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Final Overview

• 80 minutes, 5 Problems worth 125 points in total
• Will be graded out of 100 points (anything after that is extra credit)

• First 4 problems (100pts) are based on lecture material found in these review slides
• 5th problem (extra 25pts) may or may not come from these review slides : )

• Cheat sheet: one 3x3 inch note (about the size of a post it note) front and back

• Please bring a pencil & pen to write your solutions
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3D Inverse Rotations

Lecture 03 | Transformations

𝑹𝑻𝑹 = 𝑰 ⇒ 𝑹𝑻= 𝑹−𝟏

If you need to review any slides more in depth, 
look here for which lecture it came from
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• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review
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Pixel Pushing

• Shaders
• Vertex Shader
• Fragment Shader

• Transformations
• Translate
• Scale
• Rotate

• Perspective Transform

• Scene Graphs
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The Graphics Pipeline

• Sometimes called the:
• 3D Graphics Pipeline
• Rasterization Pipeline
• GPU Pipeline

• GPU was designed specifically to run this pipeline fast

• Entire pipeline was fixed-function.
• You provide the data, a vertex shader, and a 

fragment shader, and the GPU does the rest.
• Fixed-function == fast!

• By limiting what an architecture can do, that 
makes the architecture really good at what it 
can do.

• In graphics, we need to run the same 
operations over millions of datapoints. 

Graphics Pipeline Tutorial (2019) Vulkan
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Invariants of Transformation

Lecture 03 | Transformations

A transformation is determined by the invariants it preserves
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Rotation

Lecture 03 | Transformations

[ keeps origin fixed ] [ preserves distance ] [ preserves orientation ]

First two properties imply rotations are linear

We say that a transform preserves orientation if det 𝑇 > 0
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2D Rotations

Lecture 03 | Transformations

Rotations preserve distances and the origin—hence, a 2D rotation by an 
angle 𝜃 maps each point 𝑥 to a point 𝑓(𝑥) on the circle of radius |𝑥|:
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2D Rotations

Lecture 03 | Transformations

Rotations (like all transforms) are linear maps.
We can express the transform as a change of bases:



• Does every matrix 𝑄𝖳𝑄 = 𝐼 represent a rotation?
• Must preserve:

• Origin
• Distance
• Orientation

• Consider:

• Just like rotations, 𝑄 has nice inverse properties:

• But the determinant is negative!
• Not orientation preserving 
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Reflections

Lecture 03 | Transformations
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Scaling

Lecture 03 | Transformations

• Each vector 𝑢 gets scaled by some scalar 𝑎

• Scaling is a linear transformation
• Multiplication:

• Addition:

𝑓(𝐮) = 𝑎𝐮, 𝑎 ∈ ℝ

𝑓(𝐮 + 𝐯) =
𝑎(𝐮 + 𝐯) =
𝑎𝐮 + 𝑎𝐯 =

𝑓(𝐮) + 𝑓(𝐯)

𝑓(𝑏𝐮) = 𝑎𝑏𝐮 = 𝑏𝑎𝐮 = 𝑏𝑓(𝐮)
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Negative Scaling

Lecture 03 | Transformations

Can think of negative scaling as a series of reflections

Also works in 3D:

[ flip x ] [ flip y ] [ flip z ]

In 2D, reflection reverses orientation twice (det 𝑇 > 0) 
In 3D, reflection reverses orientation thrice (det 𝑇 < 0)
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Non-Uniform Scaling

Lecture 03 | Transformations

• To scale a vector 𝑢 by a non-uniform amount (𝑎, 𝑏, 𝑐):

• The above works only if scaling is axis-aligned. What if it isn’t?
• Idea:

• Rotate to a new axis 𝑅
• Perform axis-aligned scaling 𝐷
• Rotate back to original axis 𝑅𝑇

• Resulting transform 𝐴 is a symmetric matrix

• Q: Do all symmetric matrices represent non-uniform scaling?

