Simulations
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* Physics-Based Animation
* ODE Solvers

* PDE Solvers
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What natural phenomenon can we simulate?
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Flocking Simulation
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Crowd Simulation

15-362/662 | Computer Graphics



Fluid Simulation

Sph particle fluid
300 000 particles
/1 min bake



Granular Material Simulation




Molecular Dynamics Simulation
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Cosmological Simulation
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Cloth Simulation
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Hair Simulation
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Elasticity Simulation

v 5




Fracture Simulation




Snow Simulation

15-362/662 | Computer Graphics




Ok, simulation is cool,
How can we solve them analytically?
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DhvcicalivBaced Animati

e ODE Solvers

* PDE Solvers
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Ordinary Differential Equations

Differential Equations relates one or more functions and
their derivatives

Ordinary Differential Equations (ODEs) is the differential
equation with only one independent variable (e.g. time)

Many dynamical systems can be described via an ODE in
generalized coordinates:

4q=f(q,q,t)

ODEs can also be used to model rates of growth
proportional to some original value:

d

Zu(t) = au

 Solution: u(t) = be®

Describes exponential decay (a < 0), or growth (a > 0)

05
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Example: Throwing A Rock

e Consider a rock** of mass m tossed under force of gravity g
* Easy to write dynamical equations, since only force is gravity:

U 3
/ Gg=g/m
@ _

gt

. _ , , Easy! We don’t need a computer for simulation!
** Yes, the rock is spherical and has uniform density



Example: Pendulum

 Mass on end of a bar, swinging under gravity

 What are the equations of motion?
 Same as “rock” problem, but constrained
* Response tension T'(q) now varies based on configuration g

* Could use a “force diagram”
* You probably did this for many hours in high school/college

Ok, maybe bring back the computer...



Lagrangian Mechanics

e Beautifully simple recipe:
e Write down kinetic energy K
e Write down potential energy U
e Write down Lagrangian

L=K-U
e Dynamics then given by Euler-Lagrange equation

mass times force

acceleration s d 9L e /
dt 0§  Oq

Joseph-Louis Langrange (1736 - 1813)

» Often easier to come up with (scalar) energies than forces
e Very general, works in any kind of generalized coordinates
* Helps develop nice class of numerical integrators (symplectic)
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Lagrangian Mechanics: Pendulum

Simple configuration parameterization:
qg=~0
Kinetic energy:
K = $1w® = tmL?6?
Potential energy:

U =mgh = —mgL cosf

Euler-Lagrange equations:

L=K—-U=m(3L*0*+ gLcos?)

oL _ 0L _ 2 oL _ oL __ __ :
=2 — mL26 5 56 mgL sin 6
d 0L __ 0L

d g
3o = o = 0 = L81n9




Solving The Pendulum

Simple equation for the pendulum:

0 — —Zsin0

For small angles (e.g., clock pendulum) can approximate as:

0=—460 = 0(t) =acos(ty/g/L+b)
AN /

. 2
sin@ =0 for d

— CO0SA = —COSA
small angles d o2

In general, there is often no closed form solution!
Hence, we must use a numerical approximation

[ harmonic oscillation ]
And pendulums are supposed to be easy to simulate!
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Harder: Double Pendulum

* Blue ball swings from pendulum
* Green ball swings from blue ball
e Forces will act on each other
* Newton’s 3 [aw

e Simple system...not-so-simple motion
e Chaotic: perturb input, wild changes to output
9 e Must again use numerical approximation
1
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Even Harder: N-Body Problem

* Consider the Earth, moon, and sun
* Where do they go?
* Solution is trivial for two bodies
* Assume one is fixed, solve for the other

* Assoon asn 2 3, gets chaotic
* No closed form solution

* Fun Fact: this is a 15-418 homework assignment
e Glad you aren’t taking 15-418...




closed-form solution

/

Ok, so solving solutions analytically is hard,
How about solving them numerically?

AN

guess-and-check
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Numerical Integration

* Key idea: replace derivatives with differences
* With ODEs, only need to worry about
derivative in time

* Replace time-continuous configuration
function q(t) with samples gy in time

new config
(need to solve for)

which g do
we use?

\ N /

d iy —
v(q(®) = —q(t) = L

\

time step

current config

Dx = x= 6 Numectesd Tateasation of ODEs.. Evler Tnkepetion

X = X,

% Backinord Eulen:
sz; RS Xb)= -F(XQ (imglici)

A Eulec: Ken= X

at x X (“Eﬁl\

( =
:5\73(‘” = yL.;—A.\,
]mp‘f(ﬁ‘ G\m(.o?

