
Final Review

15-362/662 | Computer Graphics Lecture R02 | Final Review

15-362/662 | Computer Graphics Lecture R02 | Final Review

Final Overview

• 80 minutes, 5 Problems worth 125 points in total
• Will be graded out of 100 points (anything after that is extra credit)

• First 4 problems (100pts) are based on lecture material found in these review slides
• 5th problem (extra 25pts) may or may not come from these review slides :)

• Cheat sheet: one 3x3 inch note (about the size of a post it note) front and back

• Please bring a pencil & pen to write your solutions

15-362/662 | Computer Graphics

3D Inverse Rotations

Lecture 03 | Transformations

𝑹𝑻𝑹 = 𝑰 ⇒ 𝑹𝑻= 𝑹−𝟏

If you need to review any slides more in depth,
look here for which lecture it came from

15-362/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review

15-362/662 | Computer Graphics Lecture R02 | Final Review

Pixel Pushing

• Shaders
• Vertex Shader
• Fragment Shader

• Transformations
• Translate
• Scale
• Rotate

• Perspective Transform

• Scene Graphs

15-362/662 | Computer Graphics Lecture 01 | Introduction

The Graphics Pipeline

• Sometimes called the:
• 3D Graphics Pipeline
• Rasterization Pipeline
• GPU Pipeline

• GPU was designed specifically to run this pipeline fast

• Entire pipeline was fixed-function.
• You provide the data, a vertex shader, and a

fragment shader, and the GPU does the rest.
• Fixed-function == fast!

• By limiting what an architecture can do, that
makes the architecture really good at what it
can do.

• In graphics, we need to run the same
operations over millions of datapoints.

Graphics Pipeline Tutorial (2019) Vulkan

15-362/662 | Computer Graphics

Invariants of Transformation

Lecture 03 | Transformations

A transformation is determined by the invariants it preserves

15-362/662 | Computer Graphics

Rotation

Lecture 03 | Transformations

[keeps origin fixed] [preserves distance] [preserves orientation]

First two properties imply rotations are linear

We say that a transform preserves orientation if det 𝑇 > 0

15-362/662 | Computer Graphics

2D Rotations

Lecture 03 | Transformations

Rotations preserve distances and the origin—hence, a 2D rotation by an
angle 𝜃 maps each point 𝑥 to a point 𝑓(𝑥) on the circle of radius |𝑥|:

15-362/662 | Computer Graphics

2D Rotations

Lecture 03 | Transformations

Rotations (like all transforms) are linear maps.
We can express the transform as a change of bases:

• Does every matrix 𝑄𝖳𝑄 = 𝐼 represent a rotation?
• Must preserve:

• Origin
• Distance
• Orientation

• Consider:

• Just like rotations, 𝑄 has nice inverse properties:

• But the determinant is negative!
• Not orientation preserving

15-362/662 | Computer Graphics

Reflections

Lecture 03 | Transformations

15-362/662 | Computer Graphics

Scaling

Lecture 03 | Transformations

• Each vector 𝑢 gets scaled by some scalar 𝑎

• Scaling is a linear transformation
• Multiplication:

• Addition:

𝑓(𝐮) = 𝑎𝐮, 𝑎 ∈ ℝ

𝑓(𝐮 + 𝐯) =
𝑎(𝐮 + 𝐯) =
𝑎𝐮 + 𝑎𝐯 =

𝑓(𝐮) + 𝑓(𝐯)

𝑓(𝑏𝐮) = 𝑎𝑏𝐮 = 𝑏𝑎𝐮 = 𝑏𝑓(𝐮)

15-362/662 | Computer Graphics

Negative Scaling

Lecture 03 | Transformations

Can think of negative scaling as a series of reflections

Also works in 3D:

[flip x] [flip y] [flip z]

In 2D, reflection reverses orientation twice (det 𝑇 > 0)
In 3D, reflection reverses orientation thrice (det 𝑇 < 0)

15-362/662 | Computer Graphics

Non-Uniform Scaling

Lecture 03 | Transformations

• To scale a vector 𝑢 by a non-uniform amount (𝑎, 𝑏, 𝑐):

• The above works only if scaling is axis-aligned. What if it isn’t?
• Idea:

• Rotate to a new axis 𝑅
• Perform axis-aligned scaling 𝐷
• Rotate back to original axis 𝑅𝑇

• Resulting transform 𝐴 is a symmetric matrix

• Q: Do all symmetric matrices represent non-uniform scaling?

