 − 𝑙
 −

𝑙 + 𝑟

𝑟 − 𝑙

flip sign of second fraction to make translation additive

2

𝑟 − 𝑙
𝑥 +

𝑙 + 𝑟

𝑙 − 𝑟

• Q: why is the z-axis scalar term 
2

𝑛−𝑓
? 

• Camera looks down –z axis, so 
we need to flip axis!
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Map A Harder Frustrum To Cube

z
x

y

With perspective projection, we end up dividing out the z coordinate.
Full perspective matrix takes geometry of view frustum into account:
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Map A Harder Frustrum To Cube

Same idea as above: w divides out the depth, so we set it equal to the depth 𝑧
Small difference: we are looking down the –z axis, so we set 𝑤 =  −𝑧 
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Map A Harder Frustrum To Cube

the projection of x linearly approaches 0 as it is 
projected closer to the camera 

𝑛

−𝑧
𝑥

use the same equation as before, subbing in new projection

2(
𝑛

−𝑧
𝑥)

𝑟 − 𝑙
+

𝑟 + 𝑙

𝑙 − 𝑟

simplify first term, multiply 𝑧/𝑧 to second term

2𝑛

(𝑟 − 𝑙)(−𝑧)
𝑥 +

(𝑟 + 𝑙)𝑧

𝑟 − 𝑙 (−𝑧)

extract – 𝑧 from denominator

2𝑛
𝑟 − 𝑙

𝑥 +
𝑟 + 𝑙
𝑟 − 𝑙

𝑧

−𝑧

By setting 𝑤 =  −𝑧, we will do this last division step 
when dividing out the depth**see http://www.songho.ca/opengl/gl_projectionmatrix.html for a full derivation

http://www.songho.ca/opengl/gl_projectionmatrix.html
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Map A Harder Frustrum To Cube

𝑧𝑛 =
𝐴𝑧 + 𝐵𝑤

−𝑧

to solve for 𝐴 and 𝐵, solve for the fact that 
-n maps to -1 and -f maps to 1**

−𝐴𝑛 + 𝐵

𝑛
= −1

−𝐴𝑓 + 𝐵

𝑓
= 1

2 equations, 2 unknowns, use your favorite linear solver

𝐴 =
−(𝑓 + 𝑛)

𝑓 − 𝑛

𝐵 =
−2𝑓𝑛

𝑓 − 𝑛

the final normalized 𝑧𝑛 is a function of the initial 𝑧 and 𝑤, 
divided by the negative depth (projection):

**remember w is a homogeneous coordinate, so w=1
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Screen Transform

• We now have a way of going from camera view 
frustrum to normalized screen space:
• Apply projection matrix
• Divide out w-coordinate (set to –z)

• Last transform: image space
• Take points from [-1,1] x [-1,1] to a W x H pixel 

image

• Step 1: reflect about x-axis
• Step 2: translate by (1,1)
• Step 3: scale by (W/2, H/2)

(0,0)

(1,1)

(-1,-1)

W

H (W,H)

(0,0)

[ normalized coordinates ]

[ image coordinates ]
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Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[ Rasterization Stage ]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)

Coordinates stretched to image dims.
Image flipped upside down.
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• Problem: displays don’t know what a triangle is or 
how to display one
• But they do know how to display a buffer of 

pixels!

• Goal: convert draw instructions into an image of 
pixels to show on the display
• Example:

Rasterization

Direct3D Documentation (2020) Microsoft

<polygon fill="#ED18ED" 
points="464.781,631.819 478.417,309.091 471.599,642.045 "/>

• The above is a valid svg instruction

• Requires turning shapes into pixels
• Need to check which shapes overlap which 

pixels

color

3 x (2D points)
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Rasterization

For Each Triangle:
      For Each Pixel:
            If Pixel In Triangle:
                  Pixel Color = Triangle Color 

• How to check if a pixel is inside a triangle?

• A pixel is a little square, check if the square 
exists inside the triangle**
• Expensive/hard to compute!