= (Xyn = Xk * b+§(¥h§

exz\'\d*

Deriving Forward & Backward Euler (2022) Steve Brunton



Forward Euler

e Idea: evaluate velocity at current configuration, or say
use forward difference to approximate the derivative:

Qk+1 — 9k
T

* New configuration can then be written explicitly in terms
of known data:

v(qr) =

Qr+1 = qk T T * V(qx) |

e \Very intuitive: walk a tiny bit in the direction of the

. starts slow gradually moves faster
velocity

Where did all this
energy come from?
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Forward Euler Analysis

Let’s consider behavior of forward Euler for a simple linear ODE:

q = —agq, a>0
q = qoe” ¢ should decay over time (loss of energy to global system).

Forward Euler approximation is:
dk+1 = 4k — TAqg
Qr+1 = (1 — Ta)qy
Which means after n steps, we have:
qn = (1 —1a)"qo
Decays only if |1 — ta| < 1, or equivalently,ift < 2/a

In practice: need very small time steps if a is large,
Otherwise, the solution will numerically explode!!



Backward Euler

Idea: evaluate velocity at next configuration, or say use
backward difference to approximate the derivative:

Qk+1 — dk

V(qr+1) =

New configuration defined implicitly, output depends on
input:

dk+1 = Qi + T * V(qk+1)

— . —

Much harder to solve, since in general v can be very

' |
nonlinear! starts slow gradually slows down

Where did all this
energy go?



Backward Euler Analysis

Again, let’s consider a simple linear ODE:

q = —aq, a>0
q = qoe” ¢ should decay over time (loss of energy to global system).

Backward Euler approximation is:

(Gk+1—9K)/T = —aqi4+1

Ar+1 dk
+ =—
- Adk+1 -
(1 +71a)qr+1 = qx
1
Qe+1 = T, 9k

Which means after n steps, we have:

dn = —)" qo

1+7a

Decays if |1 + Ta| > 1, which is always true!
Backwards Euler is unconditionally stable for linear ODEs!



Symplectic Euler

* Nice alternative is Symplectic Euler
* Update velocity using current configuration g
* Update configuration using new velocity vy, ¢

Vi+1 = Vg + T xa(qy)

Qk+1 = Qg T T * Vg4q

* Pendulum now conserves energy almost exactly, forever

starts slow keeps on ticking

Proof? The analysis
isn’t very easy...
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Explicit Time Integration Methods

[ Forward Euler ] (1st-order accurate)

Ug+1 = Vg + T * a(qy)

dk+1 = Qi T T * Vg

[ Symplectic Euler ] (15t-order accurate)

Vg1 = Vg + T * a(qy)

Qk+1 = Qg T T * Vg4q

[ Verlet] (2nd-order accurate)

T
Vie+1 = Vieros 5 * a(qx)

Qrk+1 = qr + T * V41

T
Vie+15 = Vk+1 T 5 * a(qx)

[RK2] (2"d-order accurate)

V'it1 =T *a(qy)

4
UV k+1
7 _
V't = Txa(qg + 5 )

_ 2
Vk+1 =Vt VU k41

Qk+1 = Qi T T * Vgyq

[ RK4 ] (4th-order accurate)

V'r1 = T* a(qy)

4
UV k+1
7 _
V't = Txa(qg + 5 )
144
UV k+1
" _
k+1 = T*a(qg + > )

7rr

V' k+1

Txa(qx + v k1)

1
Qr+1 = Qx + 2 (V' k41 + 20" 11+ 20

Accuracy and stability are
different properties.

These explicit methods (no
system solves) are all
conditionally stable.

7 r

k+1t UV k1)



DhvcicalivBaced Animati

» ODE Solvers

e PDE Solvers
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ODEs vs. PDEs

* Partial Differential Equations
(PDEs) include derivatives with
respect to multiple variables

e e.g. both time and space.

;
= gt xy) = Ah(t x,y)

[ ODE ] throwing a rock [ PDE ] throwing rock lands in pond



ODEs vs. PDEs

Aren’t both a function of space and time?

e

ions of objects (droplets) in time

[ ODE ] throwing a rock [ PDE ] throwing rock lands in pond
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Moving forward, we will denote:

u(t, x)

As the functions for which our PDE will solve for, and:

u, i, U...

