
Simulations

15-362/662 | Computer Graphics Lecture 18 | Simulations

15-362/662 | Computer Graphics

• Physics-Based Animation

• ODE Solvers

• PDE Solvers

Lecture 18 | Simulations

15-362/662 | Computer Graphics Lecture 18 | Simulations

What natural phenomenon can we simulate?

15-362/662 | Computer Graphics Lecture 18 | Simulations

Flocking Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Crowd Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Crowd Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Fluid Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Granular Material Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Molecular Dynamics Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Cosmological Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Mass-Spring Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Cloth Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Hair Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Elasticity Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Fracture Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Snow Simulation

15-362/662 | Computer Graphics Lecture 18 | Simulations

Ok, simulation is cool,

How can we solve them analytically?

15-362/662 | Computer Graphics

• Physically-Based Animation

• ODE Solvers

• PDE Solvers

Lecture 18 | Simulations

• Differential Equations relates one or more functions and

their derivatives

• Ordinary Differential Equations (ODEs) is the differential

equation with only one independent variable (e.g. time)

• Many dynamical systems can be described via an ODE in

generalized coordinates:

• ODEs can also be used to model rates of growth

proportional to some original value:

• Solution: 𝑢 𝑡 = 𝑏𝑒!"

• Describes exponential decay (𝑎 < 0), or growth (𝑎 > 0)

15-362/662 | Computer Graphics Lecture 18 | Simulations

Ordinary Differential Equations

Simulation using second order ODE in MATLAB

15-362/662 | Computer Graphics

Example: Throwing A Rock

** Yes, the rock is spherical and has uniform density

• Consider a rock** of mass m tossed under force of gravity g

• Easy to write dynamical equations, since only force is gravity:

Easy! We don’t need a computer for simulation!

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Example: Pendulum

• Mass on end of a bar, swinging under gravity

• What are the equations of motion?

• Same as “rock” problem, but constrained

• Response tension 𝑇(𝑞) now varies based on configuration 𝑞

• Could use a “force diagram”

• You probably did this for many hours in high school/college

Ok, maybe bring back the computer…

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Lagrangian Mechanics

• Beautifully simple recipe:

• Write down kinetic energy 𝐾
• Write down potential energy 𝑈
• Write down Lagrangian

• Dynamics then given by Euler-Lagrange equation

• Often easier to come up with (scalar) energies than forces

• Very general, works in any kind of generalized coordinates

• Helps develop nice class of numerical integrators (symplectic)

Joseph-Louis Langrange (1736 - 1813)

mass times

acceleration

force

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Lagrangian Mechanics: Pendulum

Simple configuration parameterization:

Kinetic energy:

Potential energy:

Euler-Lagrange equations:

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Solving The Pendulum

Simple equation for the pendulum:

For small angles (e.g., clock pendulum) can approximate as:

𝒔𝒊𝒏𝜽 = 𝜽 for

small angles

𝒅𝟐

𝒅𝜶𝟐
𝒄𝒐𝒔𝜶 = −𝒄𝒐𝒔𝜶

In general, there is often no closed form solution!

Hence, we must use a numerical approximation

And pendulums are supposed to be easy to simulate!

[harmonic oscillation]

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Harder: Double Pendulum

• Blue ball swings from pendulum

• Green ball swings from blue ball

• Forces will act on each other

• Newton’s 3rd law

• Simple system...not-so-simple motion

• Chaotic: perturb input, wild changes to output

• Must again use numerical approximation

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Even Harder: N-Body Problem

• Consider the Earth, moon, and sun

• Where do they go?

• Solution is trivial for two bodies

• Assume one is fixed, solve for the other

• As soon as n ≥ 3, gets chaotic

• No closed form solution

• Fun Fact: this is a 15-418 homework assignment

• Glad you aren’t taking 15-418…

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Ok, so solving solutions analytically is hard,

How about solving them numerically?

closed-form solution

guess-and-check

Lecture 18 | Simulations

• Key idea: replace derivatives with differences

• With ODEs, only need to worry about

derivative in time

• Replace time-continuous configuration

function 𝑞(𝑡) with samples 𝑞$ in time

15-362/662 | Computer Graphics

Numerical Integration

𝑣 𝑞(𝑡) =
𝑑

𝑑𝑡
𝑞 𝑡 =

𝑞!"# − 𝑞!
𝜏

current config
new config

(need to solve for)

time step

which q do

we use?

