
Splines & Kinematics

15-362/662 | Computer Graphics Lecture 15 | Kinematics



15-362/662 | Computer Graphics

• Splines

• Forward Kinematics

• Inverse Kinematics

Lecture 15 | Kinematics



• Using meshes, materials, and rendering to produce 
3D animated sequences

• Use a photorealistic renderer to make results 
photorealistic

• Today: No need to draw anything, computer takes 
care of everything
• Set keyframes by hand

• Forward Kinematics
• Inverse Kinematics

• Allow keyframes to interpolate
• Splines

Recall: 3D Animation

15-362/662 | Computer Graphics Lecture 15 | Kinematics



• Set keyframes at important locations in the animation
• Have the computer interpolate the rest

• Can keyframe anything!
• Color
• Light intensity
• Camera zoom

• Problem: how should data interpolate?
• Linearly?
• Along a curve/arc?

15-362/662 | Computer Graphics Lecture 15 | Kinematics

Keyframing

interpolations

keyframes



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Linear Interpolation

basic idea, connect the dots

yields rough motions at keyframes



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Piecewise Polynomial Interpolation

doesn’t pass through keyframes

yields smooth motions



• Mathematical theory of interpolation arose from 
study of thin strips of wood or metal (“splines”) 
under various forces
• Splines help us define how interpolation should 

occur

15-362/662 | Computer Graphics Lecture 15 | Kinematics

Splines

The Elastica: A Mathematical History (2008) Levin



• In this course, a spline is any piecewise cubic 
polynomial function

• Common spline: cubic polynomial:

• 3 goals of splines:
• Interpolation
• Continuity
• Locality

15-362/662 | Computer Graphics Lecture 15 | Kinematics

Splines

degree

coefficients polynomials

𝑝 𝑡 = 𝑎𝑡! + 𝑏𝑡" + 𝑐𝑡 + 𝑑

Many solutions!



• Interpolation: does the spline pass through the 
control points

• For every keyframe 𝑓#, there exists some time 𝑡#
where the interpolation of 𝑓 equals the keyframe 𝑓#

15-362/662 | Computer Graphics Lecture 15 | Kinematics

Interpolation



• Continuity: Is the spline twice differentiable along 
control points

• C0 continuity – keyframes are continuous
• C1 continuity – first derivative is continuous
• C2 continuity – second derivative is continuous 

• Saying a spline has continuity requires C2 
continuity

15-362/662 | Computer Graphics Lecture 15 | Kinematics

Continuity



• Locality: moving one control point does not 
modify the whole curve

• Important from a user perspective
• Need to be able to make small, local 

changes to spline

15-362/662 | Computer Graphics Lecture 15 | Kinematics

Locality



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Piecewise Cubic Polynomial

• Animator specifies where a curve starts, ends, and 
the tangents at those points

• Gives us 4 constraints 
• Can be turned into 4 coefficients

𝑝 0 = 𝑝$
𝑝 1 = 𝑝%
𝑝′ 0 = 𝑢$
𝑝′ 1 = 𝑢%

⇒ 𝑑 = 𝑝$
⇒ 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑝%
⇒ 𝑐 = 𝑢$

⇒ 3𝑎 + 2𝑏 + 𝑐 = 𝑢%

𝑝 𝑡 = 𝑎𝑡! + 𝑏𝑡" + 𝑐𝑡 + 𝑑



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Piecewise Cubic Polynomial

• Can also write

• as a linear system!

𝑝 0 = 𝑝$
𝑝 1 = 𝑝%
𝑝′ 0 = 𝑢$
𝑝′ 1 = 𝑢%

⇒ 𝑑 = 𝑝$
⇒ 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑝%
⇒ 𝑐 = 𝑢$

⇒ 3𝑎 + 2𝑏 + 𝑐 = 𝑢%



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Runge Phenomenon

Tempting to use higher-degree polynomials to get higher-order continuity

Can lead to oscillation

ultim
ately wo

rse
approximation



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Natural Splines

• Can build a spline out of piecewise cubic polynomials 𝑝#
• Each polynomial extends from range 𝑡 = 0,1

• Keyframes agree at endpoints [C0 continuity]:

• Tangents agree at endpoints [C1 continuity]:

• Curvature agrees at endpoints [C2 continuity]:

• Total equations:
• 2n + (n-1) + (n-1) = 4n – 2

• Total DOFs:
• 2n + n + n = 4n

• Set curvature at endpoints to 0 and solve

𝑝#(𝑡#) = 𝑓# , 𝑝#(𝑡#&%) = 𝑓#&%, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′# 𝑡#&% = 𝑝′#&% 𝑡#&% , ∀𝑖 = 0, … , 𝑛 − 2