As their temporal derivatives, and:

u/’ un’ u'l

As their spatial derivatives
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INTERMEDIATE

ADVANCED
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Different types of PDEs

Laplace Equation [Elliptic]

interpolating the given boundary data?”

Heat Equation [Parabolic]

First consider a second-order linear PDE in two variables, written in the form

Augy + 2Bugy + Cuyy + Duy + Euy + Fu+ G =0,

where 4, B, C, D, E, F, and G are functions of x and y, using subscript notation for the partial derivatives. The PDE is called elliptic
if

B? — AC < 0,

with this naming convention inspired by the equation for a planar ellipse. Equations with B? — AC = 0 are termed parabolic while
those with B2 — AC' > 0 are hyperbolic.

“What’s the smoothest function A U = O

“How does an initial distribution °
. ” u - Au
of heat spread out over time?
Wave Equation [Hyperbolic]
“If you throw a rock into a pond, how e A
does the wavefront evolve over time?” U =— U

(From
Wikipedia)




INTERMEDIATE

ADVANCED

EXPERTS ONLY

Different types of PDEs

Laplace Equation [Elliptic]
“What’s the smoothest function
interpolating the given boundary data?”

Heat Equation [Parabolic]
“How does an initial distribution
of heat spread out over time?”

Wave Equation [Hyperbolic]
“If you throw a rock into a pond, how
does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order
“A lot of real life phenomenon”

uw = Au

e
|
>
<

°~J
~J
~J



Different types of PDEs

Laplace Equation [Elliptic]
“What’s the smoothest function A U = O
interpolating the given boundary data?” o

Heat Equation [Parabolic]
“How does an initial distribution . A U
of heat spread out over time?”

n Wave Equation [Hyperbolic]
“If you throw a rock into a pond, how .o
u = Au

does the wavefront evolve over time?”
ADVANCED

Nonlinear + Hyperbolic + High-Order 2?7
“A lot of real life phenomenon” -

EXPERTS ONLY
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Laplace Equation

“What’s the smoothest function interpolating the given boundary data?”

77
= ’l
e,

Laplace-Beltrami: The Swiss Army Knife of Geometry Processing (2014) Solomon, Crane, Vouga

* Conceptually, each value is at the average of its “neighbors”
* Very robust to errors: just keep averaging with neighbors
* Errors will eventually get averaged out/diminish
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INTERMEDIATE

ADVANCED

EXPERTS ONLY
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Different types of PDEs

Laplace Equation [Elliptic]
“What’s the smoothest function
interpolating the given boundary data?”

Heat Equation [Parabolic]
“How does an initial distribution
of heat spread out over time?”

Wave Equation [Hyperbolic]
“If you throw a rock into a pond, how
does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order
“A lot of real life phenomenon”

1 = Au

S
|

2?7




Heat Equation

“How does an initial distribution of heat spread out over time?”

* After a long time, solution is same as Laplace equation
* Treat 3D problem over a mesh as a 2D surface problem via
parameterization

* Models damping/viscosity in many physical system



Different types of PDEs

n Wave Equation [Hyperbolic]
“If you throw a rock into a pond, how .o
u = Au

does the wavefront evolve over time?”

ADVANCED




Wave Equation

“If you throw a rock into a pond, how does the wavefront evolve over time?”

e Difficult! Errors made at the beginning will persist for a long time
* Errors may even compound and explode/break simulation
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Different types of PDEs

Nonlinear + Hyperbolic + High-Order 2799
“A lot of real life phenomenon” S

EXPERTS ONLY




PDE Anatomy

 How are derivatives combined?
* Linear: functions and derivatives are multiplied with constants
* Nonlinear: functions and/or derivatives are multiplied with each other

nonlinear

N

. / !/
u -+ uu = au

[ Burger’s equation ]

U = au [ heat equation ]

* What is the highest order derivative in space and time?

st i
1%t order time 2nd order space

4 \
U+ uu' = au” [ Burger’s equation ]
. // .
U — au [ heat equation ]
\

1st order time g
2"? order space

* The higher the order, the harder to solve!