𝐴 ≔ 𝑅𝑇𝐷𝑅
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Shear

Lecture 03 | Transformations

• A shear displaces each point 𝑥 in a direction 𝑢 according to its 
distance along a fixed vector 𝑣:

• Still a linear transformation—can be rewritten as:

• Example:

𝑓𝐮,𝐯(𝐱) = 𝐱 + ⟨𝐯, 𝐱⟩𝐮

𝐴𝐮,𝐯 = 𝐼 + 𝐮𝐯𝖳

𝐮 = (cos(𝑡), 0,0)

𝐯 = (0,1,0)
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Composing Transforms

Lecture 03 | Transformations

𝑅𝑥(𝑡) 𝑅𝑦(𝑡) 𝑆(𝑡) 𝐴(𝑡) = 𝑅𝑥(𝑡)𝑅𝑦(𝑡)𝑆(𝑡)

We can now build up composite transformations via matrix multiplication
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Composing Transforms

Lecture 03 | Transformations

3

1

1.5

0.5

[ scale by 1/2, then translate by (3,1) ]

[ translate by (3,1), then scale by 1/2 ]

• Order matters when compositing transforms!

[ original ]
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Composing Transforms

Lecture 03 | Transformations

2

3

4
2

How would you perform these transformations?**

**remember there’s always more than one way to do so
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Rotating About A Point

Lecture 03 | Transformations

[ Step 1 ] translate by -x

[ Step 3 ] translate by x[ Step 2 ] rotate

[ Step 0 ] compute x (dist. from origin)
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Perspective Projection

distant objects
appear smaller

parallel lines
converge at
the horizon
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Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[ Rasterization Stage ]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)

Coordinates stretched to image dims.
Image flipped upside down.
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Scene Graph

• Suppose we want to build a skeleton out of cubes

• Idea: transform cubes in world space
• Store transform of each cube

• Problem: If we rotate the left upper leg, the lower left 
leg won’t track with it

• Better Idea: store a hierarchy of transforms
• Known as a scene graph
• Each edge (+root) stores a linear 

transformation
• Composition of transformations gets applied 

to nodes
• Keep transformations on a stack to 

reduce redundant multiplication

• Lower left leg transform: 𝐴2𝐴1𝐴0

𝐴0

𝐴1

𝐴2
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Instancing

• What if we want many copies of the same object in a 
scene?

• Rather than have many copies of the geometry, 
scene graph, we can just put a “pointer” node in 
our scene graph

• Saves a reference to a shared geometry
• Specify a transform for each reference

• Careful: Modifying the geometry will 
modify all references to it

Realistic modeling and rendering of plant ecosystems 
(1998) Deussen et al



15-362/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation
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Meshes

• Types of Geometric Representations
• Algebraic Surfaces
• CSG
• Blobby 
• Level Set
• Fractals
• Point Cloud
• Meshes

• Global Mesh Operations
• Subdivision
• Isotropic Remeshing

• Spatial Data Structures
• BVH
• KD-Tree
• Uniform Grid
• Quadtree/Octree
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Algebraic Surfaces [Implicit]

• Simple way to think of it: a surface built with algebra [math]
• Intuitively thought of as a surface where points are some radius 

𝑟 away from another point/line/surface

• Easy to generate smooth/symmetric surfaces
• Difficult to generate impurities/deformations
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Constructive Solid Geometry [Implicit]

• Build more complicated shapes via Boolean operations
• Basic operations:

• Can be used to form complex shapes!
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Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

f=.5 f=.4 f=.3

(Gaussian centered at p)

(Sum of Gaussians centered at different points)
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Level Set Methods [Implicit]

• Implicit surfaces have some nice features (e.g., merging/splitting)
• But, hard to describe complex shapes in closed form
• Alternative: store a grid of values approximating function

• Surface is found where interpolated values equal zero
• Provides much more explicit control over shape (like a texture)
• Unlike closed-form expressions, runs into problems of aliasing!
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Fractals [Implicit]