𝐴 ≔ 𝑅𝑇𝐷𝑅

15-362/662 | Computer Graphics

Shear

Lecture 03 | Transformations

• A shear displaces each point 𝑥 in a direction 𝑢 according to its
distance along a fixed vector 𝑣:

• Still a linear transformation—can be rewritten as:

• Example:

𝑓𝐮,𝐯(𝐱) = 𝐱 + ⟨𝐯, 𝐱⟩𝐮

𝐴𝐮,𝐯 = 𝐼 + 𝐮𝐯𝖳

𝐮 = (cos(𝑡), 0,0)

𝐯 = (0,1,0)

15-362/662 | Computer Graphics

Composing Transforms

Lecture 03 | Transformations

𝑅𝑥(𝑡) 𝑅𝑦(𝑡) 𝑆(𝑡) 𝐴(𝑡) = 𝑅𝑥(𝑡)𝑅𝑦(𝑡)𝑆(𝑡)

We can now build up composite transformations via matrix multiplication

15-362/662 | Computer Graphics

Composing Transforms

Lecture 03 | Transformations

3

1

1.5

0.5

[scale by 1/2, then translate by (3,1)]

[translate by (3,1), then scale by 1/2]

• Order matters when compositing transforms!

[original]

15-362/662 | Computer Graphics

Composing Transforms

Lecture 03 | Transformations

2

3

4
2

How would you perform these transformations?**

**remember there’s always more than one way to do so

15-362/662 | Computer Graphics

Rotating About A Point

Lecture 03 | Transformations

[Step 1] translate by -x

[Step 3] translate by x[Step 2] rotate

[Step 0] compute x (dist. from origin)

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

distant objects
appear smaller

parallel lines
converge at
the horizon

15-362/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[Rasterization Stage]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)

Coordinates stretched to image dims.
Image flipped upside down.

15-362/662 | Computer Graphics Lecture 03 | Transformations

Scene Graph

• Suppose we want to build a skeleton out of cubes

• Idea: transform cubes in world space
• Store transform of each cube

• Problem: If we rotate the left upper leg, the lower left
leg won’t track with it

• Better Idea: store a hierarchy of transforms
• Known as a scene graph
• Each edge (+root) stores a linear

transformation
• Composition of transformations gets applied

to nodes
• Keep transformations on a stack to

reduce redundant multiplication

• Lower left leg transform: 𝐴2𝐴1𝐴0

𝐴0

𝐴1

𝐴2

15-362/662 | Computer Graphics Lecture 03 | Transformations

Instancing

• What if we want many copies of the same object in a
scene?

• Rather than have many copies of the geometry,
scene graph, we can just put a “pointer” node in
our scene graph

• Saves a reference to a shared geometry
• Specify a transform for each reference

• Careful: Modifying the geometry will
modify all references to it

Realistic modeling and rendering of plant ecosystems
(1998) Deussen et al

15-362/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review

15-362/662 | Computer Graphics Lecture R02 | Final Review

Meshes

• Types of Geometric Representations
• Algebraic Surfaces
• CSG
• Blobby
• Level Set
• Fractals
• Point Cloud
• Meshes

• Global Mesh Operations
• Subdivision
• Isotropic Remeshing

• Spatial Data Structures
• BVH
• KD-Tree
• Uniform Grid
• Quadtree/Octree

15-362/662 | Computer Graphics Lecture 06 | Geometry

Algebraic Surfaces [Implicit]

• Simple way to think of it: a surface built with algebra [math]
• Intuitively thought of as a surface where points are some radius

𝑟 away from another point/line/surface

• Easy to generate smooth/symmetric surfaces
• Difficult to generate impurities/deformations

15-362/662 | Computer Graphics Lecture 06 | Geometry

Constructive Solid Geometry [Implicit]

• Build more complicated shapes via Boolean operations
• Basic operations:

• Can be used to form complex shapes!

15-362/662 | Computer Graphics Lecture 06 | Geometry

Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

f=.5 f=.4 f=.3

(Gaussian centered at p)

(Sum of Gaussians centered at different points)

15-362/662 | Computer Graphics Lecture 06 | Geometry

Level Set Methods [Implicit]

• Implicit surfaces have some nice features (e.g., merging/splitting)
• But, hard to describe complex shapes in closed form
• Alternative: store a grid of values approximating function

• Surface is found where interpolated values equal zero
• Provides much more explicit control over shape (like a texture)
• Unlike closed-form expressions, runs into problems of aliasing!