Great, but how do we solve PDEs?
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Numerically Solving a PDE

PDEs are (nearly) impossible to solve analytically
* Need to solve numerically

Algorithm: What discretization
* Pick a time discretization to compute temporal derivatives formats do we have?
* Forward Euler, Backward Euler, ...
* Pick a spatial discretization to compute spatial derivatives
e Lagrangian, Eulerian, ...
* Perform time-stepping to advance solution

Historically, very expensive
* Only for “hero shots” in movies

Computers are even faster nowadays
* Can solve PDEs in real-time

Titanic (1997) James Cameron



Lagrangian vs. Eulerian

[ Lagrangian ] [ Eulerian ]
track position & velocity track velocity (or flux)
of moving particles at fixed spatial locations
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Lagrangian vs. Eulerian

* Lagrangian:
[+ ] Conceptually easy (like polygon soup!)
* [+ ]Resolution/domain not limited by grid
* [-]Good particle distribution can be tough
* [-]Finding neighbors can be expensive

e Eulerian:
* [+ ] Fast, regular computation
* [+] Good cache coherence
e [+ ] Easy to represent
e [-]Simulation “trapped” in grid
* [-]Grid causes “numerical diffusion” (blur/aliasing)
 [-] Need to understand PDEs (but you will!)

* Where have we seen these formats before?
e Rasterization!
* Lagrangian is the primitives in our scene
e Eulerian is the pixel representations on our displays
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Mixing Lagrangian & Eulerian

* Many modern methods mix Lagrangian & Eulerian:
* PIC/FLIP, MPM, particle level sets, mesh-based surface
tracking, Voronoi-based, arbitrary Lagrangian-Eulerian
(ALE), ...
* Pick the right tool for the job!
* If you can’t pick one, pick them all!

15-362/662 | Computer Graphics Lecture 18 | Simulations



The Laplacian Operator

All of these equations used the Laplace operator
e Laplace Equation Au =20
* Heat Equation u=Au
* Wave Equation u=Au

Unbelievably important object showing up everywhere across physics, geometry, signal
processing, and more

What does the Laplacian mean?
» Differential operator: takes in a function, outputs its derivatives
* What does that mean for a function: u: R™® —» R?
e Divergence of gradient

Au =V -Vu

e Sum of second derivatives
2

_ou? .. Ou®
Au_@az%—i_ +8ac%

* Deviation from local average



Discretizing The Laplacian

Consider the Laplacian as a sum of second

derivatives:
2 2
Ay =94 4 ... Ju_
How do we compute this numerically? o |
. Y (72)
Consider a non-differentiable function with : U u3—w © ©
evaluated samples x, x4, ... ! ! h ! ! |
* The 1st-order derivative approximated is: I |H/—-/| | |
h
, U — Y X0 X1 X2 X3 X4 X5
wix) ® —
* The 2nd-order derivative approximated is:
Uits — ui) _ (ui - ui—l)
1 U — Uj_q ( h h _ Ujy1 — 2u; +uj—q
u(x;) = ~ =

h h h?

Known as the finite difference approach to PDEs



Discretizing The Laplacian

h
~ =

What if u is not a 1D function...

If the mesh is a grid,
equations become the same

% Z(cot a;j + cot Bij) (u; — u;)
J

[ Triangle Mesh ]




Numerically Solving The Laplacian

Ui, j+1

Ui—1,;

Ui, j

Uji-1,;j

Want to solve Au = 0:

Apj —Ui—gj = Ujgrj — Ujjo1 — Uij1

uiaj_l

h?2 =0

Can isolate for u; ;:

1
SUj =g (Uim1,j + Uir + Ui o1 + Ui jaa)

* |f uis asolution, then each value must be the average of the neighboring values

* How do we solve this?
* Idea: keep averaging with neighbors! (“Jacobi method”)
* Correct, but slow
Much better to use modern linear solver



<o Qe
SOl N Bl g
N o | 2T
— || D

Linearly Solving The Laplacian

AUjj—Uji_g,j = Uppr,j — Ujj—1 — Uijpr = 0

We have a bunch of equations of the form:

Create a matrix with all equations (these are our constraints)

Index 2D grid using 1D indices

Make sure to use

a sparse solver!

What is the issue
with this?

/

SO OO O OO OO OO OO

— oy oy )

—

S




We need boundary conditions that make our solution non-zero

Boundary Conditions

Essentially, what is the data we want to interpolate?

