Simulations

- Physics-Based Animation
- ODE Solvers
- PDE Solvers

What natural phenomenon can we simulate?

Flocking Simulation

Crowd Simulation

Crowd Simulation

Fluid Simulation

Granular Material Simulation

Molecular Dynamics Simulation

Cosmological Simulation

Mass-Spring Simulation

Cloth Simulation

Hair Simulation

Elasticity Simulation

Fracture Simulation

Snow Simulation

Ok, simulation is cool, How can we solve them analytically?

Physically-Based Animation

- ODE Solvers
- PDE Solvers

Ordinary Differential Equations

- **Differential Equations** relates one or more functions and their derivatives
- Ordinary Differential Equations (ODEs) is the differential equation with only one independent variable (e.g. time)
- Many dynamical systems can be described via an ODE in generalized coordinates:

$$\frac{d}{dt}q = f(q, \dot{q}, t)$$

• ODEs can also be used to model rates of growth proportional to some original value:

$$\frac{d}{dt}u(t) = au$$

- Solution: $u(t) = be^{at}$
- Describes exponential decay (a < 0), or growth (a > 0)

Simulation using second order ODE in MATLAB

Example: Throwing A Rock

- Consider a rock** of mass *m* tossed under force of gravity *g*
 - Easy to write dynamical equations, since only force is gravity:

$$\ddot{q} = g/m$$

$$v(t) = v_0 + \frac{t}{m}g$$

$$q(t) = q_0 + tv_0 + \frac{t^2}{2m}g$$

Easy! We don't need a computer for simulation!

** Yes, the rock is spherical and has uniform density

Example: Pendulum

- Mass on end of a bar, swinging under gravity
- What are the equations of motion?
 - Same as "rock" problem, but constrained
 - Response tension T(q) now varies based on configuration q
- Could use a "force diagram"
 - You probably did this for many hours in high school/college

Ok, maybe bring back the computer...

Lagrangian Mechanics

- Beautifully simple recipe:
 - Write down kinetic energy *K*
 - Write down potential energy U
 - Write down Lagrangian

 $\mathcal{L} := K - U$

• Dynamics then given by Euler-Lagrange equation

Joseph-Louis Langrange (1736 - 1813)

- Often easier to come up with (scalar) energies than forces
 - Very general, works in any kind of generalized coordinates
 - Helps develop nice class of numerical integrators (symplectic)

Lagrangian Mechanics: Pendulum

Simple configuration parameterization:

$$q = \ell$$

Kinetic energy:

$$K = \frac{1}{2}I\omega^2 = \frac{1}{2}mL^2\dot{\theta}^2$$

Potential energy:

$$U = mgh = -mgL\cos\theta$$

Euler-Lagrange equations:

$$\mathcal{L} = K - U = m(\frac{1}{2}L^2\dot{\theta}^2 + gL\cos\theta)$$

$$\frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mL^2 \dot{\theta} \qquad \frac{\partial \mathcal{L}}{\partial q} = \frac{\partial \mathcal{L}}{\partial \theta} = -mgL\sin\theta$$

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial \mathcal{L}}{\partial q} \quad \Rightarrow \quad \left| \ddot{\theta} = -\frac{g}{L}\sin\theta \right|$$

Solving The Pendulum

Simple equation for the pendulum:

$$\ddot{\theta} = -\frac{g}{L}\sin\theta$$

For small angles (e.g., clock pendulum) can approximate as:

$$\ddot{\theta} = -\frac{g}{L}\theta \Rightarrow \theta(t) = a\cos(t\sqrt{g/L} + b)$$

$$sin\theta = \theta \text{ for small angles} \quad \frac{d^2}{d\alpha^2}\cos\alpha = -\cos\alpha$$

In general, there is often no closed form solution! Hence, we must use a numerical approximation

And pendulums are supposed to be easy to simulate!