Deriving Forward & Backward Euler (2022) Steve Brunton

Lecture 18 | Simulations

• Idea: evaluate velocity at current configuration, or say

use forward difference to approximate the derivative:

• New configuration can then be written explicitly in terms

of known data:

• Very intuitive: walk a tiny bit in the direction of the

velocity

15-362/662 | Computer Graphics

Forward Euler

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣(𝑞!)

starts slow gradually moves faster

Where did all this

energy come from?

Lecture 18 | Simulations

𝑣 𝑞! ≈
𝑞!"# − 𝑞!

𝜏

15-362/662 | Computer Graphics

Forward Euler Analysis

𝑞!"# = 𝑞! − 𝜏𝑎𝑞!

𝑞!"# = (1 − 𝜏𝑎)𝑞!

𝑞$ = (1 − 𝜏𝑎)$𝑞%

Let’s consider behavior of forward Euler for a simple linear ODE:

𝑞 = 𝑞%𝑒
&! should decay over time (loss of energy to global system).

Forward Euler approximation is:

Which means after 𝑛 steps, we have:

Decays only if |1 − 𝜏𝑎| < 1, or equivalently, if 𝜏 < 2/𝑎
In practice: need very small time steps if a is large,

Otherwise, the solution will numerically explode!!

𝑞̇ = −𝑎𝑞, 𝑎 > 0

Lecture 18 | Simulations

• Idea: evaluate velocity at next configuration, or say use

backward difference to approximate the derivative:

• New configuration defined implicitly, output depends on

input:

• Much harder to solve, since in general 𝑣 can be very

nonlinear!

15-362/662 | Computer Graphics

Backward Euler

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣(𝑞!"#)

starts slow gradually slows down

Where did all this

energy go?

Lecture 18 | Simulations

𝑣 𝑞!"# ≈
𝑞!"# − 𝑞!

𝜏

15-362/662 | Computer Graphics

Backward Euler Analysis

𝑞̇ = −𝑎𝑞, 𝑎 > 0

(𝑞!"#−𝑞!)/𝜏 = −𝑎𝑞!"#
𝑞!"#
𝜏

+ 𝑎𝑞!"# =
𝑞!
𝜏

Again, let’s consider a simple linear ODE:

𝑞 = 𝑞%𝑒
&! should decay over time (loss of energy to global system).

Backward Euler approximation is:

Which means after 𝑛 steps, we have:

Decays if 1 + 𝜏𝑎 > 1, which is always true!

Backwards Euler is unconditionally stable for linear ODEs!

(1 + 𝜏𝑎)𝑞!"# = 𝑞!

𝑞!"# =
#

#"&'
𝑞!

𝑞$ = (
#

#"&'
)$ 𝑞%

Lecture 18 | Simulations

• Nice alternative is Symplectic Euler

• Update velocity using current configuration 𝑞$
• Update configuration using new velocity 𝑣$'(

• Pendulum now conserves energy almost exactly, forever

15-362/662 | Computer Graphics

Symplectic Euler

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!"#

𝑣!"# = 𝑣! + 𝜏 ∗ 𝑎(𝑞!)

starts slow keeps on ticking

Proof? The analysis

isn’t very easy…

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Explicit Time Integration Methods

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!

𝑣!"# = 𝑣! + 𝜏 ∗ 𝑎(𝑞!)

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!"#

𝑣!"# = 𝑣! + 𝜏 ∗ 𝑎(𝑞!)
𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!"#

𝑣′!"# = 𝜏 ∗ 𝑎(𝑞!)

𝑣′′!"# = 𝜏 ∗ 𝑎(𝑞! +
𝑣(!"#
2

)

𝑣!"# = 𝑣! + 𝑣′′!"#

[Forward Euler] (1st-order accurate)

[Symplectic Euler] (1st-order accurate)

[RK2] (2nd-order accurate)

[Verlet] (2nd-order accurate)

𝑞!"# = 𝑞! + 𝜏 ∗ 𝑣!"#

𝑣!"# = 𝑣!"%.* +
𝜏

2
∗ 𝑎(𝑞!)