• A pixel is a point, check if the point exists inside 
the triangle
• Put the point at the pixel’s center
• We will refer to these as half-integer 

coordinates (Ex: [1.5, 4.5])

**”A pixel is not a little square” Alvy Ray Smith
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• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling



15-362/662 | Computer Graphics Lecture 04 | Rasterization

Before that,
Let’s learn how to draw a line!

Surely it can’t be difficult…it’s just a line
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Introduction To The Line

• A line is defined by 𝑥1, 𝑦1 , (𝑥2, 𝑦2)

• Slope given as m =
𝑦2−𝑦1

𝑥2−𝑥1

• What does it mean for a line to overlap a pixel?
• A pixel is just a point
• A line has no thickness

• Neither have a notion of area

• Instead, we will reinterpret pixels as squares
• A pixel lights up if the line intersects it

• Checking if a line intersects a pixel can 
be expensive!

• Find a linear algorithm ~O(n) where n is the 
number of output fragments
• Everything we check should be everything 

in the output
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The Bresenham Line Algorithm

• Consider the case when 𝑚 is in range 0,1
• Implies ∆𝑥 ≥  ∆𝑦

• We will traverse up the x-axis
• Each step of x we take, decide if we keep y 

the same or move y up one step
• Since 0 < 𝑚 < 1, a positive move in x 

causes a positive move in y 

Ensure the x-coordinate of (𝑥1, 𝑦1) is smaller
Let y’ be our current vertical component along the line
Let y be the initial 𝑦1

For each x value in range [𝑥1, 𝑥2] with step 1:
     Shade (x, y)
     Add m to y’ (if x takes step 1, y’ takes step m)
     If the new y’ is closer to the row of pixels above:
          Add 1 to y

If 𝑥1 > 𝑥2 : 
     Swap(𝑥1, 𝑥2),     Swap(𝑦1, 𝑦2) 
𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 𝑚| > 0.5):
          𝜀 ← 𝜀 + 𝑚 − 1,  𝑦 ← 𝑦 + 1
     Else:
          𝜀 ← 𝜀 + 𝑚

[ pseudocode ] [ code ]
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The Bresenham Line Algorithm

• What if 𝑚 is in range −1,0 ?

𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 𝑚| > 0.5):
          𝜀 ← 𝜀 + 𝑚 + 1,  𝑦 ← 𝑦 − 1
     Else:
          𝜀 ← 𝜀 + 𝑚

• What if 𝑚 > 1?

𝜀 ← 0, 𝑥 ← 𝑥1

For 𝑦 ← 𝑦1to 𝑦2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 1/𝑚| > 0.5):
          𝜀 ← 𝜀 + 1/𝑚 − 1,  𝑥 ← 𝑥 + 1
     Else:
          𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 < −1?

𝜀 ← 0, 𝑥 ← 𝑥1

For 𝑦 ← 𝑦1to 𝑦2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 1/𝑚| > 0.5):
          𝜀 ← 𝜀 + 1/𝑚 + 1,  𝑥 ← 𝑥 − 1
     Else:
          𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 is in range 0,1 ?

𝜀 ← 0, 𝑦 ← 𝑦1

For 𝑥 ← 𝑥1to 𝑥2 do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 𝑚| > 0.5):
          𝜀 ← 𝜀 + 𝑚 − 1,  𝑦 ← 𝑦 + 1
     Else:
          𝜀 ← 𝜀 + 𝑚

**When traversing x-axis, x1 must be smaller. When traversing y-axis, y1 must be smaller
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That’s kinda complicated…
Can we make it easier somehow?
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The [Nicer] Bresenham Line Algorithm

𝑎 = < 𝑥1, 𝑦1 >, 𝑏 = < 𝑥2, 𝑦2 >
∆𝑥 ← 𝑥2 − 𝑥1 , ∆𝑦 ← |𝑦2 − 𝑦1|

If (∆𝑥 > ∆𝑦):
     𝑖 ← 0,       𝑗 ← 1
If (∆𝑥 < ∆𝑦):
     𝑖 ← 1,       𝑗 ← 0

If (𝑎𝑖 > 𝑏𝑖):
     𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡1 ← 𝑓𝑙𝑜𝑜𝑟(𝑎𝑖), 𝑡2← 𝑓𝑙𝑜𝑜𝑟(𝑏𝑖)