Harder: Double Pendulum

- Blue ball swings from pendulum
 - Green ball swings from blue ball
 - Forces will act on each other
 - Newton's 3rd law
- Simple system...not-so-simple motion
 - Chaotic: perturb input, wild changes to output
 - Must again use numerical approximation

 θ_2

 θ_1

Even Harder: N-Body Problem

- Consider the Earth, moon, and sun
 - Where do they go?
 - Solution is trivial for two bodies
 - Assume one is fixed, solve for the other
- As soon as $n \ge 3$, gets chaotic
 - No closed form solution
- Fun Fact: this is a 15-418 homework assignment
 - Glad you aren't taking 15-418...

Ok, so solving solutions analytically is hard, How about solving them numerically?

guess-and-check

Numerical Integration

- Key idea: replace derivatives with differences
 - With ODEs, only need to worry about derivative in time
- Replace time-continuous configuration function q(t) with samples q_k in time

Deriving Forward & Backward Euler (2022) Steve Brunton

Forward Euler

• **Idea:** evaluate velocity at current configuration, or say use forward difference to approximate the derivative:

$$v(q_k) \approx \frac{q_{k+1} - q_k}{\tau}$$

• New configuration can then be written explicitly in terms of known data:

$$q_{k+1} = q_k + \tau * v(q_k)$$

• Very intuitive: walk a tiny bit in the direction of the velocity

Where did all this energy come from?

Forward Euler Analysis

Let's consider behavior of forward Euler for a simple linear ODE:

 $\dot{q} = -aq$, a > 0

 $q = q_0 e^{-a}$ should decay over time (loss of energy to global system).

Forward Euler approximation is:

 $q_{k+1} = q_k - \tau a q_k$

 $q_{k+1} = (1 - \tau a)q_k$

Which means after *n* steps, we have:

$$q_n = (1 - \tau a)^n q_0$$

Decays only if $|1 - \tau a| < 1$, or equivalently, if $\tau < 2/a$ In practice: need very small time steps if a is large, Otherwise, the solution will numerically explode!!

Backward Euler

• **Idea:** evaluate velocity at next configuration, or say use backward difference to approximate the derivative:

$$v(q_{k+1}) \approx \frac{q_{k+1} - q_k}{\tau}$$

• New configuration defined implicitly, output depends on input:

$$q_{k+1} = q_k + \tau * \nu(q_{k+1})$$

• Much harder to solve, since in general v can be very nonlinear!

Where did all this energy go?

Backward Euler Analysis

Again, let's consider a simple linear ODE:

 $\dot{q} = -aq$, a > 0

 $q = q_0 e^{-a}$ should decay over time (loss of energy to global system).

Backward Euler approximation is:

$$(q_{k+1} - q_k)/\tau = -aq_{k+1}$$
$$\frac{q_{k+1}}{\tau} + aq_{k+1} = \frac{q_k}{\tau}$$
$$(1 + \tau a)q_{k+1} = q_k$$
$$q_{k+1} = \frac{1}{1 + \tau a}q_k$$

Which means after *n* steps, we have:

$$q_n = (\frac{1}{1+\tau a})^n q_0$$

Decays if $|1 + \tau a| > 1$, which is always true! Backwards Euler is **unconditionally stable** for linear ODEs!

Symplectic Euler

- Nice alternative is Symplectic Euler
 - Update velocity using current configuration q_k
 - Update configuration using new velocity v_{k+1}

 $v_{k+1} = v_k + \tau * a(q_k)$ $q_{k+1} = q_k + \tau * v_{k+1}$

• Pendulum now conserves energy *almost exactly*, forever

isn't very easy...

Explicit Time Integration Methods

[Forward Euler] (1st-order accurate)

$$v_{k+1} = v_k + \tau * a(q_k)$$
$$q_{k+1} = q_k + \tau * v_k$$

[Symplectic Euler] (1st-order accurate)

 $v_{k+1} = v_k + \tau * a(q_k)$ $q_{k+1} = q_k + \tau * v_{k+1}$

[Verlet] (2nd-order accurate)

$$v_{k+1} = v_{k+0.5} + \frac{\tau}{2} * a(q_k)$$
$$q_{k+1} = q_k + \tau * v_{k+1}$$
$$v_{k+1.5} = v_{k+1} + \frac{\tau}{2} * a(q_k)$$

