Splines & Kinematics

* Splines
* Forward Kinematics

* |[nverse Kinematics

15-362/662 | Computer Graphics

Recall: 3D Animation

* Using meshes, materials, and rendering to produce
3D animated sequences

e Use a photorealistic renderer to make results
photorealistic

* Today: No need to draw anything, computer takes
care of everything
e Set keyframes by hand
* Forward Kinematics
* Inverse Kinematics
e Allow keyframes to interpolate
e Splines

15-362/662 | Computer Graphics

Keyframing

* Set keyframes at important locations in the animation keyframes
* Have the computer interpolate the rest . l
e Can keyframe anything! . "W,
e Color -
* Light intensity) U ‘
 Camera zoom '
* Problem: how should data interpolate?
e Linearly?

* Along a curve/arc? interpolations

15-362/662 | Computer Graphics

Linear Interpolation

basic idea, connect the dots

yields rough motions at keyframes

/

i

15-362/662 | Computer Graphics

Piecewise Polynomial Interpolation

p (t) A ¢.‘ doesn’t pass through keyframes

yields smooth motions

i

15-362/662 | Computer Graphics

Splines

* Mathematical theory of interpolation arose from
study of thin strips of wood or metal (“splines”)
under various forces

e Splines help us define how interpolation should
occur

The Elastica: A Mathematical History (2008) Levin

15-362/662 | Computer Graphics

Splines

In this course, a spline is any piecewise cubic
polynomial function

L) A
degree p()
d -~ ;
for tz' S t S ti_|_1, f(t) — ijl Citj =. pi(t)
coefficients polynomials
Common spline: cubic polynomial:
p(t) = at® + bt* +ct+d
¢

3 goals of splines:
* Interpolation
* Continuity
* Locality

Many solutions!

Interpolation

* Interpolation: does the spline pass through the .,o’ P3
control points g

f(tz) _ v \'

* For every keyframe f;, there exists some time t; [
where the interpolation of f equals the keyframe f; P
0

15-362/662 | Computer Graphics

Continuity

e Continuity: Is the spline twice differentiable along
control points

e CO continuity — keyframes are continuous
* (1 continuity — first derivative is continuous
e (2 continuity — second derivative is continuous

e Saying a spline has continuity requires C2 ?) 1
continuity
/ Q D: 60.01 px

15-362/662 | Computer Graphics

Locality

* Locality: moving one control point does not
modify the whole curve " .

* Important from a user perspective
* Need to be able to make small, local

changes to spline

15-362/662 | Computer Graphics

Piecewise Cubic Polynomial

p(t) =at3 +bt>+ct+d

* Animator specifies where a curve starts, ends, and 20.0000
the tangents at those points

p(0) = pg = d = pg

1.2228
p(1) = p, 2>a+b+c+d= p; |
p'(0) = ug = C = Uy
p'(1) =u, =>3a+2b+c=1u

* @Gives us 4 constraints
* (Can be turned into 4 coefficients

Piecewise Cubic Polynomial

* (Can also write

= = d —
p(O) & Po 20.0000
p(1) =p; Sa+b+c+d=p
p'(0) = uq = C = Uy
p'(1) =u, =>3a+2b+c=u | 12228

e asalinear system!

000 1][a -
111 16| | p
00 1 0| ec¢]| ™ | u
321 0]||d]| |w

Runge Phenomenon

Tempting to use higher-degree polynomials to get higher-order continuity

A

ot 3‘.'\0(\
e

e 209
\N°‘Se

0
20%°

\e?
a0 e
C\)\‘\«\a“

15-362/662 | Computer Graphics

Natural Splines

Can build a spline out of piecewise cubic polynomials p;
* Each polynomial extends from range t = [0,1]
 Keyframes agree at endpoints [CO continuity]:

pi(t;) = fi, Pi(tiv1) = fiv1s vVi=0,..,n—1 P1-
 Tangents agree at endpoints [C1 continuity]:
p'i(tiv1) =D i41(tis1), Vi=0,..,n—2

e Curvature agrees at endpoints [C2 continuity]:

4

p”i(ti+1) = p”i+1(ti+1)’ Vi = 0) ey, 1 — 2 pO‘

Total equations:
e 2n+(n-1)+(n-1)=4n-2
Total DOFs:
* 2n+n+n=4n
Set curvature at endpoints to 0 and solve

p'o(to) =0, p'o(tiy1) =0

Natural Splines

« ./ Interpolation: by definition
pi(t) =fi Pitis1) = fixe, Vi=0,..,n—1
* / Continuity: by definition
p"i(tiv1) = 0" i11(tis1), Vi=0,..,.n—2

» X Locality: coefficients require us to solve a
global linear system
* Small modification to a keyframe requires
resolving the entire system

15-362/662 | Computer Graphics

Hermite/Bézier Splines
e Each cubic piece specified by endpoints and tangents
* Keyframes set at endpoints:

(L) = [i (¢ = Ji Vi=0,..
pl(l) fl’ pl(l+1) fl+1’ ’ File Edit Object Type Select Effect View Window Help

 Tangents set at endpoint: R

Conver: N / Handles: _..l". ® Anchors: -" {;3

Untitled-1* @ 100% (CMYK/GPU Preview) X

p'i(t) = u;, p'i(tiz1) = Ui +1, Vi=0,..

* Natural splines specify just keyframes
* Bezier splines specify keyframes and tangents
e (Can get continuity if tangents are set equal

e Total equations:
e 2n+2n=4n

e Commonly used in vector art programs
e lllustrator
* Inkscape
* SVGs

15-362/662 | Computer Graphics

Hermite/Bézier Splines

Hermite curves specify keyframes and tangents, Bezier curves specify control points

.-
)
.

cubic Bézier cubic Hermite

Same computation and properties! Just a different interface

15-362/662 | Computer Graphics

Hermite/Bézier Splines

Hermite curves specify keyframes and tangents, Bezier curves specify control points

Hermite

Same computation and properties! Just a different interface

15-362/662 | Computer Graphics

I

Catmull-Rom Splines

A specialized version of Hermite splines
* Only need to specify keyframes
* Tangents computed as:

s S Jit1—fi—1
b g —tg—1

All the same properties of Hermite splines
Commonly used to interpolate motion in computer
animation
* When we have tracking data, but not tangent data
» Easy to generate tangent data

i

Hermite/Bézier/Catmull-Rom Splines

v,

Interpolation: by definition

pi(ti) — fit pi(ti+1) — fi+1r Vi = 0; e, 1 — 1

« X Continuity: Can produce splines that are
not C2 (or even C1) continuous
 Tangents do not need to be same values

pit) =u;, pi(tiz1) =upq, Vi=0,..,n—-1

Locality: each cubic polynomial is
generated individually
* Modifications can happen individually
e Ease of use make it a prime candidate for
vector applications

B-Splines

Compute a weighted average of nearby keyframes when
interpolating

B-spline basis defined recursively, with base condition:

1, ift; <t< il

Bz’ t) .=
1) 0, otherwise

And inductive condition:

B; i (t) := L=k -Bi k—1(f) + e Bit1x-1()

titk—1—t tivtr—tit1

B-spline is a linear combination of bases:

f(t)

degree

-
> .. aiB; 4

B-Splines

« X Interpolation: For higher degrees, splines
do not pass through keyframes

+ / Continuity: With higher degrees, bases are
twice differentiable

0
— t—t; itk —1 .
Bix(t) = s =5 Bik-1(0) + 7557 Bir1e—1(t)
* / Locality: B-spline bases are a function of
the current and next bases
Bi(t) = —=b B, 4 (t) + 2 B, (t)

’L,k o —— ti+k—1_ti ’I,,]{:—l ti—i—k:_tz’—l—l ’L—|—1,k7—1

0

15-362/662 | Computer Graphics

[@2489p 4amO|]

