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• Physics-Based Animation
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What natural phenomenon can we simulate?



15-362/662 | Computer Graphics Lecture 18 | Simulations

Flocking Simulation
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Crowd Simulation
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Crowd Simulation
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Fluid Simulation
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Granular Material Simulation
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Molecular Dynamics Simulation
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Cosmological Simulation



15-362/662 | Computer Graphics Lecture 18 | Simulations

Mass-Spring Simulation
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Cloth Simulation
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Hair Simulation



15-362/662 | Computer Graphics Lecture 18 | Simulations

Elasticity Simulation
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Fracture Simulation
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Snow Simulation
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Ok, simulation is cool,

How can we solve them analytically?
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• Differential Equations relates one or more functions and 

their derivatives

• Ordinary Differential Equations (ODEs) is the differential 

equation with only one independent variable (e.g. time)

• Many dynamical systems can be described via an ODE in 

generalized coordinates:

• ODEs can also be used to model rates of growth 

proportional to some original value:

• Solution: 𝑢 𝑡 = 𝑏𝑒!"

• Describes exponential decay (𝑎 < 0), or growth (𝑎 > 0)
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Ordinary Differential Equations

Simulation using second order ODE in MATLAB



15-362/662 | Computer Graphics

Example: Throwing A Rock

** Yes, the rock is spherical and has uniform density

• Consider a rock** of mass m tossed under force of gravity g

• Easy to write dynamical equations, since only force is gravity:

Easy! We don’t need a computer for simulation!
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Example: Pendulum

• Mass on end of a bar, swinging under gravity

• What are the equations of motion?

• Same as “rock” problem, but constrained

• Response tension 𝑇(𝑞) now varies based on configuration 𝑞

• Could use a “force diagram”

• You probably did this for many hours in high school/college

Ok, maybe bring back the computer…
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Lagrangian Mechanics

• Beautifully simple recipe:

• Write down kinetic energy 𝐾
• Write down potential energy 𝑈
• Write down Lagrangian

• Dynamics then given by Euler-Lagrange equation

• Often easier to come up with (scalar) energies than forces

• Very general, works in any kind of generalized coordinates

• Helps develop nice class of numerical integrators (symplectic)

Joseph-Louis Langrange (1736 - 1813)

mass times 

acceleration

force
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Lagrangian Mechanics: Pendulum

Simple configuration parameterization:

Kinetic energy:

Potential energy:

Euler-Lagrange equations:
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Solving The Pendulum

Simple equation for the pendulum:

For small angles (e.g., clock pendulum) can approximate as:

𝒔𝒊𝒏𝜽 = 𝜽 for 

small angles

𝒅𝟐

𝒅𝜶𝟐
𝒄𝒐𝒔𝜶 = −𝒄𝒐𝒔𝜶

In general, there is often no closed form solution!

Hence, we must use a numerical approximation

And pendulums are supposed to be easy to simulate!

[ harmonic oscillation ]
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Harder: Double Pendulum

• Blue ball swings from pendulum

• Green ball swings from blue ball

• Forces will act on each other

• Newton’s 3rd law

• Simple system...not-so-simple motion

• Chaotic: perturb input, wild changes to output

• Must again use numerical approximation
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Even Harder: N-Body Problem

• Consider the Earth, moon, and sun

• Where do they go?

• Solution is trivial for two bodies 

• Assume one is fixed, solve for the other

• As soon as n ≥ 3, gets chaotic

• No closed form solution

• Fun Fact: this is a 15-418 homework assignment

• Glad you aren’t taking 15-418…
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Ok, so solving solutions analytically is hard,

How about solving them numerically?

closed-form solution

guess-and-check
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• Key idea: replace derivatives with differences

• With ODEs, only need to worry about 

derivative in time

• Replace time-continuous configuration 

function 𝑞(𝑡) with samples 𝑞$ in time
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Numerical Integration

𝑣 𝑞(𝑡) =
𝑑

𝑑𝑡
𝑞 𝑡 =

𝑞!"# − 𝑞!
𝜏

current config
new config

(need to solve for)

time step

which q do 

we use?