[RK2] (2nd-order accurate)

$$v'_{k+1} = \tau * a(q_k)$$

$$v''_{k+1} = \tau * a(q_k + \frac{v'_{k+1}}{2})$$

$$v_{k+1} = v_k + v''_{k+1}$$

$$q_{k+1} = q_k + \tau * v_{k+1}$$

[RK4] (4th-order accurate)

$$v'_{k+1} = \tau * a(q_k)$$
 conditionally stable

$$v''_{k+1} = \tau * a(q_k + \frac{v'_{k+1}}{2})$$

$$v'''_{k+1} = \tau * a(q_k + \frac{v''_{k+1}}{2})$$

$$v''''_{k+1} = \tau * a(q_k + v'''_{k+1})$$

$$q_{k+1} = q_k + \frac{1}{6}(v'_{k+1} + 2v''_{k+1} + 2v'''_{k+1} + v''''_{k+1})$$

 These explicit methods (no system solves) are all conditionally stable.

Physically-Based Animation

ODE Solvers

• PDE Solvers

ODEs vs. PDEs

- Partial Differential Equations (PDEs) include derivatives with respect to multiple variables
 - e.g. both time and space.

[ODE] throwing a rock

[PDE] throwing rock lands in pond
ODEs vs. PDEs

[PDE] throwing rock lands in pond

Moving forward, we will denote:

u(t,x)

As the functions for which our PDE will solve for, and:

ù, ü, ï...

As their temporal derivatives, and:

u', *u''*, *u'''*...

As their spatial derivatives

Laplace Equation [Elliptic] "What's the smoothest function interpolating the given boundary data?"

Heat Equation [Parabolic] "How does an initial distribution of heat spread out over time?"

$$\Delta u = 0$$

 $\dot{u} = \Delta u$

INTERMEDIATE

EASLER

Wave Equation [Hyperbolic]

"If you throw a rock into a pond, how does the wavefront evolve over time?"

 $\ddot{u} = \Delta u$

First consider a second-order linear PDE in two variables, written in the form

 $Au_{xx}+2Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu+G=0,$

where *A*, *B*, *C*, *D*, *E*, *F*, and *G* are functions of *x* and *y*, using subscript notation for the partial derivatives. The PDE is called **elliptic** if

$$B^2 - AC < 0,$$

with this naming convention inspired by the equation for a planar ellipse. Equations with $B^2 - AC = 0$ are termed parabolic while those with $B^2 - AC > 0$ are hyperbolic.

(From Wikipedia)

15-362/662 | Computer Graphics

Lecture 18 | Simulations

 Laplace Equation [Elliptic]

 "What's the smoothest function

 interpolating the given boundary data?"

INTERMEDIATE

ADVANCED

EXPERTS ONLY

Heat Equation [Parabolic] "How does an initial distribution of heat spread out over time?"

Wave Equation [Hyperbolic]

"If you throw a rock into a pond, how does the wavefront evolve over time?"

Nonlinear + Hyperbolic + High-Order "A lot of real life phenomenon" $\Delta u = 0$

 $\dot{u} = \Delta u$

 $\ddot{u} = \Delta u$

???

Laplace Equation [Elliptic] "What's the smoothest function interpolating the given boundary data?"

Heat Equation [Parabolic] "How does an initial distribution of heat spread out over time?"

Wave Equation [Hyperbolic] "If you throw a rock into a pond, how does the wavefront evolve over time?"

Nonlinear + Hyperbolic + High-Order "A lot of real life phenomenon" $\Delta u = 0$

 $\ddot{u} = \Delta u$

???

Laplace Equation

"What's the smoothest function interpolating the given boundary data?"

Laplace-Beltrami: The Swiss Army Knife of Geometry Processing (2014) Solomon, Crane, Vouga

- Conceptually, each value is at the average of its "neighbors"
 - Very robust to errors: just keep averaging with neighbors
 - Errors will eventually get averaged out/diminish

Laplace Equation [Elliptic] "What's the smoothest function interpolating the given boundary data?"