For 𝑢 ← 𝑡1 to 𝑡2 do:

     𝑤 ←
𝑢+0.5 −𝑎𝑖

(𝑏𝑖−𝑎𝑖)

     𝑣 ← 𝑤 ∗ 𝑏𝑗 − 𝑎𝑗 + 𝑎𝑗 

     Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

setup coordinates

compute the longer axis 𝑖 
and the shorter axis 𝑗 

the starting coordinate should be the 
smaller value along the longer axis

for each step taken along the longer axis, 
compute the percent distance traveled 𝑤 
and project that percentage onto the 
shorter axis. Then convert to half-integer 
coordinates

compute long axis bounds 
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Introduction To The Line

• Bresenham algorithm only works if both the 
start and end coordinates lie on half-integer 
coordinates

• Instead we will consider a line to intersect a 
pixel if the line intersects the diamond inside 
the pixel

• 𝑥 − 𝑝𝑥 + 𝑦 − 𝑝𝑦 <
1

2

• Checks if point (𝑥, 𝑦) lies in the 
diamond of pixel 𝑝

• Still the same idea as before! The only 
difference is that we need to check if the 
endpoints correctly intersect the last pixels

In OpenGL/Scotty3D, 
line needs to fully go 
through diamond!
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The [Even Nicer] Bresenham Line Algorithm

𝑎 = < 𝑥1, 𝑦1 >, 𝑏 = < 𝑥2, 𝑦2 >
∆𝑥 ← 𝑥2 − 𝑥1 , ∆𝑦 ← |𝑦2 − 𝑦1|

If (∆𝑥 > ∆𝑦):
     𝑖 ← 0,       𝑗 ← 1
If (∆𝑥 < ∆𝑦):
     𝑖 ← 1,       𝑗 ← 0

If (𝑎𝑖 > 𝑏𝑖):
     𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡1 ← 𝑓𝑙𝑜𝑜𝑟(𝑎𝑖), 𝑡2← 𝑓𝑙𝑜𝑜𝑟(𝑏𝑖)

For 𝑢 ← 𝑡1 to 𝑡2 do:

     𝑤 ←
𝑢+0.5 −𝑎𝑖

(𝑏𝑖−𝑎𝑖)

     𝑣 ← 𝑤 ∗ 𝑏𝑗 − 𝑎𝑗 + 𝑎𝑗 

     Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

TODO: fix 𝑡1and 𝑡2 to properly account 
for OR discard the two edge fragments 
if the endpoints 𝑎 and 𝑏 are inside the 
‘diamond’ of the edge fragments

Remember: 𝑥 − 𝑝𝑥 + 𝑦 − 𝑝𝑦 <
1

2
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• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling
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The “Simpler” Graphics Pipeline
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Point-In-Triangle Test

a

b

c

q

• Which points do we check?
• Idea 1: check all points 𝑞 in the image

• For large images (1080p), we’re 
checking hundreds of thousands of 
points per triangle!

• Idea 2: check all points 𝑞 in the bounding 
box of the triangle:
• 𝑥𝑚𝑖𝑛 = min(𝑎𝑥, 𝑏𝑥, 𝑐𝑥)
• 𝑦𝑚𝑖𝑛 = min(𝑎𝑦, 𝑏𝑦, 𝑐𝑦)

• 𝑥𝑚𝑎𝑥 = max(𝑎𝑥, 𝑏𝑥, 𝑐𝑥)
• 𝑦𝑚𝑎𝑥 = max(𝑎𝑦, 𝑏𝑦, 𝑐𝑦)

• How to check if a point is inside a triangle?
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Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑏 side of 𝑎𝑐 

𝑎𝑐  × 𝑎𝑏  ∙ 𝑎𝑐  × 𝑎𝑞 > 0
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Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑎 side of 𝑐𝑏 