Deriving Forward & Backward Euler (2022) Steve Brunton

Lecture 18 | Simulations



• Idea: evaluate velocity at current configuration, or say 

use forward difference to approximate the derivative:

• New configuration can then be written explicitly in terms 

of known data:

• Very intuitive: walk a tiny bit in the direction of the 

velocity
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Forward Euler

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣(𝑞!)

starts slow gradually moves faster

Where did all this 

energy come from?

Lecture 18 | Simulations

𝑣 𝑞! ≈
𝑞!"# − 𝑞!

𝜏
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Forward Euler Analysis

𝑞!"# = 𝑞! − 𝜏𝑎𝑞!

𝑞!"# = (1 − 𝜏𝑎)𝑞!

𝑞$ = (1 − 𝜏𝑎)$𝑞%

Let’s consider behavior of forward Euler for a simple linear ODE:

𝑞 = 𝑞%𝑒
&! should decay over time (loss of energy to global system).

Forward Euler approximation is:

Which means after 𝑛 steps, we have:

Decays only if |1 − 𝜏𝑎| < 1, or equivalently, if 𝜏 < 2/𝑎
In practice: need very small time steps if a is large,

Otherwise, the solution will numerically explode!!

�̇� = −𝑎𝑞, 𝑎 > 0
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• Idea: evaluate velocity at next configuration, or say use 

backward difference to approximate the derivative:

• New configuration defined implicitly, output depends on 

input:

• Much harder to solve, since in general 𝑣 can be very 

nonlinear!
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Backward Euler

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣(𝑞!"#)

starts slow gradually slows down

Where did all this 

energy go?
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Backward Euler Analysis

�̇� = −𝑎𝑞, 𝑎 > 0

(𝑞!"#−𝑞!)/𝜏 = −𝑎𝑞!"#
𝑞!"#
𝜏

+ 𝑎𝑞!"# =
𝑞!
𝜏

Again, let’s consider a simple linear ODE:

𝑞 = 𝑞%𝑒
&! should decay over time (loss of energy to global system).

Backward Euler approximation is:

Which means after 𝑛 steps, we have:

Decays if 1 + 𝜏𝑎 > 1, which is always true!

Backwards Euler is unconditionally stable for linear ODEs!

(1 + 𝜏𝑎)𝑞!"# = 𝑞!

𝑞!"# =
#

#"&'
𝑞!

𝑞$ = (
#

#"&'
)$ 𝑞%
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• Nice alternative is Symplectic Euler

• Update velocity using current configuration 𝑞$
• Update configuration using new velocity 𝑣$'(

• Pendulum now conserves energy almost exactly, forever
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Symplectic Euler

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!"#

𝑣!"# = 𝑣! + 𝜏 ∗ 𝑎(𝑞!)

starts slow keeps on ticking

Proof? The analysis 

isn’t very easy…
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Explicit Time Integration Methods

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!

𝑣!"# = 𝑣! + 𝜏 ∗ 𝑎(𝑞!)

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!"#

𝑣!"# = 𝑣! + 𝜏 ∗ 𝑎(𝑞!)
𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!"#

𝑣′!"# = 𝜏 ∗ 𝑎(𝑞!)

𝑣′′!"# = 𝜏 ∗ 𝑎(𝑞! +
𝑣(!"#
2

)

𝑣!"# = 𝑣! + 𝑣′′!"#

[ Forward Euler ] (1st-order accurate)

[ Symplectic Euler ] (1st-order accurate)

[RK2] (2nd-order accurate)

[ Verlet] (2nd-order accurate)

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!"#

𝑣!"# = 𝑣!"%.* +
𝜏

2
∗ 𝑎(𝑞!)

𝑣!"#.* = 𝑣!"# +
𝜏

2
∗ 𝑎(𝑞!)