Heat Equation [Parabolic] "How does an initial distribution of heat spread out over time?"

Wave Equation [Hyperbolic] "If you throw a rock into a pond, how does the wavefront evolve over time?"

EASIER

INTERMEDIATE

ADVANCED

Nonlinear + Hyperbolic + High-Order "A lot of real life phenomenon" $\Delta u = 0$

 $\dot{u} = \Delta u$

 $\ddot{u} = \Delta u$

???

Heat Equation

"How does an initial distribution of heat spread out over time?"

- After a long time, solution is same as Laplace equation
 - Treat 3D problem over a mesh as a 2D surface problem via parameterization
- Models damping/viscosity in many physical system

Laplace Equation [Elliptic] "What's the smoothest function interpolating the given boundary data?"

Heat Equation [Parabolic] "How does an initial distribution of heat spread out over time?"

Wave Equation [Hyperbolic]

"If you throw a rock into a pond, how does the wavefront evolve over time?"

Nonlinear + Hyperbolic + High-Order "A lot of real life phenomenon" $\Delta u = 0$

 $\dot{u} = \Delta u$

 $\ddot{u} = \Delta u$

???

EASIER

ADVANCED

EXPERTS ONLY

Wave Equation

"If you throw a rock into a pond, how does the wavefront evolve over time?"

- Difficult! Errors made at the beginning will persist for a long time
 - Errors may even compound and explode/break simulation

Laplace Equation [Elliptic] "What's the smoothest function interpolating the given boundary data?"

Heat Equation [Parabolic] "How does an initial distribution of heat spread out over time?"

Wave Equation [Hyperbolic] "If you throw a rock into a pond, how does the wavefront evolve over time?"

 $\dot{u} = \Delta u$

 $\ddot{u} = \Delta u$

???

ADVANCED

EASIER

Nonlinear + Hyperbolic + High-Order "A lot of real life phenomenon"

PDE Anatomy

- How are derivatives combined?
 - Linear: functions and derivatives are multiplied with constants
 - Nonlinear: functions and/or derivatives are multiplied with each other

nonlinear $\dot{u} + uu' = au''$ [Burger's equation] $\dot{u} = au''$ [heat equation]

• What is the highest order derivative in space and time?

• The higher the order, the harder to solve!

Great, but how do we solve PDEs?

Numerically Solving a PDE

- PDEs are (nearly) impossible to solve analytically
 - Need to solve numerically
- Algorithm:
 - Pick a time discretization to compute temporal derivatives
 - Forward Euler, Backward Euler, ...
 - Pick a spatial discretization to compute spatial derivatives
 - Lagrangian, Eulerian, ...
 - Perform time-stepping to advance solution
- Historically, very expensive
 - Only for "hero shots" in movies
- Computers are even faster nowadays
 - Can solve PDEs in real-time

What discretization formats do we have?

Titanic (1997) James Cameron

Lagrangian vs. Eulerian

[Lagrangian]

track position & velocity of moving particles

[Eulerian]

track velocity (or flux) at fixed spatial locations

Lagrangian vs. Eulerian

• Lagrangian:

- [+] Conceptually easy (like polygon soup!)
- [+] Resolution/domain not limited by grid
- [-] Good particle distribution can be tough
- [-] Finding neighbors can be expensive

• Eulerian:

- [+] Fast, regular computation
- [+] Good cache coherence
- [+] Easy to represent
- [-] Simulation "trapped" in grid
- [-] Grid causes "numerical diffusion" (blur/aliasing)
- [-] Need to understand PDEs (but you will!)
- Where have we seen these formats before?
 - Rasterization!
 - Lagrangian is the primitives in our scene
 - **Eulerian** is the pixel representations on our displays

Mixing Lagrangian & Eulerian

- Many modern methods mix Lagrangian & Eulerian:
 - PIC/FLIP, MPM, particle level sets, mesh-based surface tracking, Voronoi-based, arbitrary Lagrangian-Eulerian (ALE), ...
- Pick the right tool for the job!
 - If you can't pick one, pick them all!