15-362/662 | Computer Graphics Lecture 06 | Geometry

Fractals [Implicit]

• No precise definition; exhibit self-similarity, detail at all scales
• New “language” for describing natural phenomena
• Hard to control shape!

15-362/662 | Computer Graphics Lecture 06 | Geometry

Point Cloud [Explicit]

• Easiest representation: list of points (𝑥, 𝑦, 𝑧)
• Often augmented with normal

• Easily represent any kind of geometry

• Easy to draw dense cloud (>>1 point/pixel)

• Easy for simulating large deformation or topology changes, e.g. fluids,
fracture

• Large lookup time

• Large memory overhead
• Hard to interpolate undersampled regions
• Slow to do processing / simulation /
• Result is just as good as the scan

15-362/662 | Computer Graphics Lecture 06 | Geometry

Triangle Mesh [Explicit]

• Larger memory overhead than point clouds
• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)

• Easy interpolation with good approximation
• Use barycentric interpolation to define points

inside triangles

• Polygonal Mesh: shapes do not need to be
triangles

• Ex: quads

0

1

2

3

x y z

0: -1 -1 -1

1: 1 -1 1

2: 1 1 -1

3: -1 1 1

[VERTICES]
i j k

0 2 1

0 3 2

3 0 1

3 1 2

[TRIANGLES]

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision

Step 1:

Step 2: Step 3:

Split triangle
into 4 triangles

Assign new coords Assign old coords

1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
 3/(8n) otherwise

Refine and upsample the mesh with additional smoothness.

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision Using Local Ops

Step 1:

Step 2:
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Isotropic Remeshing

Step 1: Step 2:

Step 3: Step 4:

collapsesplit

flip average

Improving mesh quality (polygon angles, edge lengths, etc.) by iteratively performing local operations.

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Bounding Volume Hierarchy (BVH)

Bounding boxes will sometimes intersect!

A tree structure designed to accelerate
geometry queries, e.g. ray-triangle
intersections, by efficiently reducing the
number of necessary checks.

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Construction and Traversal

Building the BVH:
1) Pick axis [x,y,z]

1) Sort primitives on axis by centroid
2) Bin primitives (B = 32)
3) Partition primitives by bin along axis
4) Compute cost, saving best result

2) Construct 2 child nodes from best cost result
3) Recurse until few primitives (< 4) left in node

Traversing the BVH:
1) Check if ray hits current node bbox
2) If hit, find which child node is closer to ray
3) Recurse down closer child
4) If the farther child node is closer to the ray than

the hit discovered, recurse down the farther child

Traversal cost is 𝑂(log(𝑁)), same as tree-search

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Non-Axis-Aligned BVH

• What is an axis-aligned BVH?
• By searching for partitions along the axes [x,y,z], we are

constraining ourselves to build partitions with bounding
boxes that are axis-aligned

• How do we make a non-axis-aligned BVH?
• Simple! Just search for partitions that are not

constrained to [x,y,z]
• Easy in theory, difficult in practice

• What are the pros/cons of non-axis-aligned BVH?
• [+] Better cost
• [+] Nodes have less likelihood of having empty space
• [-] More work to compute partitions
• [-] Larger cost checking intersection for non-aligned

bboxes
• [-] More memory overhead

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Recursively partition space via axis-aligned
partitioning planes

• Interior nodes correspond to spatial splits
• Node traversal proceeds in front-to-back order
• Unlike BVH, can terminate search after first hit

is found
• Still 𝑂(log(𝑁)) performance

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Uniform Grid

• Partition space into equal sized volumes (volume-
elements or “voxels”)

• Each grid cell contains primitives that overlap voxel.
(very cheap to construct acceleration structure)

• Walk ray through volume in order
• Very efficient implementation possible (think: 3D

line rasterization)
• Only consider intersection with primitives in

voxels the ray intersects

• What is a good number of voxels?
• Should be proportional to total number of

primitives 𝑁
• Number of cells traversed is proportional to

𝑂(
3

𝑁)
• A line going through a cube is a cubed root
• Not as good as 𝑂(log(𝑁))