𝑞!"# = 𝑞! +
#

+
(𝑣(!"# + 2𝑣′′!"#+ 2𝑣′′′!"#+ 𝑣′′′′!"#)

𝑣′!"# = 𝜏 ∗ 𝑎(𝑞!)

𝑣′′!"# = 𝜏 ∗ 𝑎(𝑞! +
𝑣(!"#
2

)

[ RK4 ] (4th-order accurate)

𝑣′′′!"# = 𝜏 ∗ 𝑎(𝑞! +
𝑣(′!"#
2

)

𝑣′′′′!"# = 𝜏 ∗ 𝑎(𝑞! + 𝑣
(′′!"#)
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• Accuracy and stability are 

different properties.

• These explicit methods (no 

system solves) are all 

conditionally stable.
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ODEs vs. PDEs

[ PDE ] throwing rock lands in pond[ ODE ] throwing a rock

𝑑,

𝑑𝑡,
𝐱(𝑡) = 𝐠

𝑑,

𝑑𝑡,
ℎ(𝑡, 𝑥, 𝑦) = Δℎ(𝑡, 𝑥, 𝑦)

Lecture 18 | Simulations

• Partial Differential Equations 

(PDEs) include derivatives with 

respect to multiple variables 

• e.g. both time and space.
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ODEs vs. PDEs

𝑑,

𝑑𝑡,
𝐱(𝑡) = 𝐠

𝑑,

𝑑𝑡,
ℎ(𝑡, 𝑥, 𝑦) = Δℎ(𝑡, 𝑥, 𝑦)

Aren’t both a function of space and time?

A single object (rock) in time Millions of objects (droplets) in time

The region of droplets we want to 

solve over is our space
No additional space parameter

Lecture 18 | Simulations

[ PDE ] throwing rock lands in pond[ ODE ] throwing a rock
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Moving forward, we will denote:

𝑢(𝑡, 𝑥)

As the functions for which our PDE will solve for, and:

�̇�, �̈�, �⃛�…

As their temporal derivatives, and:

𝑢′, 𝑢′′, 𝑢′′′…

As their spatial derivatives

Lecture 18 | Simulations
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Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution 

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Lecture 18 | Simulations

(From 

Wikipedia)
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Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution 

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?
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Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution 

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?
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Laplace Equation

Laplace-Beltrami: The Swiss Army Knife of Geometry Processing (2014) Solomon, Crane, Vouga

• Conceptually, each value is at the average of its “neighbors”

• Very robust to errors: just keep averaging with neighbors

• Errors will eventually get averaged out/diminish

“What’s the smoothest function interpolating the given boundary data?”
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Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution 

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?
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Heat Equation

• After a long time, solution is same as Laplace equation

• Treat 3D problem over a mesh as a 2D surface problem via 

parameterization

• Models damping/viscosity in many physical system

“How does an initial distribution of heat spread out over time?”
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Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution 

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?
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Wave Equation

• Difficult! Errors made at the beginning will persist for a long time

• Errors may even compound and explode/break simulation

“If you throw a rock into a pond, how does the wavefront evolve over time?”
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Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution 

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?
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PDE Anatomy

• How are derivatives combined?

• Linear: functions and derivatives are multiplied with constants

• Nonlinear: functions and/or derivatives are multiplied with each other

nonlinear

[ Burger’s equation ]

[ heat equation ]

• What is the highest order derivative in space and time?

1st order time

[ Burger’s equation ]

[ heat equation ]

2nd order space

1st order time
2nd order space

• The higher the order, the harder to solve!
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Great, but how do we solve PDEs?
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Numerically Solving a PDE

• PDEs are (nearly) impossible to solve analytically

• Need to solve numerically

• Algorithm:

• Pick a time discretization to compute temporal derivatives

• Forward Euler, Backward Euler, …

• Pick a spatial discretization to compute spatial derivatives 

• Lagrangian, Eulerian, …

• Perform time-stepping to advance solution

• Historically, very expensive

• Only for “hero shots” in movies

• Computers are even faster nowadays

• Can solve PDEs in real-time

Titanic (1997) James Cameron

What discretization 

formats do we have?
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Lagrangian vs. Eulerian

[ Lagrangian ]

track position & velocity

of moving particles

[ Eulerian ]

track velocity (or flux)

at fixed spatial locations

Lecture 18 | Simulations
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Lagrangian vs. Eulerian

• Lagrangian:

• [ + ] Conceptually easy (like polygon soup!)