[@2483p 49y3Iy]

Splines Review

[Interpolation] [Continuity] [Locality]
Linear v X 4
Natural v Vv X
Hermite v X V4
Bezier v X v
Catmull-Rom v X v
B-Spline X v v

15-362/662 | Computer Graphics

Splines Review

[Interpolation] [Continuity] [Locality]

Linear
Natural
Hermite vg?&

Bezier

Catmull-Rom

B-Spline

15-362/662 | Computer Graphics

oS lines
 Forward Kinematics

* |[nverse Kinematics

15-362/662 | Computer Graphics

Character Animation

Configuration of a character is the
configuration of all their individual joints

Keyframes save poses of characters
* Goal: use splines to interpolate between
poses of a character
* Natural splines
* Hermite splines
e B-splines

Problem: what is an efficient, user-friendly
way of setting character poses?

3D Animation in Unity (2020) Ing Jilecek

Motion Capture

* Just take videos of real life poses
* Map to character model

e Data can get very messy
e Same idea as capturing a point cloud

e [+] Easy to understand 7% 3
e [+] Capture real-life poses PR
* [-]Expensive to purchase

* [-]Very noisy data

* [-]Requires a lot of cleanup

The Hobbit (2012) Peter Jackson

15-362/662 | Computer Graphics

The Human Rig

Many systems well-described by a kinematic chain (easier
to specify constraints)
* Collection of rigid bodies, connected by joints
e Joints have various behaviors
* Ball (shoulder)
* Hinge (elbow)
* Also have constraints (e.g., range of angles)
* Human neck can’t rotate around fully
* Owl necks can!
* Hierarchical structure (body - leg - foot)

In animation, often called a character rig
* Character rigs are scene graphs!

Character Rigging

) carl_mesh
=1 A_GENERAL
2, A_pvector_legG
@ A_pvector_legD
=H2 A _piede
2 AB_piedboutG
=13 AB_piedplieG
=12 AB_piedG_nub
2 K _legG
=H2 | A_piedd
22 AB_piedboutD
ZH2, AB_piedplieD
212 AB_piedD_nub
{3 1K _legD
=1 A_bassin_total
2@ A_bassin
=422 AB_bassin_leg
=2 B_cuisseG
=2 B_tibiaG
2, D_legG
=+ B_cuisseD
=12 B_tibiaD

* Character rigging is a separate job from character modeling
and character animation
* Focuses on:
* Optimal joint placement
* Joint angle extent
e Joint hierarchy

2 p_legd
=2 B_colt
£2 B _col2
2B B _col3
=2 B_col4
2 AB_dave
ZH2 AB_brasG
ZH2 AB_AvBrasG
2 D_brasNubG
22 K brasG
4B AB_mainG
22 AB_pouceG1
22 AB_pouceG2
22 AB_pouceG3

* Not all human rigs are the same!
* Depends on character model proportions/movements

Rigging Artist
m Sony Pictures Animation
Culver City, CA

via Greenhouse

i Full-time No degree mentioned

Up (2009) Pixar

How do we animate a rig?

15-362/662 | Computer Graphics

Forward Kinematics

Co U C1 U1 ¢

* Consider moving the hand ¢, =

* Then rotate elbow (moves ¢,)

* New elbow position p; computed as:

; o Po

costp sinb 0

= -+ . U 0
P1=Po —sinfy cos 6 0

 Can also be written as: P1
0

p1 = po + €7 ug

* New hand position p, computed as: (9

_ 190 ’1,9() ’1,91 p2 1

P2 =Po+€ "Uugt+e e uy

Forward Kinematics

Co U C1 U1 ¢

* Consider moving the hand ¢, =

* Then rotate elbow (moves ¢,)

* |f we view it as coordinate space transformation, this can also

be written as: Po
0o

p1 = po + e Pug

p1 = T(po) R(6)T (uy)[0,0, 0]” pl

pa = po + €Pug + ePeuy o / 01

p2 = T(po) R(6y) T (uy) R(6,)T(u1)[0,0,0]"