• No precise definition; exhibit self-similarity, detail at all scales
• New “language” for describing natural phenomena
• Hard to control shape!
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Point Cloud [Explicit]

• Easiest representation: list of points (𝑥, 𝑦, 𝑧)
• Often augmented with normal

• Easily represent any kind of geometry

• Easy to draw dense cloud (>>1 point/pixel)

• Easy for simulating large deformation or topology changes, e.g. fluids, 
fracture

• Large lookup time

• Large memory overhead
• Hard to interpolate undersampled regions
• Slow to do processing / simulation /
• Result is just as good as the scan
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Triangle Mesh [Explicit]

• Larger memory overhead than point clouds
• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)

• Easy interpolation with good approximation
• Use barycentric interpolation to define points 

inside triangles

• Polygonal Mesh: shapes do not need to be 
triangles

• Ex: quads

0

1

2

3

x  y  z

0: -1 -1 -1

1:  1 -1  1

2:  1  1 -1

3: -1  1  1

[ VERTICES ]
i j k

0  2  1

0  3  2

3  0  1

3  1  2

[ TRIANGLES ]
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Loop Subdivision

Step 1: 

Step 2: Step 3: 

Split triangle 
into 4 triangles

Assign new coords Assign old coords

1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
      3/(8n) otherwise

Refine and upsample the mesh with additional smoothness.
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Loop Subdivision Using Local Ops

Step 1: 

Step 2: 
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split
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Isotropic Remeshing

Step 1: Step 2: 

Step 3: Step 4: 

collapsesplit

flip average

Improving mesh quality (polygon angles, edge lengths, etc.) by iteratively performing local operations.
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Bounding Volume Hierarchy (BVH)

Bounding boxes will sometimes intersect!

A tree structure designed to accelerate 
geometry queries, e.g. ray-triangle 
intersections, by efficiently reducing the 
number of necessary checks.
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BVH Construction and Traversal

Building the BVH:
1) Pick axis [x,y,z] 

1) Sort primitives on axis by centroid
2) Bin primitives (B = 32)
3) Partition primitives by bin along axis
4) Compute cost, saving best result

2) Construct 2 child nodes from best cost result
3) Recurse until few primitives (< 4) left in node

Traversing the BVH:
1) Check if ray hits current node bbox
2) If hit, find which child node is closer to ray
3) Recurse down closer child
4) If the farther child node is closer to the ray than 

the hit discovered, recurse down the farther child

Traversal cost is 𝑂(log(𝑁)), same as tree-search
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Non-Axis-Aligned BVH

• What is an axis-aligned BVH?
• By searching for partitions along the axes [x,y,z], we are 

constraining ourselves to build partitions with bounding 
boxes that are axis-aligned

• How do we make a non-axis-aligned BVH?
• Simple! Just search for partitions that are not 

constrained to [x,y,z]
• Easy in theory, difficult in practice

• What are the pros/cons of non-axis-aligned BVH?
• [+] Better cost
• [+] Nodes have less likelihood of having empty space
• [-] More work to compute partitions
• [-] Larger cost checking intersection for non-aligned 

bboxes
• [-] More memory overhead
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K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Recursively partition space via axis-aligned 
partitioning planes

• Interior nodes correspond to spatial splits
• Node traversal proceeds in front-to-back order
• Unlike BVH, can terminate search after first hit 

is found 
• Still 𝑂(log(𝑁)) performance
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Uniform Grid

• Partition space into equal sized volumes (volume-
elements or “voxels”)

• Each grid cell contains primitives that overlap voxel. 
(very cheap to construct acceleration structure)

• Walk ray through volume in order
• Very efficient implementation possible (think: 3D 

line rasterization)
• Only consider intersection with primitives in 

voxels the ray intersects

• What is a good number of voxels?
• Should be proportional to total number of 

primitives 𝑁
• Number of cells traversed is proportional to 

𝑂(
3

𝑁)
• A line going through a cube is a cubed root
• Not as good as 𝑂(log(𝑁))
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Quad-Tree/Octree