• [ + ] Resolution/domain not limited by grid

• [ - ] Good particle distribution can be tough

• [ - ] Finding neighbors can be expensive

• Eulerian:

• [ + ] Fast, regular computation

• [ + ] Good cache coherence

• [ + ] Easy to represent

• [ - ] Simulation “trapped” in grid

• [ - ] Grid causes “numerical diffusion” (blur/aliasing)

• [ - ] Need to understand PDEs (but you will!)

• Where have we seen these formats before?

• Rasterization!

• Lagrangian is the primitives in our scene

• Eulerian is the pixel representations on our displays

Lecture 18 | Simulations
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Mixing Lagrangian & Eulerian

• Many modern methods mix Lagrangian & Eulerian:

• PIC/FLIP, MPM, particle level sets, mesh-based surface 

tracking, Voronoi-based, arbitrary Lagrangian-Eulerian 

(ALE), ...

• Pick the right tool for the job!

• If you can’t pick one, pick them all!

Lecture 18 | Simulations
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The Laplacian Operator

• All of these equations used the Laplace operator

• Laplace Equation   ∆𝑢 = 0
• Heat Equation          �̇� = ∆𝑢
• Wave Equation         �̈� = ∆𝑢

• Unbelievably important object showing up everywhere across physics, geometry, signal 

processing, and more

• What does the Laplacian mean?

• Differential operator: takes in a function, outputs its derivatives

• What does that mean for a function: 𝑢:ℝ) → ℝ?

• Divergence of gradient

• Sum of second derivatives

• Deviation from local average

• …

Lecture 18 | Simulations
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Discretizing The Laplacian

• Consider the Laplacian as a sum of second 

derivatives:

• How do we compute this numerically?

• Consider a non-differentiable function with 

evaluated samples 𝑥%, 𝑥(, …
• The 1st-order derivative approximated is:

• The 2nd-order derivative approximated is:

• Known as the finite difference approach to PDEs

𝑢((𝑥-) ≈
𝑢-"# − 𝑢-

ℎ

𝑢(′(𝑥-) ≈
𝑢-
( − 𝑢-.#

(

ℎ
≈

𝑢-"# − 𝑢-
ℎ

−
𝑢- − 𝑢-.#

ℎ
ℎ

=
𝑢-"# − 2𝑢- + 𝑢-.#

ℎ,
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Discretizing The Laplacian

What if 𝑢 is not a 1D function…

[ Grid ] [ Triangle Mesh ]

If the mesh is a grid,

equations become the same

Lecture 18 | Simulations
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Numerically Solving The Laplacian

4𝑢!,# − 𝑢!$%,# − 𝑢!&%,# − 𝑢!,#$% − 𝑢!,#&%

ℎ'
= 0

⟺ 𝑢!,# =
1

4
𝑢!$%,# + 𝑢!&%,# + 𝑢!,#$% + 𝑢!,#&%

Want to solve Δ𝑢 = 0:

Can isolate for 𝑢*,,:

• If 𝑢 is a solution, then each value must be the average of the neighboring values

• How do we solve this?

• Idea: keep averaging with neighbors! (“Jacobi method”)

• Correct, but slow

• Much better to use modern linear solver
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Linearly Solving The Laplacian

• We have a bunch of equations of the form:

• Index 2D grid using 1D indices

• Create a matrix with all equations (these are our constraints)

4𝑢*,, − 𝑢*&(,, − 𝑢*'(,, − 𝑢*,,&( − 𝑢*,,'( = 0

What is the issue 

with this?