𝑐𝑏  × 𝑐𝑎  ∙ 𝑐𝑏  × 𝑐𝑞 > 0
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Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑐 side of 𝑏𝑐 

𝑏𝑎  × 𝑏𝑐  ∙ 𝑏𝑎  × 𝑏𝑞 > 0
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Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

𝑎𝑐  × 𝑎𝑏  ∙ 𝑎𝑐  × 𝑎𝑞 > 0 &&

𝑐𝑏  × 𝑐𝑎  ∙ 𝑐𝑏  × 𝑐𝑞 > 0 &&

𝑏𝑎  × 𝑏𝑐  ∙ 𝑏𝑎  × 𝑏𝑞 > 0

• What if b and c were swapped?

𝑎𝑏  × 𝑎𝑐  ∙ 𝑎𝑐  × 𝑎𝑞 < 0 

• Orientation matters!
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Point-In-Triangle Test

a

b

c

q

• Measurements must all either be positive or 
negative for point to be in triangle

𝑎𝑐  × 𝑎𝑏  ∙ 𝑎𝑐  × 𝑎𝑞 > 0 &&

𝑐𝑏  × 𝑐𝑎  ∙ 𝑐𝑏  × 𝑐𝑞 > 0 &&

𝑏𝑎  × 𝑏𝑐  ∙ 𝑏𝑎  × 𝑏𝑞 > 0

𝑎𝑏  × 𝑎𝑐  ∙ 𝑎𝑐  × 𝑎𝑞 < 0 &&

𝑐𝑎  × 𝑐𝑏  ∙ 𝑐𝑏  × 𝑐𝑞 < 0 &&

𝑏𝑐  × 𝑏𝑎  ∙ 𝑏𝑎  × 𝑏𝑞 < 0

OR

• Orientation no longer matters
• Just be consistent!
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Incremental Triangle Traversal

𝑃𝑖 = (𝑥𝑖/𝑤𝑖 𝑦𝑖/𝑤𝑖 𝑧𝑖/𝑤𝑖) = (𝑋𝑖 𝑌𝑖 𝑍𝑖)

𝑑𝑋𝑖 = 𝑋𝑖+1 − 𝑋𝑖

𝑑𝑌𝑖 = 𝑌𝑖+1 − 𝑌𝑖

𝐸𝑖 𝑥, 𝑦 = 𝑥 − 𝑋𝑖 𝑑𝑌𝑖 − 𝑦 − 𝑌𝑖 𝑑𝑋𝑖

𝐸𝑖 𝑥, 𝑦 = 0 : point on edge
𝐸𝑖 𝑥, 𝑦 > 0 : point outside edge
𝐸𝑖 𝑥, 𝑦 < 0 : point inside edge

𝑑𝐸𝑖 𝑥 + 1, 𝑦 = 𝐸𝑖 𝑥, 𝑦 + 𝑑𝑌𝑖

𝑑𝐸𝑖 𝑥, 𝑦 + 1 = 𝐸𝑖 𝑥, 𝑦 + 𝑑𝑋𝑖
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Parallel Coverage Tests

a

b

c
• Incremental traversal is very serial; modern 

hardware is highly parallel
• Test all samples in triangle bounding box in 

parallel

• All tests share some ‘setup’ calculations

• Computing 𝑎𝑐 , 𝑐𝑏 , 𝑏𝑎 

• Modern GPUs have special-purpose hardware 
for efficiently performing point-in-triangle tests
• Same set of instructions, regardless of 

which coordinate 𝑞 we are dealing with
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Hierarchical Coverage Tests

• Idea: work coarse-to-fine
• Check if large blocks are inside the triangle

• Early-in: every pixel is covered
• Early-out: every pixel is not covered
• Else: test each pixel coverage individually

• Early-in: if all 4 corners of the block are inside the triangle
• Else: if a triangle line intersects a block line
• Early-out: if neither Early-in nor Else

• Careful! Best to represent block as smallest bounding box to 
pixel samples, not the pixels themselves! 

early out

early in
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Hierarchical Coverage Tests