15-362/662 | Computer Graphics Lecture 08 | Spatial Structures

Quad-Tree/Octree

• Like uniform grid, easy to build
• Has greater ability to adapt to location of scene

geometry than uniform grid
• Still not as good adaptability as K-D tree

• Quad-tree: nodes have 4 children
• Partitions 2D space

• Octree: nodes have 8 children
• Partitions 3D space

15-362/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review

15-362/662 | Computer Graphics Lecture R02 | Final Review

Color & Radiometry

• Absorption vs Emission

• Eyes vs Cameras
• Pupil
• Lens
• Rods
• Cones

• Radiance
• Radiant Energy
• Radiant Energy Density
• Radiant Flux
• Irradiance

• Lambert’s Law

15-362/662 | Computer Graphics Lecture 09 | Color

Emission Spectrum Examples

energy efficient

sun-like

15-362/662 | Computer Graphics Lecture 09 | Color

Absorption Spectrum Examples

plants are green because they do not absorb green light

15-362/662 | Computer Graphics Lecture 09 | Color

‘Eye’ See What You Mean

• Eyes are biological cameras
• Light passes through the pupil [black dot in the eye]
• Iris controls how much light enters eye [colored ring

around pupil]
• Eyes are sensitive to too much light
• Iris protects the eyes

• Lens behind the eye converges light rays to back of
the eye

• Ciliary muscles around the lens allow the lens
to be bent to change focus on nearby/far
objects

• 130+ million retina cells at the back of the eye
• Cells pick up light and convert it to electrical signal
• Electric signal passes through optic nerve to reach

the brain

15-362/662 | Computer Graphics Lecture 09 | Color

The Biological Camera

• Pupil is the camera opening
• Allows light through

• Iris is the aperture ring
• Controls aperture

• Lens is the…well, lens
• Can change focus

• Retina is the sensor
• Converts light into electrical signal

• Brain is the CPU
• Performs additional compute to correct

raw image signal

15-362/662 | Computer Graphics Lecture 09 | Color

Rods & Cones

Rods

Cones
(three types)

• Cones are primary receptors near fovea used under high-light viewing conditions
• Approx. 6-7 million cones in the human eye
• Capture color

• Rods are primary receptors far from fovea used under low-light viewing conditions
• Approx. 120 million rods in human eye
• Capture intensity

15-362/662 | Computer Graphics Lecture 09 | Color

Spectral Response of Cones

• Long, Medium, and Small cones pick up Long,
Medium, and Small wavelengths respectively

• Each cone picks up a range of colors given by their
response functions

• Not much different than absorption spectrum

• Each cone integrates the emission & response to
produce a single signal to transmit to the brain

• Uneven distribution of cone types in eye
• ~64% L cones, ~ 32% M cones ~4% S cones

15-362/662 | Computer Graphics

Radiant Recap

Radiant Energy
(total number of hits)

Joules (J)

Radiant Energy Density
(hits per unit area)

Joules per sq meter (J/𝑚2)

Radiant Flux
(total hits per second)

Watts (W)

Radiant Flux Density

a.k.a. Irradiance
(hits per second per unit area)

Watts per sq meter(W/𝑚2)

Lecture 10 | Radiometry

15-362/662 | Computer Graphics

Lambert’s Law

• Irradiance (𝐸) at surface is proportional to the flux (Φ) and
the cosine of angle (𝜃) between light direction and surface
normal:

• Consider rotating a plane away from light rays
• Plane will darken until it is perpendicular to light rays,

then it will be completely black

Lecture 10 | Radiometry

15-362/662 | Computer Graphics Lecture R02 | Final Review

The Rendering Equation

• The Rendering Equation

• Rendering Methods
• Forwards Path-Tracing
• Backwards Path-Tracing
• Bi-Directional Path-Tracing
• Metropolis Light Transport

• Variance Reduction
• Sampling Rate
• Ray Depth

• BRDFs
• Lambertian
• Mirror
• Glass

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface
• Emits a ray in reflected direction
• Mixes blue and yellow and orange

• Ray passes through pinhole camera
• Light recorded on photoelectric cell
• Incident pixel will be brown in final image

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Hemholtz Reciprocity

• Reversing the order of incoming and
outgoing light does not affect the BRDF
evaluation