Make sure to use 

a sparse solver!

Lecture 18 | Simulations
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Boundary Conditions

• We need boundary conditions that make our solution non-zero

• Essentially, what is the data we want to interpolate?

• Three types of boundary conditions:

• Dirichlet: boundary data always set to fixed values

• Neumann: specify derivatives across boundary

• Robin: mix of boundary data and derivatives set to fixed values

• Many more in general, but this is all we will cover

Lecture 18 | Simulations
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Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Example: 𝜙(0) = 𝑎, 𝜙(1) = 𝑏

Many possible functions interpolate values in between

Lecture 18 | Simulations
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Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: 𝜙-(0) = 𝑢, 𝜙-(1) = 𝑣

Again, many possible functions

Lecture 18 | Simulations
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Dirichlet + Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: 𝜙-(0) = 𝑢, 𝜙(1) = 𝑏

Still, many possible functions

Dirichlet: boundary data always set to fixed values

What about Robin: 𝜙-(0) + 𝜙(0) = 𝑝, 𝜙-(1) + 𝜙(1) = 𝑞

Lecture 18 | Simulations
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We can generate a continuous function for any of the boundary conditions,

But does there exist a Laplacian solution for any set of boundary conditions?

Lecture 18 | Simulations
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Solution To The Laplacian

• Consider a 1D function

• What is the solution to:

• Any function who’s second derivative is 0

• Any function that is linear

• Makes sense conceptually

• The Laplacian gives us the resting state of diffusion

• The resting state is a linear function between boundary conditions

𝜕,𝜙/𝜕𝑥, = 0

𝜙(𝑥) = 𝑐𝑥 + 𝑑

Lecture 18 | Simulations
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1D Laplacian With Dirichlet

Can we always satisfy Dirichlet boundary conditions in 1D?

Yes! A line can always interpolate two points
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1D Laplacian With Neumann

Can we always satisfy Neumann boundary conditions in 1D?

No! A line can only have one slope

Not always guaranteed that a PDE has a solution for given boundary conditions…

Lecture 18 | Simulations
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2D Laplacian With Dirichlet

Can we always satisfy Dirichlet boundary conditions in 2D?

Yes! Laplacian is a long-time solution to heat flow

Data is “heat” at boundary. Will eventually diffuse to equilibrium

Lecture 18 | Simulations
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2D Laplacian With Neumann

Can we always satisfy Neumann boundary conditions in 2D?

Can’t have a solution unless the net flux through the boundary is zero!

Neumann BCs prescribe derivative in normal direction: 𝑛 ⋅ 𝛻𝜙

Want to solve for Δ𝜙 = 0

In 2D, we have the divergence theorem:

integrating 𝐧 ⋅ 𝛁𝝓

over boundary

integrating divergence 

of 𝛁𝝓 over interior

what goes in, 

must come out!
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Numerical libraries will not always tell you that there is a problem with your boundary conditions

Need to verify yourself. If solving 𝐴𝑥 = 𝑏, verify 𝑏 − 𝐴𝑥

Lecture 18 | Simulations
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Modeling PDE Equations

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution 

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?

H
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Solving The Heat Equation

Heat equation tells us the Laplacian is equal to the first temporal derivative:

Compute the Laplacian as normal (Ex: on a grid):

Propagate using the first temporal derivative ∆𝑢 (Ex: forward Euler):
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Solving The Wave Equation

Wave equation tells us the Laplacian is the second temporal derivative:

Compute the Laplacian as normal (Ex: on a grid):

Propagate using the second temporal derivative ∆𝑢 (Ex: forward Euler):
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Wave Equation On A Triangle Mesh

Wave Equation On Surfaces (2016) Alec Jacobson
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Wave Equation On A Triangle Mesh

https://www.adultswim.com/etcetera/elastic-man/
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Want To Know More?

Plenty of books and papers on Simulation

What did the folks who wrote these papers/books read?
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https://www.physicsbasedanimation.com/