• What is the right block size?
• Too big: very difficult to get an Early-in or 

Early-out
• Too small: blocks are too similar to pixels

• Idea: create a hierarchy of block sizes
• When entering the Else case, just drop 

down to the next smallest block size
• Checking coverage reduced to logarithmic 

(We will learn why in a future lecture)
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• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling



15-362/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

Pixel

1

2

3

4

Which triangles “cover” this pixel?
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Pixel Coverage

10%

35%

60%

85%

15%

• Compute fraction of pixel area 
covered by triangle, then color pixel 
according to this fraction
• Ex: a red triangle that covers 10% 

of a pixel should be 10% red

• Difficult to compute area of box 
covered by triangle
• Instead, consider coverage as an 

approximation
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Coverage Via Samples

• A sample is a discrete measurement of a signal
• Used to convert continuous data to discrete, but we 

can also take samples of discrete data too

• The more samples we take, the more accurate the image 
becomes
• Same idea as using a larger sensor to take a better-

quality photo

• Problem: each sample adds more work 
• What is the best way to use the least amount of 

samples to best approximate the original scene?
• Main idea of sample theory
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Sampling in 1D

𝑓(𝑥0)
𝑓(𝑥1) 𝑓(𝑥2) 𝑓(𝑥3)

𝑓(𝑥4)

𝑥1𝑥0 𝑥2 𝑥3 𝑥4

𝑓(𝑥)

𝑓′(𝑥)

𝑥1𝑥0 𝑥2 𝑥3 𝑥4

• Idea: take 5 random samples along the domain 
and evaluate 𝑓(𝑥)
• Many different ways to interpolate points:

• Piecewise
• Linear
• Cubic

• Where is the best place to put 5 samples?
• We know the answer because we can see 

the entire function 𝑓 
• 𝑓 has been evaluated over the entire 

domain
• What if we cannot see all of 𝑓?
• What if 𝑓 is expensive to evaluate?
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Sampling in 1D

• Idea: take more than 5 random samples along 
the domain and evaluate 𝑓(𝑥)
• Gets a better reconstruction of 𝑓 but…

• More evaluation calls needed
• More memory to save

• Still don’t know the best way to interpolate 
samples
• Need to guess based on the behavior of 𝑓
• Can consider things like gradients and 

such…

𝑥1𝑥0 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8



Pixel (x,y)

1

2

3
4
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Pixel Coverage

Which triangles “cover” this pixel?

(x+0.5, y+0.5) Here I chose the coverage sample 
point to be at a point 
corresponding to the pixel center

= triangle but with a red outline

= triangle
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Edge Case

1

2

• When edge falls directly on a screen sample, 
the sample is classified as within triangle if the 
edge is a “top edge” or “left edge”
• Top edge: horizontal edge that is above all 

other edges
• Left edge: an edge that is not exactly 

horizontal and is on the left side of the 
triangle 
• Triangle can have one or two left 

edges

• This is known as edge ownership

Direct3D Documentation (2020) Microsoft
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So how many samples do we take?
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Sampling Per Pixel

Idea: take as many samples as there are pixels on screen
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Sampling Per Pixel

Problem: Results look blocky against edges
(let’s take more samples!)
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Aliasing Artifacts

• Imperfect sampling + imperfect reconstruction 
leads to image artifacts
• Jagged edges
• Moiré patterns

• Does this remind you of old school video games?
• Old games took few samples and took few 

steps to prevent aliasing
• Expensive to take more samples
• Not enough compute to do filtering to 

interpolate samples
• Not enough memory to take more 

samples
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Supersampling Per Pixel

Idea: take many more samples than there are pixels on screen



15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

Each pixel now holds n samples.
Average the n samples together to get 1 sample per pixel (1spp). 
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Resampling



15-362/662 | Computer Graphics Lecture 04 | Rasterization

Resampling



100% 0%

50%

50%

100%

25%100%
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Resampling
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Supersampling Artifacts

[ 1x1spp ] [ 4x4spp ] [ 32x32spp ]
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Supersampling Artifacts

In special cases, we can compute the exact coverage.
This occurs when what we are sampling matches our sampling 

pattern – very rare!
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