𝑣!"#.* = 𝑣!"# +
𝜏

2
∗ 𝑎(𝑞!)

𝑞!"# = 𝑞! +
#

+
(𝑣(!"# + 2𝑣′′!"#+ 2𝑣′′′!"#+ 𝑣′′′′!"#)

𝑣′!"# = 𝜏 ∗ 𝑎(𝑞!)

𝑣′′!"# = 𝜏 ∗ 𝑎(𝑞! +
𝑣(!"#
2

)

[RK4] (4th-order accurate)

𝑣′′′!"# = 𝜏 ∗ 𝑎(𝑞! +
𝑣(′!"#
2

)

𝑣′′′′!"# = 𝜏 ∗ 𝑎(𝑞! + 𝑣
(′′!"#)

Lecture 18 | Simulations

• Accuracy and stability are

different properties.

• These explicit methods (no

system solves) are all

conditionally stable.

15-362/662 | Computer Graphics

• Physically-Based Animation

• ODE Solvers

• PDE Solvers

Lecture 18 | Simulations

15-362/662 | Computer Graphics

ODEs vs. PDEs

[PDE] throwing rock lands in pond[ODE] throwing a rock

𝑑,

𝑑𝑡,
𝐱(𝑡) = 𝐠

𝑑,

𝑑𝑡,
ℎ(𝑡, 𝑥, 𝑦) = Δℎ(𝑡, 𝑥, 𝑦)

Lecture 18 | Simulations

• Partial Differential Equations

(PDEs) include derivatives with

respect to multiple variables

• e.g. both time and space.

15-362/662 | Computer Graphics

ODEs vs. PDEs

𝑑,

𝑑𝑡,
𝐱(𝑡) = 𝐠

𝑑,

𝑑𝑡,
ℎ(𝑡, 𝑥, 𝑦) = Δℎ(𝑡, 𝑥, 𝑦)

Aren’t both a function of space and time?

A single object (rock) in time Millions of objects (droplets) in time

The region of droplets we want to

solve over is our space
No additional space parameter

Lecture 18 | Simulations

[PDE] throwing rock lands in pond[ODE] throwing a rock

15-362/662 | Computer Graphics

Moving forward, we will denote:

𝑢(𝑡, 𝑥)

As the functions for which our PDE will solve for, and:

𝑢̇, 𝑢̈, 𝑢⃛…

As their temporal derivatives, and:

𝑢′, 𝑢′′, 𝑢′′′…

As their spatial derivatives

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Lecture 18 | Simulations

(From

Wikipedia)

15-362/662 | Computer Graphics

Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Laplace Equation

Laplace-Beltrami: The Swiss Army Knife of Geometry Processing (2014) Solomon, Crane, Vouga

• Conceptually, each value is at the average of its “neighbors”

• Very robust to errors: just keep averaging with neighbors

• Errors will eventually get averaged out/diminish

“What’s the smoothest function interpolating the given boundary data?”

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Heat Equation

• After a long time, solution is same as Laplace equation

• Treat 3D problem over a mesh as a 2D surface problem via

parameterization

• Models damping/viscosity in many physical system

“How does an initial distribution of heat spread out over time?”

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Wave Equation

• Difficult! Errors made at the beginning will persist for a long time

• Errors may even compound and explode/break simulation

“If you throw a rock into a pond, how does the wavefront evolve over time?”

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Different types of PDEs

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?

Lecture 18 | Simulations

15-362/662 | Computer Graphics

PDE Anatomy

• How are derivatives combined?

• Linear: functions and derivatives are multiplied with constants

• Nonlinear: functions and/or derivatives are multiplied with each other

nonlinear

[Burger’s equation]

[heat equation]

• What is the highest order derivative in space and time?

1st order time

[Burger’s equation]

[heat equation]

2nd order space

1st order time
2nd order space

• The higher the order, the harder to solve!

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Great, but how do we solve PDEs?

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Numerically Solving a PDE

• PDEs are (nearly) impossible to solve analytically

• Need to solve numerically

• Algorithm:

• Pick a time discretization to compute temporal derivatives

• Forward Euler, Backward Euler, …

• Pick a spatial discretization to compute spatial derivatives

• Lagrangian, Eulerian, …

• Perform time-stepping to advance solution

• Historically, very expensive

• Only for “hero shots” in movies

• Computers are even faster nowadays

• Can solve PDEs in real-time

Titanic (1997) James Cameron

What discretization

formats do we have?