A Note About Spaces

World Space: absolute coordinate space

Co Uo €1 U1 ¢

A

(Skeleton) Local Space: the model’s space O—H

* Often use the rig’s center as the origin

Bone Space: For a given bone i, the origin is the bone’s base
point and the axes are rotated by its rotations and all the Do

parent rotations before it (90

* Bind Space: a form of Bone Space, but no rotations, just
translations

* Think of Bind Space as the model in T-pose position pl
with no rotations applied, just the offsets

CZ — T(pO) T(uO) T(ul)[oi Or O]T =B [0, 0, O]T

* Pose Space: a form of Bone Space, with both rotations p2 (91
and translations applied

* Think of it as the model that is posed with rotations

P2 = T(pO) R(QO) T(uO) R(Ql)T(ul)[Or O, O]T =P [Or Or O]T

Forward Kinematics

[+] Computationally efficient

e [+] Easy interface to work with

* [+] Explicit control over every joint

e [-]Produces rigid animations
 [-]Hard to model real-world motions
* [-] Requires more keyframes

e Results often look robot-like

Dl SIS N
Big Hero 6 (2014) Disney

15-362/662 | Computer Graphics

Linear Blend Skinning

* Vertices track with bones
* Known as blend skinning

* For each vertex i, compute weights w;; for each bone j
* Weights are normalized for each vertex

zWij: 1
J

* Weights average transforms of each bone to compute
posed vertex position v'; from bind vertex v;

v = Z(WiijBj_l)vi
J

* Pjisbone j’s bone-to-pose transform
* Bjis bone j’s bone-to-bind transform
* It should type-check :)

Monster’s Inc (2001) Pixar

Computing Weights

point p (in joint space) * 7 isthe radius of the bone
* d;j is the distance between v; and its closest projection
,. onto the bone

max((b_r\— dU)

Wi j= () We

* Make sure to normalize weights

start

. end e = U
Closgst point on (start + joint->extent) Yooy wy;
bone/line segment J U

to point p

15-362/662 | Computer Graphics

Review: Closest Point on a Line Segment

Compute the vector p from the line base a along the line

(p—ab—a)

Normalize to get a time

_(p—ab-a)

t_(b—a,b—a)

Clip time to range [0,1]and interpolate

a+ (b—a)t

Weight Painting

Computer animation applications also
allow you to specify weights on your own
* Known as weight painting

Ul uses color to illustrate magnitude of
each vertex/bone pair

Part of the rigging pipeline
To obtain smoothly varying weights, can

use Laplacian to smooth the field
* (Recall Special Topics #2)

Blender (2021) Ton Roosendaal

- LK .
* |nverse Kinematics

15-362/662 | Computer Graphics

Coordinate
Transformation

How Humans Move

Visual Coordinates

Z
Xide. Desired Position
\\n.. . O
Hand Position

Joint Angle Vector
Coordinates

8,

We don’t think about the movement of each
individual joint
* |nstead, we think about a part of our body, and
where we want it to go
* QOur body solves for the correct movements
* Ex: hand moves to reach a doorknob

No unique solution
* Many ways to catch a ball

What if our rig behaved a similar way...

Inverse Kinematics

|dentify a bone on the rig i and a handle h that it should
reach for
* Can try to satisfy multiple targets (i, h)

Loss function f'(q) for rig configuration q is:

1
f@ =) Ipi(@) —hP

(L.h)
* Where p;(q) is the position of the end of bone i

Goal: compute the gradient Vf(q)
e Gradient represents how changing each joint will

change the loss function Foundry (2020) Foundry Hub
* Apply gradient descent with some step size 7:

q=q —tVf(q)

Inverse Kinematic Gradient

df d 1
= E = |pi(q@) — h|*
y y i
do; do; (i,h)Z

Take gradient with respect to function

dp;
do;

af ~
@ = (Zh)(pi(q) h)