• 𝑓𝑟 p, 𝜔𝑖 → 𝜔𝑜 = 𝑓𝑟 p, 𝜔𝑜 → 𝜔𝑖

• Critical to reverse pathtracing algorithms
• Allows us to trace rays backwards and

still get the same BRDF affect

𝐩

𝜔𝑖 𝜔0

𝐩

𝜔𝑜 𝜔𝑖

15-362/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿𝑒 𝑟𝑎𝑦1 + 𝑓𝑟(𝑜𝑏𝑗1)[𝐿𝑒 𝑟𝑎𝑦2 + 𝑓𝑟(𝑜𝑏𝑗2)[𝐿𝑒 𝑟𝑎𝑦3]]

𝐿 𝑝𝑖𝑥𝑒𝑙 = +𝑓𝑟 [+𝑓𝑟 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

15-362/662 | Computer Graphics

Bidirectional Path Tracing

Lecture 13 | Variance Reduction

• If path tracing is so great, why not do it twice?
• Main idea of bidirectional!

• Trace a ray from the camera into the scene
• Trace a ray from the light into the scene

• Connect the rays at the end

• Unbiased algorithm
• No longer trying to connect rays through

non-volume sources

• Can set different lengths per ray
• Example: Forward m = 2, Backward m = 1

15-362/662 | Computer Graphics

Metropolis Light Transport

Lecture 13 | Variance Reduction

[Path Tracing] [Metropolis Light Transport]

• Similar idea: mutate good paths

• Water causes paths to refract a lot
• Small mutations allows renderer to find

contributions faster

• Path Tracing and MLT rendered in the same time

15-362/662 | Computer Graphics

Number Of Ray Samples

• Number of Rays
• How many rays we trace into the scene

• Measured as samples (rays) per pixel [spp]

• Increasing the number of rays increases the quality
of the image

• Anti-aliasing
• Reduces black spots from terminating emission

occlusion [1
6 spp

]
[1

 sp
p

]

Lecture 13 | Variance Reduction

15-362/662 | Computer Graphics

Number Of Ray Bounces

• Number of Ray Bounces
• How many times a ray bounces before it

terminates
• Measured as ray bounce or depth

• Increasing the number of ray bounces increases the
quality of the image

• Better color blending around images
• More details reflected in specular images

[8
 d

e
p

th
]

[2
 d

ep
th

]

Lecture 13 | Variance Reduction

15-362/662 | Computer Graphics Lecture 12 | BRDFs

Lambertian Material

• Also known as diffuse

• Light is equally likely to be reflected in each output
direction

• BRDF is a constant, relying on albedo (𝜌)

• BRDF can be pulled out of the integral

• Easy! Pick any outgoing ray 𝑤𝑜

Minions (2015) Illumination Entertainment

15-362/662 | Computer Graphics Lecture 12 | BRDFs

Reflective Material
[side view]

[top view]

• Reflectance equation described as:

• Why is the ray 𝜔𝑖 pointing away from the surface?
• Just syntax. Incoming and outgoing rays share

same origin point p

• BRDF represented by dirac delta (𝛿) function:

• 1 when ray is perfect reflection, 0 everywhere else
• All radiance gets reflected, nothing absorbed

• In practice, no hope of finding reflected direction via
random sampling

• Simply pick the reflected direction!

15-362/662 | Computer Graphics Lecture 12 | BRDFs

Refractive Material
[side view]

[top view]

• Refractive equation described as:

• Also known as Snell’s Law

• 𝜂𝑖 and 𝜂𝑡 describe the index of refraction of the incoming
and outgoing mediums

• Example: 𝜂𝑖 is air, 𝜂𝑡 is water

• 𝜂 is the ratio of the speed of light in a vacuum to that
in a second medium of greater density

• The larger the 𝜂, the denser the material

Vacuum
Air (sea level)
Water (20°C)
Glass
Diamond

1.0
1.00029
1.333
1.5-1.6
2.42

Medium 𝜼

15-362/662 | Computer Graphics Lecture 12 | BRDFs

Refractive Material
[side view]

[top view]

• Refractive equation described as:

• Also known as Snell’s Law

• Can rewrite the equation as:

15-362/662 | Computer Graphics Lecture 12 | BRDFs

Types of Reflectance Functions

Ideal Specular

• Perfect mirror

Ideal Diffuse

• Uniform in all directions

Glossy Specular

• Majority of light in reflected direction

Retroreflective

• Reflects light back towards source

15-362/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review

15-362/662 | Computer Graphics Lecture R02 | Final Review

Animation Simulation

• Simulation
• ODEs vs PDEs
• Boundary Conditions
• Laplacian

• Motion Graphs
• Displacement
• Velocity
• Acceleration

• Splines
• Natural Splines
• Hermite/Bezier Curves
• B-Splines

15-362/662 | Computer Graphics Lecture 15 | Kinematics

Natural Splines

• Can build a spline out of piecewise cubic polynomials 𝑝𝑖

• Each polynomial extends from range 𝑡 = [0,1]
• Polynomials should connect on boundary

• Keyframes agree at endpoints [C0 continuity]:

• Tangents agree at endpoints [C1 continuity]:

• Curvature agrees at endpoints [C2 continuity]:

• Total equations:
• 2n + (n-1) + (n-1) = 4n – 2

• Total DOFs:
• 2n + n + n = 4n

• Set curvature at endpoints to 0 and solve

𝑝𝑖(𝑡𝑖) = 𝑓𝑖, 𝑝𝑖(𝑡𝑖+1) = 𝑓𝑖+1, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′𝑖 𝑡𝑖+1 = 𝑝′𝑖+1 𝑡𝑖+1 , ∀𝑖 = 0, … , 𝑛 − 2

𝑝′′𝑖 𝑡𝑖+1 = 𝑝′′𝑖+1 𝑡𝑖+1 , ∀𝑖 = 0, … , 𝑛 − 2

𝑝′′0 𝑡0 = 0, 𝑝′′0 𝑡𝑖+1 = 0

15-362/662 | Computer Graphics Lecture 15 | Kinematics

Hermite/Bézier Splines

• Each cubic “piece” specified by endpoints and tangents
• Keyframes set at endpoints:

• Tangents set at endpoint:

• Natural splines specify just keyframes
• Bezier splines specify keyframes and tangents
• Can get continuity if tangents are set equal

• Total equations:
• 2n + 2n = 4n

• Commonly used in vector art programs
• Illustrator
• Inkscape
• SVGs

𝑝𝑖(𝑡𝑖) = 𝑓𝑖, 𝑝𝑖(𝑡𝑖+1) = 𝑓𝑖+1, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′𝑖 𝑡𝑖 = 𝑢𝑖, 𝑝′𝑖 𝑡𝑖+1 = 𝑢𝑖,+1 , ∀𝑖 = 0, … , 𝑛 − 1

15-362/662 | Computer Graphics Lecture 15 | Kinematics

B-Splines

• Compute a weighted average of nearby keyframes when
interpolating

• B-spline basis defined recursively, with base condition:

• And inductive condition:

• B-spline is a linear combination of bases:
degree

15-362/662 | Computer Graphics Lecture 15 | Kinematics

Splines Review

[Interpolation] [Continuity] [Locality]

Linear

Natural

✓

Hermite

B-Spline

Bezier

Catmull-Rom

✓

✓

✓

✓

✗

✓

✗

✓

✓

✓

✓

✗

✓

✗

✗

✗

✓

15-362/662 | Computer Graphics Lecture R02 | Final Review

Simulations

• ODE vs PDE

• Time Integration
• Forward Euler
• Symplectic Euler

• Laplacian
• 2nd-order Derivative

• Boundary Conditions
• Dirichlet
• Neumann

15-362/662 | Computer Graphics

ODEs vs. PDEs

[PDE] thrown rock lands in pond[ODE] throwing a rock

𝑑2

𝑑𝑡2 𝐱(𝑡) = 𝐠

𝑑2

𝑑𝑡2 ℎ(𝑡, 𝑥, 𝑦) = Δℎ(𝑡, 𝑥, 𝑦)

Aren’t both a function of space and time?