• Like uniform grid, easy to build
• Has greater ability to adapt to location of scene 

geometry than uniform grid
• Still not as good adaptability as K-D tree

• Quad-tree: nodes have 4 children
• Partitions 2D space

• Octree: nodes have 8 children 
• Partitions 3D space
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Color & Radiometry

• Absorption vs Emission

• Eyes vs Cameras
• Pupil
• Lens
• Rods
• Cones

• Radiance
• Radiant Energy
• Radiant Energy Density
• Radiant Flux
• Irradiance

• Lambert’s Law
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Emission Spectrum Examples

energy efficient

sun-like
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Absorption Spectrum Examples

plants are green because they do not absorb green light
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‘Eye’ See What You Mean

• Eyes are biological cameras
• Light passes through the pupil [black dot in the eye]
• Iris controls how much light enters eye [colored ring 

around pupil]
• Eyes are sensitive to too much light
• Iris protects the eyes

• Lens behind the eye converges light rays to back of 
the eye

• Ciliary muscles around the lens allow the lens 
to be bent to change focus on nearby/far 
objects

• 130+ million retina cells at the back of the eye
• Cells pick up light and convert it to electrical signal
• Electric signal passes through optic nerve to reach 

the brain
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The Biological Camera

• Pupil is the camera opening
• Allows light through

• Iris is the aperture ring
• Controls aperture

• Lens is the…well, lens
• Can change focus

• Retina is the sensor
• Converts light into electrical signal

• Brain is the CPU
• Performs additional compute to correct 

raw image signal
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Rods & Cones

Rods

Cones
(three types)

• Cones are primary receptors near fovea used under high-light viewing conditions
• Approx. 6-7 million cones in the human eye
• Capture color

• Rods are primary receptors far from fovea used under low-light viewing conditions 
• Approx. 120 million rods in human eye
• Capture intensity
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Spectral Response of Cones

• Long, Medium, and Small cones pick up Long, 
Medium, and Small wavelengths respectively

• Each cone picks up a range of colors given by their 
response functions

• Not much different than absorption spectrum

• Each cone integrates the emission & response to 
produce a single signal to transmit to the brain 

• Uneven distribution of cone types in eye
• ~64% L cones, ~ 32% M cones ~4% S cones
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Radiant Recap

Radiant Energy
(total number of hits)

Joules (J)

Radiant Energy Density
(hits per unit area)

Joules per sq meter (J/𝑚2)

Radiant Flux
(total hits per second)

Watts (W)

Radiant Flux Density

a.k.a. Irradiance
(hits per second per unit area)

Watts per sq meter(W/𝑚2)

Lecture 10 | Radiometry



15-362/662 | Computer Graphics

Lambert’s Law

• Irradiance (𝐸) at surface is proportional to the flux (Φ) and 
the cosine of angle (𝜃) between light direction and surface 
normal:

• Consider rotating a plane away from light rays
• Plane will darken until it is perpendicular to light rays, 

then it will be completely black

Lecture 10 | Radiometry
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The Rendering Equation

• The Rendering Equation

• Rendering Methods
• Forwards Path-Tracing
• Backwards Path-Tracing
• Bi-Directional Path-Tracing
• Metropolis Light Transport

• Variance Reduction
• Sampling Rate
• Ray Depth

• BRDFs
• Lambertian
• Mirror
• Glass
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The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖 
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Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface 
• Emits a ray in reflected direction
• Mixes blue and yellow and orange

• Ray passes through pinhole camera
• Light recorded on photoelectric cell
• Incident pixel will be brown in final image
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Hemholtz Reciprocity

• Reversing the order of incoming and 
outgoing light does not affect the BRDF 
evaluation