C

alb| a=3(b-
e

Three types of boundary conditions:

Dirichlet: boundary data always set to fixed values
Neumann: specify derivatives across boundary
Robin: mix of boundary data and derivatives set to fixed values

Many more in general, but this is all we will cover



Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Example: (0) = a, (1) =b

Many possible functions interpolate values in between
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Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: ¢'(0) = u, ¢'(1) =v

Again, many possible functions
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Dirichlet + Neumann Boundary Conditions

Dirichlet: boundary data always set to fixed values
Neumann: specify derivatives across boundary

Example: ¢'(0) = u, ¢(1) = b

Still, many possible functions

What about Robin: ¢'(0) + ¢(0) =p, ¢'(1) + p(1) = q
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We can generate a continuous function for any of the boundary conditions,
But does there exist a Laplacian solution for any set of boundary conditions?
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Solution To The Laplacian

* Consider a 1D function A
« What is the solution to: QD(X)

Au =0
e Any function who's second derivative is 0
9%2¢/0x* =0
* Any function that is linear a

o(x)=cx+d L

* Makes sense conceptually 0
* The Laplacian gives us the resting state of diffusion
* The resting state is a linear function between boundary conditions



1D Laplacian With Dirichlet

Can we always satisfy Dirichlet boundary conditions in 1D?

(x)]

a

-

0

Yes! A line can always interpolate two points
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1D Laplacian With Neumann

Can we always satisfy Neumann boundary conditions in 1D?

(Y

No! A line can only have one slope

Not always guaranteed that a PDE has a solution for given boundary conditions...



2D Laplacian With Dirichlet

Can we always satisfy Dirichlet boundary conditions in 2D?

Yes! Laplacian is a long-time solution to heat flow
Data is “heat” at boundary. Will eventually diffuse to equilibrium



2D Laplacian With Neumann

Can we always satisfy Neumann boundary conditions in 2D?

Neumann BCs prescribe derivative in normal direction: n - V¢

AT

AU

AU

A

Want to solve for A¢p = 0 ‘\\Q
_ what goes in, AN
In 2D, we have the divergence theorem: must.come out! R

/

/aQn-ng:/QV-ng:/QAgbé()

/ AN

integratingn - Vo integrating divergence
over boundary of V¢ over interior

//'///f/////////

Can’t have a solution unless the net flux through the boundary is zero!



Numerical libraries will not always tell you that there is a problem with your boundary conditions
Need to verify yourself. If solving Ax = b, verify ||b — Ax||
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INTERMEDIATE

ADVANCED

EXPERTS ONLY

Modeling PDE Equations

Laplace Equation [Elliptic]
“What’s the smoothest function
interpolating the given boundary data?”

Heat Equation [Parabolic]
“How does an initial distribution
of heat spread out over time?”

Wave Equation [Hyperbolic]
“If you throw a rock into a pond, how
does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order
“A lot of real life phenomenon”

u = Au

S
|
>
<

°~J
~J
°~J



Solving The Heat Equation

Heat equation tells us the Laplacian is equal to the first temporal derivative:
= Au
Compute the Laplacian as normal (Ex: on a grid):

k—i.—l

'k T k k k k k
U; ; —u +W(4Ui,j—“7:+1,j_“7:—1,j—“i,j+1—“z‘,j—1)

Propagate using the first temporal derivative Au (Ex: forward Euler):

ut = uf 4 Au”



Solving The Wave Equation

Wave equation tells us the Laplacian is the second temporal derivative:
U = Au
Compute the Laplacian as normal (Ex: on a grid):

k—i.—l

ui,]

_ k T k k k k k
= w gz (dug =gy 5= U g = Uy~ Ui )
Propagate using the second temporal derivative Au (Ex: forward Euler):

w=v, vU=Au



Wave Equation On A Triangle Mesh

LR J Figure1 7 -
File Edit View Insert Tools Desktop Window Help =

Nagdde h A09RL-2a 0@

Wave Equation On Surfaces (2016) Alec Jacobson
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Wave Equation On A Triangle Mesh

https://www.adultswim.com/etcetera/elastic-man/




Want To Know More?

Fluid Simulation
for Computer Graphics

Robert Bridson

Plenty of books and papers on Simulation

Physics-Based
Animation

The science of simulating physics for human visual
consumption.

Books Resources & Courses  Collections  About

Search...

Biomechanical Simulation and Control of Hands and
Tendinous Systems
This site is managed by

Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, Dinesh K. Pai Chnstopher Ba,tty fLO"‘ the

https://www.physicsbasedanimation.com/

What did the folks who wrote these papers/books read?

Introduction to THE s
Partial Differential VARIATIONAL PHILOSOPHIA

Equations with N&ATURALIS
Applications P,S{ngkﬁgF PRINCIPIA

MATHEMATICA.

Cornelius Lanczos

Aut m]SNEWTDN'I Call. Cantab. Soc. Machefeos
fore: Lcafians, & Socierats Regalis Sodali
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S PEPYS, RgSc. PRESES,
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