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Lagrangian vs. Eulerian

[Lagrangian]

track position & velocity

of moving particles

[Eulerian]

track velocity (or flux)

at fixed spatial locations

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Lagrangian vs. Eulerian

• Lagrangian:

• [+] Conceptually easy (like polygon soup!)

• [+] Resolution/domain not limited by grid

• [-] Good particle distribution can be tough

• [-] Finding neighbors can be expensive

• Eulerian:

• [+] Fast, regular computation

• [+] Good cache coherence

• [+] Easy to represent

• [-] Simulation “trapped” in grid

• [-] Grid causes “numerical diffusion” (blur/aliasing)

• [-] Need to understand PDEs (but you will!)

• Where have we seen these formats before?

• Rasterization!

• Lagrangian is the primitives in our scene

• Eulerian is the pixel representations on our displays

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Mixing Lagrangian & Eulerian

• Many modern methods mix Lagrangian & Eulerian:

• PIC/FLIP, MPM, particle level sets, mesh-based surface

tracking, Voronoi-based, arbitrary Lagrangian-Eulerian

(ALE), ...

• Pick the right tool for the job!

• If you can’t pick one, pick them all!

Lecture 18 | Simulations

15-362/662 | Computer Graphics

The Laplacian Operator

• All of these equations used the Laplace operator

• Laplace Equation ∆𝑢 = 0
• Heat Equation 𝑢̇ = ∆𝑢
• Wave Equation 𝑢̈ = ∆𝑢

• Unbelievably important object showing up everywhere across physics, geometry, signal

processing, and more

• What does the Laplacian mean?

• Differential operator: takes in a function, outputs its derivatives

• What does that mean for a function: 𝑢:ℝ) → ℝ?

• Divergence of gradient

• Sum of second derivatives

• Deviation from local average

• …

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Discretizing The Laplacian

• Consider the Laplacian as a sum of second

derivatives:

• How do we compute this numerically?

• Consider a non-differentiable function with

evaluated samples 𝑥%, 𝑥(, …
• The 1st-order derivative approximated is:

• The 2nd-order derivative approximated is:

• Known as the finite difference approach to PDEs

𝑢((𝑥-) ≈
𝑢-"# − 𝑢-

ℎ

𝑢(′(𝑥-) ≈
𝑢-
(− 𝑢-.#

(

ℎ
≈

𝑢-"# − 𝑢-
ℎ

−
𝑢- − 𝑢-.#

ℎ
ℎ

=
𝑢-"# − 2𝑢- + 𝑢-.#

ℎ,

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Discretizing The Laplacian

What if 𝑢 is not a 1D function…

[Grid] [Triangle Mesh]

If the mesh is a grid,

equations become the same

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Numerically Solving The Laplacian

4𝑢!,# − 𝑢!$%,# − 𝑢!&%,# − 𝑢!,#$% − 𝑢!,#&%

ℎ'
= 0

⟺ 𝑢!,# =
1

4
𝑢!$%,# + 𝑢!&%,# + 𝑢!,#$% + 𝑢!,#&%

Want to solve Δ𝑢 = 0:

Can isolate for 𝑢*,,:

• If 𝑢 is a solution, then each value must be the average of the neighboring values

• How do we solve this?

• Idea: keep averaging with neighbors! (“Jacobi method”)

• Correct, but slow

• Much better to use modern linear solver

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Linearly Solving The Laplacian

• We have a bunch of equations of the form:

• Index 2D grid using 1D indices

• Create a matrix with all equations (these are our constraints)

4𝑢*,, − 𝑢*&(,, − 𝑢*'(,, − 𝑢*,,&(− 𝑢*,,'(= 0

What is the issue

with this?

Make sure to use

a sparse solver!

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Boundary Conditions

• We need boundary conditions that make our solution non-zero

• Essentially, what is the data we want to interpolate?