• 𝑓𝑟 p, 𝜔𝑖 → 𝜔𝑜  = 𝑓𝑟 p, 𝜔𝑜 → 𝜔𝑖

• Critical to reverse pathtracing algorithms
• Allows us to trace rays backwards and 

still get the same BRDF affect

𝐩

𝜔𝑖 𝜔0 

𝐩

𝜔𝑜 𝜔𝑖 
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Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3 ]]

𝐿 𝑝𝑖𝑥𝑒𝑙 =  +𝑓𝑟  [ +𝑓𝑟  [ ]]

• Intersect       , no emission 
• Intersect       , no emission 
• Ray terminate, emission

[ ray depth 2 ]
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Bidirectional Path Tracing

Lecture 13 | Variance Reduction

• If path tracing is so great, why not do it twice?
• Main idea of bidirectional!

• Trace a ray from the camera into the scene
• Trace a ray from the light into the scene

• Connect the rays at the end

• Unbiased algorithm
• No longer trying to connect rays through 

non-volume sources

• Can set different lengths per ray
• Example: Forward m = 2, Backward m = 1
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Metropolis Light Transport

Lecture 13 | Variance Reduction

[ Path Tracing ] [ Metropolis Light Transport ]

• Similar idea: mutate good paths

• Water causes paths to refract a lot
• Small mutations allows renderer to find 

contributions faster

• Path Tracing and MLT rendered in the same time
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Number Of Ray Samples

• Number of Rays
• How many rays we trace into the scene

• Measured as samples (rays) per pixel [spp]

• Increasing the number of rays increases the quality 
of the image

• Anti-aliasing
• Reduces black spots from terminating emission 

occlusion [ 1
6 spp

 ]
[ 1

 sp
p

 ]

Lecture 13 | Variance Reduction



15-362/662 | Computer Graphics

Number Of Ray Bounces

• Number of Ray Bounces
• How many times a ray bounces before it 

terminates
• Measured as ray bounce or depth

• Increasing the number of ray bounces increases the 
quality of the image

• Better color blending around images
• More details reflected in specular images

[ 8
 d

e
p

th
 ]

[ 2
 d

ep
th

 ]

Lecture 13 | Variance Reduction
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Lambertian Material

• Also known as diffuse

• Light is equally likely to be reflected in each output 
direction

• BRDF is a constant, relying on albedo (𝜌)

• BRDF can be pulled out of the integral

• Easy! Pick any outgoing ray 𝑤𝑜 

Minions (2015) Illumination Entertainment
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Reflective Material
[ side view ]

[ top view ]

• Reflectance equation described as:

• Why is the ray 𝜔𝑖 pointing away from the surface?
• Just syntax. Incoming and outgoing rays share 

same origin point p

• BRDF represented by dirac delta (𝛿) function:

• 1 when ray is perfect reflection, 0 everywhere else
• All radiance gets reflected, nothing absorbed

• In practice, no hope of finding reflected direction via 
random sampling

• Simply pick the reflected direction!
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• 𝜂𝑖 and 𝜂𝑡 describe the index of refraction of the incoming 
and outgoing mediums

• Example: 𝜂𝑖 is air, 𝜂𝑡 is water 

• 𝜂 is the ratio of the speed of light in a vacuum to that 
in a second medium of greater density

• The larger the 𝜂, the denser the material

Vacuum
Air (sea level)
Water (20°C)
Glass
Diamond

1.0
1.00029
1.333
1.5-1.6
2.42

Medium 𝜼
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• Can rewrite the equation as:
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Types of Reflectance Functions

Ideal Specular

• Perfect mirror

Ideal Diffuse

• Uniform in all directions

Glossy Specular

• Majority of light in reflected direction

Retroreflective

• Reflects light back towards source
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Animation Simulation

• Simulation
• ODEs vs PDEs
• Boundary Conditions
• Laplacian

• Motion Graphs
• Displacement
• Velocity
• Acceleration

• Splines
• Natural Splines
• Hermite/Bezier Curves
• B-Splines
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Natural Splines