Expand p; into transformations. Each rotation in 3D is axis-aligned

2= iz =it ROR(67)R(6FIT ()| RODIR(8? IRy

Gradient breaks down into 3 parts:

;;’z = R(08)R(07)R(6)T (ug)-- R(67) %R(@,{ JR(GIT (wy)... ROOHR(6))R (O

[linear transformation] [transformed point]

Inverse Kinematic Gradient

To calculate this derivative:

dpi
y
do;

Option 1: directly differentiating the rotation matrix:

R@) =

= R(6)R(6))R(O)T (ug)... R(67) %%,R(Q,f JR(GDT (wy)... ROOHR(6)R (67

[linear transformation]

cos(8))
0

—sin(6Y)
0

0 sin(@)) O]

1 0 0
0 cos(@) O
0 0 1

d
——R
doy

[transformed point]

) =

—sin(6))

—cos(6?)

o O O O

cos(@) 0
0 0
—sin(@}) 0
0 0

Inverse Kinematic Gradient

Option 2: use geometric intuition

Fun fact: by transforming the axis of rotation and base point to local coordinates,

Then the derivative of the rotation R(6;) by amount 67 around axis y and (r)
center r of point p becomes: Po C\
dp;i _ _ 6
a7 =YX @ ~7) 0
constant for a
given handle \ p —T P1
p = [linear transformation] [transformed point]
< r = [linear transformation’] [0,0,0] 02 91
specific to the y = ([linear transformation’]).rotate(6;,) d (p)

current joint
y is pointing out of the screen

is perpendiculartop — r

[linear transformation’] = all rotations and transformations up to, but not including the kth bone

Inverse Kinematic Gradient

* Note: all joints that come before joint k can also contribute to the movement of joint k
 Example: moving your shoulder moves your hand

* Need to also compute how every joint prior to joint k affects the movement of joint k
e Gives us a gradient for each joint in range [0 - k]

constant for a

given handle \

Vi, = 0i(q@) — h) - [yi-1 X (0:(q) — Te—1)] p

Vi s = 0i(@) = h) - [yk—z X (0 (@) — 1—2)] r
specific to the< y

current joint

VY = (pi(q@) — h) - [y X (p:(q@) — 1)

VY = (pi(q) — h) - [yo X (pi(q) — 19)]

Inverse Kinematic Gradient

* Each joint k will have its own vector gradient v _ 4 4 9 >

doy doy’ deY’ def
* Same process for computing each component, just use xj, , ¥ , or z,

* What if we have multiple target pairs (i, h)?
e Gradient becomes a sum!

VR =), @@ =) DX (i) =]
Vs =), @@ = 1) D X (i) = i)
Vﬁcy_z = zi,h(pi(q) —) - [yk—2 X 0i(@) — 7—2)]

V=), @) =) Do X (@i@) =)]

Inverse Kinematic Gradient

vec3 gradient in current pose() {

for (auto &handle

handles) {

Vec3 h = handle.target;

Vec3 p =

for (BoneIndex b

= handle.bone; b < bones.size(); b = bones[b].parent) {

Bone const &bone = bones[b];

Matd4d xf =
Vec3 r = xf

Vec3 x =
Vec3 y =
Vec3 z =

gradient[b].
gradient[b].
gradient[b].

y

Vec3{0.0f, 0.0f, 0.0f};

+= dot(cross(x, p - r), p - h);
+= dot(cross(y, p - r), p - h);
+= dot(cross(z, p - r), p - h);

Inverse Kinematic Gradient

 How do we apply the gradient?
* lIterate through each joint j and apply Vf;
* Make sure to clear all gradients after each step!

9] = 9] — 7T Vf]
* Recompute the loss function

1
F@ = lpi(@) — hl?
(i,h)

* |floss is lower than some threshold, terminate
e Otherwise continue until max steps exceeded g56789645198

HE MAKE AN BIG STEPPY

15-362/662 | Computer Graphics