• Three types of boundary conditions:

• Dirichlet: boundary data always set to fixed values

• Neumann: specify derivatives across boundary

• Robin: mix of boundary data and derivatives set to fixed values

• Many more in general, but this is all we will cover

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Example: 𝜙(0) = 𝑎, 𝜙(1) = 𝑏

Many possible functions interpolate values in between

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: 𝜙-(0) = 𝑢, 𝜙-(1) = 𝑣

Again, many possible functions

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Dirichlet + Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: 𝜙-(0) = 𝑢, 𝜙(1) = 𝑏

Still, many possible functions

Dirichlet: boundary data always set to fixed values

What about Robin: 𝜙-(0) + 𝜙(0) = 𝑝, 𝜙-(1) + 𝜙(1) = 𝑞

Lecture 18 | Simulations

15-362/662 | Computer Graphics

We can generate a continuous function for any of the boundary conditions,

But does there exist a Laplacian solution for any set of boundary conditions?

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Solution To The Laplacian

• Consider a 1D function

• What is the solution to:

• Any function who’s second derivative is 0

• Any function that is linear

• Makes sense conceptually

• The Laplacian gives us the resting state of diffusion

• The resting state is a linear function between boundary conditions

𝜕,𝜙/𝜕𝑥, = 0

𝜙(𝑥) = 𝑐𝑥 + 𝑑

Lecture 18 | Simulations

15-362/662 | Computer Graphics

1D Laplacian With Dirichlet

Can we always satisfy Dirichlet boundary conditions in 1D?

Yes! A line can always interpolate two points

Lecture 18 | Simulations

15-362/662 | Computer Graphics

1D Laplacian With Neumann

Can we always satisfy Neumann boundary conditions in 1D?

No! A line can only have one slope

Not always guaranteed that a PDE has a solution for given boundary conditions…

Lecture 18 | Simulations

15-362/662 | Computer Graphics

2D Laplacian With Dirichlet

Can we always satisfy Dirichlet boundary conditions in 2D?

Yes! Laplacian is a long-time solution to heat flow

Data is “heat” at boundary. Will eventually diffuse to equilibrium

Lecture 18 | Simulations

15-362/662 | Computer Graphics

2D Laplacian With Neumann

Can we always satisfy Neumann boundary conditions in 2D?

Can’t have a solution unless the net flux through the boundary is zero!

Neumann BCs prescribe derivative in normal direction: 𝑛 ⋅ 𝛻𝜙

Want to solve for Δ𝜙 = 0

In 2D, we have the divergence theorem:

integrating 𝐧 ⋅ 𝛁𝝓

over boundary

integrating divergence

of 𝛁𝝓 over interior

what goes in,

must come out!

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Numerical libraries will not always tell you that there is a problem with your boundary conditions

Need to verify yourself. If solving 𝐴𝑥 = 𝑏, verify 𝑏 − 𝐴𝑥

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Modeling PDE Equations

Laplace Equation [Elliptic]

“What’s the smoothest function

interpolating the given boundary data?”

Heat Equation [Parabolic]

“How does an initial distribution

of heat spread out over time?”

Wave Equation [Hyperbolic]

“If you throw a rock into a pond, how

does the wavefront evolve over time?”

Nonlinear + Hyperbolic + High-Order

“A lot of real life phenomenon”
? ? ?

H
o
w

 t
o

 s
o

lv
e

th
es

e?

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Solving The Heat Equation

Heat equation tells us the Laplacian is equal to the first temporal derivative:

Compute the Laplacian as normal (Ex: on a grid):

Propagate using the first temporal derivative ∆𝑢 (Ex: forward Euler):

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Solving The Wave Equation

Wave equation tells us the Laplacian is the second temporal derivative:

Compute the Laplacian as normal (Ex: on a grid):

Propagate using the second temporal derivative ∆𝑢 (Ex: forward Euler):

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Wave Equation On A Triangle Mesh

Wave Equation On Surfaces (2016) Alec Jacobson

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Wave Equation On A Triangle Mesh

https://www.adultswim.com/etcetera/elastic-man/

Lecture 18 | Simulations

15-362/662 | Computer Graphics

Want To Know More?

Plenty of books and papers on Simulation

What did the folks who wrote these papers/books read?

Lecture 18 | Simulations

https://www.physicsbasedanimation.com/