• Can build a spline out of piecewise cubic polynomials 𝑝𝑖

• Each polynomial extends from range 𝑡 = [0,1]
• Polynomials should connect on boundary 

• Keyframes agree at endpoints [C0 continuity]:

• Tangents agree at endpoints [C1 continuity]:

• Curvature agrees at endpoints [C2 continuity]:

• Total equations:
• 2n + (n-1) + (n-1) = 4n – 2

• Total DOFs:
• 2n + n + n = 4n

• Set curvature at endpoints to 0 and solve

𝑝𝑖(𝑡𝑖) = 𝑓𝑖, 𝑝𝑖(𝑡𝑖+1) = 𝑓𝑖+1, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′𝑖 𝑡𝑖+1 = 𝑝′𝑖+1 𝑡𝑖+1 , ∀𝑖 = 0, … , 𝑛 − 2

𝑝′′𝑖 𝑡𝑖+1 = 𝑝′′𝑖+1 𝑡𝑖+1 , ∀𝑖 = 0, … , 𝑛 − 2

𝑝′′0 𝑡0 = 0, 𝑝′′0 𝑡𝑖+1 = 0
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Hermite/Bézier Splines

• Each cubic “piece” specified by endpoints and tangents
• Keyframes set at endpoints:

• Tangents set at endpoint:

• Natural splines specify just keyframes
• Bezier splines specify keyframes and tangents
• Can get continuity if tangents are set equal

• Total equations:
• 2n + 2n = 4n

• Commonly used in vector art programs
• Illustrator
• Inkscape
• SVGs

𝑝𝑖(𝑡𝑖) = 𝑓𝑖, 𝑝𝑖(𝑡𝑖+1) = 𝑓𝑖+1, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′𝑖 𝑡𝑖 = 𝑢𝑖, 𝑝′𝑖 𝑡𝑖+1 = 𝑢𝑖,+1 , ∀𝑖 = 0, … , 𝑛 − 1
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B-Splines

• Compute a weighted average of nearby keyframes when 
interpolating

• B-spline basis defined recursively, with base condition:

• And inductive condition:

• B-spline is a linear combination of bases:
degree
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Splines Review

[ Interpolation ] [ Continuity ] [ Locality ]

Linear

Natural

✓

Hermite

B-Spline

Bezier

Catmull-Rom

✓

✓

✓

✓

✗

✓

✗

✓

✓

✓

✓

✗

✓

✗

✗

✗

✓
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Simulations

• ODE vs PDE

• Time Integration
• Forward Euler
• Symplectic Euler

• Laplacian
• 2nd-order Derivative

• Boundary Conditions
• Dirichlet
• Neumann
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ODEs vs. PDEs

[ PDE ] thrown rock lands in pond[ ODE ] throwing a rock

𝑑2

𝑑𝑡2 𝐱(𝑡) = 𝐠

𝑑2

𝑑𝑡2 ℎ(𝑡, 𝑥, 𝑦) = Δℎ(𝑡, 𝑥, 𝑦)

Aren’t both a function of space and time?

A single object (rock) in time Millions of objects (droplets) in time

The region of droplets we want to 
solve over is our space

No additional space parameter

Lecture 16 | Simulations
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Explicit Time Integration Methods

𝑞𝑘+1 = 𝑞𝑘 + 𝜏 ∗ 𝑣𝑘

𝑣𝑘+1 = 𝑣𝑘 + 𝜏 ∗ 𝑎(𝑞𝑘)

𝑞𝑘+1 = 𝑞𝑘 + 𝜏 ∗ 𝑣𝑘+1

𝑣𝑘+1 = 𝑣𝑘 + 𝜏 ∗ 𝑎(𝑞𝑘)
𝑞𝑘+1 = 𝑞𝑘 + 𝜏 ∗ 𝑣𝑘+1

𝑣′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘)