A single object (rock) in time Millions of objects (droplets) in time

The region of droplets we want to
solve over is our space

No additional space parameter

Lecture 16 | Simulations

15-362/662 | Computer Graphics

Explicit Time Integration Methods

𝑞𝑘+1 = 𝑞𝑘 + 𝜏 ∗ 𝑣𝑘

𝑣𝑘+1 = 𝑣𝑘 + 𝜏 ∗ 𝑎(𝑞𝑘)

𝑞𝑘+1 = 𝑞𝑘 + 𝜏 ∗ 𝑣𝑘+1

𝑣𝑘+1 = 𝑣𝑘 + 𝜏 ∗ 𝑎(𝑞𝑘)
𝑞𝑘+1 = 𝑞𝑘 + 𝜏 ∗ 𝑣𝑘+1

𝑣′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘)

𝑣′′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘 +
𝑣′

𝑘+1

2
)

𝑣𝑘+1 = 𝑣𝑘 + 𝑣′′𝑘+1

[Forward]

[Symplectic]

[RK2]

[Verlet]

𝑞𝑘+1 = 𝑞𝑘 + 𝜏 ∗ 𝑣𝑘+1

𝑣𝑘+1 = 𝑣𝑘+0.5 +
𝜏

2
∗ 𝑎(𝑞𝑘)

𝑣𝑘+1.5 = 𝑣𝑘+1 +
𝜏

2
∗ 𝑎(𝑞𝑘)

𝑞𝑘+1 = 𝑞𝑘 +
1

6
(𝑣′

𝑘+1 + 2𝑣′′𝑘+1+ 2𝑣′′′𝑘+1+ 𝑣′′′′𝑘+1)

𝑣′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘)

𝑣′′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘 +
𝑣′

𝑘+1

2
)

[RK4]

𝑣′′′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘 +
𝑣′′𝑘+1

2
)

𝑣′′′′𝑘+1 = 𝜏 ∗ 𝑎(𝑞𝑘 + 𝑣′′′𝑘+1)

Lecture 16 | Simulations

• Explicit methods are
often faster but less
stable than implicit
methods

• Stability and accuracy
are different

15-362/662 | Computer Graphics

The Laplace Operator

• All of our model equations used the Laplace operator
• Laplace Equation ∆𝑢 = 0
• Heat Equation ሶ𝑢 = ∆𝑢
• Wave Equation ሷ𝑢 = ∆𝑢

• Unbelievably important object showing up everywhere across physics,
geometry, signal processing, and more

• What does the Laplacian mean?
• Differential operator: eats a function, spits out its 2nd derivative
• What does that mean for a function: 𝑢: ℝ𝑛 → ℝ?

• Divergence of gradient

• Sum of second derivatives

• Deviation from local average
• …

Lecture 16 | Simulations

15-362/662 | Computer Graphics

Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Example: 𝜙(0) = 𝑎, 𝜙(1) = 𝑏

Many possible functions interpolate values in between

Lecture 16 | Simulations

15-362/662 | Computer Graphics

Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: 𝜙′(0) = 𝑢 ,𝜙′(1) = 𝑣

Again, many possible functions

Lecture 16 | Simulations

15-362/662 | Computer Graphics

Discretizing The Laplacian

• Consider the Laplacian as a sum of second
derivatives:

• How do we compute this numerically?

• Consider a non-differentiable function with
evaluated samples 𝑥0, 𝑥1, …

• The 1st-order derivative approximated is:

• The 2nd-order derivative approximated is:

• Known as the finite difference approach to PDEs

𝑢′(𝑥𝑖) ≈
𝑢𝑖+1 − 𝑢𝑖

ℎ

𝑢′′(𝑥𝑖) ≈
𝑢𝑖

′ − 𝑢𝑖−1
′

ℎ
≈

𝑢𝑖+1 − 𝑢𝑖
ℎ

−
𝑢𝑖 − 𝑢𝑖−1

ℎ
ℎ

=
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

ℎ2

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Discretizing The Laplacian

What if 𝑢 is not a 1D function…

[Grid] [Triangle Mesh]

If the mesh is a grid,
equations become the same

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Solving The Heat Equation

Heat equation tells us the Laplacian is equal to the first temporal derivative:

Compute the Laplacian approximately, e.g. using finite difference on a grid:

Propagate using the first temporal derivative ∆𝑢 (Ex: forward Euler):

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Good Luck!

Lecture R02 | Final Review

15-362/662 | Computer Graphics

When the slides are over and you & your friends want to
leave class but the professor keeps talking

Lecture R02 | Final Review

15-362/662 | Computer Graphics

How I sleep knowing I learned a lot from 15-362/662

Lecture R02 | Final Review

15-362/662 | Computer Graphics

Thank you for taking this course.

Lecture R02 | Final Review

	Slide 1: Final Review
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