The Laplacian Operator

- All of these equations used the Laplace operator
 - Laplace Equation $\Delta u = 0$
 - Heat Equation $\dot{u} = \Delta u$
 - Wave Equation $\ddot{u} = \Delta u$
- Unbelievably important object showing up everywhere across physics, geometry, signal processing, and more
- What does the Laplacian mean?
 - Differential operator: takes in a function, outputs its derivatives
 - What does that mean for a function: $u: \mathbb{R}^n \to \mathbb{R}$?
 - Divergence of gradient

$$\Delta u = \nabla \cdot \nabla u$$

• Sum of second derivatives

$$\Delta u = \frac{\partial u^2}{\partial x_1^2} + \dots + \frac{\partial u^2}{\partial x_n^2}$$

• Deviation from local average

• ...

Discretizing The Laplacian

• Consider the Laplacian as a sum of second derivatives:

$$\Delta u = \frac{\partial u^2}{\partial x_1^2} + \dots + \frac{\partial u^2}{\partial x_n^2}$$

- How do we compute this numerically?
- Consider a non-differentiable function with evaluated samples x₀, x₁, ...
 - The 1st-order derivative approximated is:

$$u'(x_i) \approx \frac{u_{i+1} - u_i}{h}$$

• The 2nd-order derivative approximated is:

$$u''(x_i) \approx \frac{u'_i - u'_{i-1}}{h} \approx \frac{\left(\frac{u_{i+1} - u_i}{h}\right) - \left(\frac{u_i - u_{i-1}}{h}\right)}{h} = \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2}$$

• Known as the **finite difference** approach to PDEs

Х

Discretizing The Laplacian

What if *u* is not a 1D function...

Numerically Solving The Laplacian

- If *u* is a solution, then each value must be the average of the neighboring values
- How do we solve this?
 - Idea: keep averaging with neighbors! ("Jacobi method")
 - Correct, but slow
 - Much better to use modern linear solver

Linearly Solving The Laplacian

• We have a bunch of equations of the form:

 $4u_{i,j} - u_{i-1,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1} = 0$

- Index 2D grid using 1D indices
 - Create a matrix with all equations (these are our constraints)

			-		_																-
		$\begin{bmatrix} 0 \end{bmatrix}$		u_1)	(0	0	1	0	0	0	0	0	0	0	1	1	0	1	-4
Make sure to use a sparse solver!	0		u_2)	(0	1	0	0	0	0	0	0	0	1	0	0	1	-4	1	
	0		Из)	(1	0	0	0	0	0	0	0	1	0	0	1	-4	1	0	
	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$		u_{Δ}			0	0	0	0	0	0	0	1	0	0	0	-4	1	0	1	
			U5)	(0	0	0	0	0	0	1	1	0	1	-4	0	0	0	1	
			11 ₆)	(0	0	0	0	0	1	0	0	1	_4	1	0	0	1	0	
			117		(0	0	0	Õ	1	0	Ő	1	_4	1	0	Ő	1	0	0	
			и _/		(0	0	0	1	0	0	0		1	0	1	1	0	0		
		=	<i>u</i> 8	, l		0	0	1	1	0	1	0		1	0	1	1	0	0		
		0		u_9	<u>'</u>	(0	0	1	1	0	1	-4	0	0	0	1	0	0	0	
		0		u_{10})	(0	1	0	0	1	-4	1	0	0	I	0	0	0	0	0
		0		u_{11})	(1	0	0	1	-4	1	0	0	1	0	0	0	0	0	0
What is the issue with this?	0		u_{12}		-	0	0	0	-4	1	0	1	1	0	0	0	0	0	0	0	
			u_{13}		-	0	1	-4	0	0	0	1	0	0	0	0	0	0	0	1	
			<i>U</i> 14)	(1	-4	1	0	0	1	0	0	0	0	0	0	0	1	0	
			<i>U</i> 15			-4	1	0	0	1	0	0	0	0	0	0	0	1	0	0	
			<i>U</i> 10	4	_	1	0	1	1	0	0	0	0	0	0	0	1	0	0	0	
				_ <i>u</i> 16	· _		1	0	1	1	0	0	0	0	0	0	0	1	0	0	L

Boundary Conditions

- We need boundary conditions that make our solution non-zero
 - Essentially, what is the data we want to interpolate?