𝑣′′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘 +
𝑣′

𝑘+1

2
)

𝑣𝑘+1 = 𝑣𝑘 + 𝑣′′𝑘+1

[ Forward ]

[ Symplectic ]

[RK2 ]

[ Verlet ]

𝑞𝑘+1 = 𝑞𝑘 + 𝜏 ∗ 𝑣𝑘+1

𝑣𝑘+1 = 𝑣𝑘+0.5 +
𝜏

2
∗ 𝑎(𝑞𝑘)

𝑣𝑘+1.5 = 𝑣𝑘+1 +
𝜏

2
∗ 𝑎(𝑞𝑘)

𝑞𝑘+1 = 𝑞𝑘 +
1

6
(𝑣′

𝑘+1 + 2𝑣′′𝑘+1+ 2𝑣′′′𝑘+1+ 𝑣′′′′𝑘+1)

𝑣′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘)

𝑣′′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘 +
𝑣′

𝑘+1

2
)

[ RK4 ]

𝑣′′′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘 +
𝑣′′𝑘+1

2
)

𝑣′′′′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘 + 𝑣′′′𝑘+1)

Lecture 16 | Simulations

• Explicit methods are 
often faster but less 
stable than implicit 
methods

• Stability and accuracy 
are different
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The Laplace Operator

• All of our model equations used the Laplace operator
• Laplace Equation   ∆𝑢 = 0
• Heat Equation          ሶ𝑢 = ∆𝑢
• Wave Equation         ሷ𝑢 = ∆𝑢

• Unbelievably important object showing up everywhere across physics, 
geometry, signal processing, and more

• What does the Laplacian mean?
• Differential operator: eats a function, spits out its 2nd derivative
• What does that mean for a function: 𝑢: ℝ𝑛 → ℝ?

• Divergence of gradient

• Sum of second derivatives

• Deviation from local average
• …

Lecture 16 | Simulations
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Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Example: 𝜙(0) = 𝑎, 𝜙(1) = 𝑏

Many possible functions interpolate values in between

Lecture 16 | Simulations
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Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: 𝜙′(0) = 𝑢  ,𝜙′(1) = 𝑣

Again, many possible functions

Lecture 16 | Simulations



15-362/662 | Computer Graphics

Discretizing The Laplacian

• Consider the Laplacian as a sum of second 
derivatives:

• How do we compute this numerically?

• Consider a non-differentiable function with 
evaluated samples 𝑥0, 𝑥1, …

• The 1st-order derivative approximated is:

• The 2nd-order derivative approximated is:

• Known as the finite difference approach to PDEs

𝑢′(𝑥𝑖) ≈
𝑢𝑖+1 − 𝑢𝑖

ℎ

𝑢′′(𝑥𝑖) ≈
𝑢𝑖

′ − 𝑢𝑖−1
′

ℎ
≈

𝑢𝑖+1 − 𝑢𝑖
ℎ

−
𝑢𝑖 − 𝑢𝑖−1

ℎ
ℎ

=
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

ℎ2

Lecture 18 | Simulations
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Discretizing The Laplacian

What if 𝑢 is not a 1D function…

[ Grid ] [ Triangle Mesh ]

If the mesh is a grid,
equations become the same

Lecture 18 | Simulations
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Solving The Heat Equation

Heat equation tells us the Laplacian is equal to the first temporal derivative:

Compute the Laplacian approximately, e.g. using finite difference on a grid:

Propagate using the first temporal derivative ∆𝑢 (Ex: forward Euler):

Lecture 18 | Simulations



15-362/662 | Computer Graphics

Good Luck!

Lecture R02 | Final Review
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When the slides are over and you & your friends want to 
leave class but the professor keeps talking

Lecture R02 | Final Review
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How I sleep knowing I learned a lot from 15-362/662

Lecture R02 | Final Review
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Thank you for taking this course.

Lecture R02 | Final Review
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