- Three types of boundary conditions:
 - **Dirichlet:** boundary data always set to fixed values
 - **Neumann:** specify derivatives across boundary
 - **Robin:** mix of boundary data and derivatives set to fixed values
 - Many more in general, but this is all we will cover

Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Many possible functions interpolate values in between

Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Again, many possible functions

Dirichlet + Neumann Boundary Conditions

Dirichlet: boundary data always set to fixed values **Neumann:** specify derivatives across boundary

What about Robin: $\phi'(0) + \phi(0) = p$, $\phi'(1) + \phi(1) = q$

We can generate a continuous function for any of the boundary conditions, But does there exist a Laplacian solution for any set of boundary conditions?

Solution To The Laplacian

- - The Laplacian gives us the resting state of diffusion
 - The resting state is a linear function between boundary conditions

1D Laplacian With Dirichlet

Can we always satisfy Dirichlet boundary conditions in 1D?

Yes! A line can always interpolate two points

1D Laplacian With Neumann

Can we always satisfy Neumann boundary conditions in 1D?

No! A line can only have one slope

Not always guaranteed that a PDE has a solution for given boundary conditions...

2D Laplacian With Dirichlet

Can we always satisfy Dirichlet boundary conditions in 2D?

Yes! Laplacian is a long-time solution to heat flow Data is "heat" at boundary. Will eventually diffuse to equilibrium

2D Laplacian With Neumann

Can we always satisfy Neumann boundary conditions in 2D?

Can't have a solution unless the net flux through the boundary is zero!

Numerical libraries will not always tell you that there is a problem with your boundary conditions Need to verify yourself. If solving Ax = b, verify ||b - Ax||

Modeling PDE Equations

E A SIE R

INTERMEDIATE

ADVANCED

EXPERTS ONLY

Laplace Equation [Elliptic] "What's the smoothest function interpolating the given boundary data?"

Heat Equation [Parabolic] "How does an initial distribution of heat spread out over time?"

Wave Equation [Hyperbolic]

"If you throw a rock into a pond, how does the wavefront evolve over time?"

Nonlinear + Hyperbolic + High-Order "A lot of real life phenomenon"

 $\Delta u = 0$

 $\dot{u} = \Delta u$

 $\ddot{u} = \Delta u$

???

cie the hope the hope

Solving The Heat Equation

Heat equation tells us the Laplacian is equal to the first temporal derivative:

$$\dot{u} = \Delta u$$

Compute the Laplacian as normal (Ex: on a grid):

$$u_{i,j}^{k+1} = u^k + \frac{\tau}{h^2} (4u_{i,j}^k - u_{i+1,j}^k - u_{i-1,j}^k - u_{i,j+1}^k - u_{i,j-1}^k)$$

Propagate using the first temporal derivative Δu (Ex: forward Euler):

$$u^{k+1} = u^k + \Delta u^k$$

Solving The Wave Equation

Wave equation tells us the Laplacian is the second temporal derivative:

$$\ddot{u} = \Delta u$$

Compute the Laplacian as normal (Ex: on a grid):

$$u_{i,j}^{k+1} = u^k + \frac{\tau}{h^2} (4u_{i,j}^k - u_{i+1,j}^k - u_{i-1,j}^k - u_{i,j+1}^k - u_{i,j-1}^k)$$

Propagate using the second temporal derivative Δu (Ex: forward Euler):

$$\dot{u} = v, \quad \dot{v} = \Delta u$$
Wave Equation On A Triangle Mesh

Wave Equation On Surfaces (2016) Alec Jacobson

Wave Equation On A Triangle Mesh

https://www.adultswim.com/etcetera/elastic-man/

Want To Know More?

Plenty of books and papers on Simulation

<page-header><section-header><section-header><image>

What did the folks who wrote these papers/books read?