𝑝′′# 𝑡#&% = 𝑝′′#&% 𝑡#&% , ∀𝑖 = 0, … , 𝑛 − 2

𝑝′$ 𝑡$ = 0, 𝑝′′$ 𝑡#&% = 0



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Natural Splines

• ✓ Interpolation: by definition

• ✓ Continuity: by definition

• ✗ Locality: coefficients require us to solve a 
global linear system
• Small modification to a keyframe requires 

resolving the entire system

𝑝#(𝑡#) = 𝑓# , 𝑝#(𝑡#&%) = 𝑓#&%, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′′# 𝑡#&% = 𝑝′′#&% 𝑡#&% , ∀𝑖 = 0, … , 𝑛 − 2



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Hermite/Bézier Splines

• Each cubic piece specified by endpoints and tangents
• Keyframes set at endpoints:

• Tangents set at endpoint:

• Natural splines specify just keyframes
• Bezier splines specify keyframes and tangents
• Can get continuity if tangents are set equal

• Total equations:
• 2n + 2n = 4n

• Commonly used in vector art programs
• Illustrator
• Inkscape
• SVGs

𝑝#(𝑡#) = 𝑓# , 𝑝#(𝑡#&%) = 𝑓#&%, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′# 𝑡# = 𝑢#, 𝑝′# 𝑡#&% = 𝑢#,&% , ∀𝑖 = 0, … , 𝑛 − 1



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Hermite/Bézier Splines

Hermite curves specify keyframes and tangents, Bezier curves specify control points

Same computation and properties! Just a different interface



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Hermite/Bézier Splines

Hermite curves specify keyframes and tangents, Bezier curves specify control points

Same computation and properties! Just a different interface

Hermite



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Catmull-Rom Splines

• A specialized version of Hermite splines
• Only need to specify keyframes
• Tangents computed as:

• All the same properties of Hermite splines
• Commonly used to interpolate motion in computer 

animation
• When we have tracking data, but not tangent data
• Easy to generate tangent data



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Hermite/Bézier/Catmull-Rom Splines

• ✓ Interpolation: by definition

• ✗ Continuity: Can produce splines that are 
not C2 (or even C1) continuous
• Tangents do not need to be same values

• ✓ Locality: each cubic polynomial is 
generated individually
• Modifications can happen individually
• Ease of use make it a prime candidate for 

vector applications

𝑝#(𝑡#) = 𝑓# , 𝑝#(𝑡#&%) = 𝑓#&%, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′# 𝑡# = 𝑢#, 𝑝′# 𝑡#&% = 𝑢#,&% , ∀𝑖 = 0, … , 𝑛 − 1



15-362/662 | Computer Graphics Lecture 15 | Kinematics

B-Splines

• Compute a weighted average of nearby keyframes when 
interpolating

• B-spline basis defined recursively, with base condition:

• And inductive condition:

• B-spline is a linear combination of bases:
degree



15-362/662 | Computer Graphics Lecture 15 | Kinematics

B-Splines

• ✗ Interpolation: For higher degrees, splines 
do not pass through keyframes

• ✓ Continuity: With higher degrees, bases are 
twice differentiable

• ✓ Locality: B-spline bases are a function of 
the current and next bases

[ low
er degree ]

[ higher degree ]



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Splines Review

[ Interpolation ] [ Continuity ] [ Locality ]

Linear

Natural

✓

Hermite

B-Spline

Bezier

Catmull-Rom

✓

✓

✓

✓

✗

✓

✗

✓

✓

✓

✓

✗

✓

✗

✗

✗

✓



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Splines Review

[ Interpolation ] [ Continuity ] [ Locality ]

Linear

Natural

✓

Hermite

B-Spline

Bezier

Catmull-Rom

✓

✓

✓

✓

✗

✓

✗

✓

✓

✓

✓

✗

✓

✗

✗

✗

✓

NO PERFECT SPLINE!



15-362/662 | Computer Graphics

• Splines

• Forward Kinematics

• Inverse Kinematics

Lecture 15 | Kinematics



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Character Animation

• Configuration of a character is the 
configuration of all their individual joints

• Keyframes save poses of characters
• Goal: use splines to interpolate between 

poses of a character
• Natural splines
• Hermite splines
• B-splines

• Problem: what is an efficient, user-friendly 
way of setting character poses?

3D Animation in Unity (2020) Ing Jileček



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Motion Capture

• Just take videos of real life poses
• Map to character model

• Data can get very messy
• Same idea as capturing a point cloud

• [ + ] Easy to understand
• [ + ] Capture real-life poses
• [ - ] Expensive to purchase
• [ - ] Very noisy data
• [ - ] Requires a lot of cleanup

The Hobbit (2012) Peter Jackson



15-362/662 | Computer Graphics Lecture 15 | Kinematics

The Human Rig

• Many systems well-described by a kinematic chain (easier 
to specify constraints)
• Collection of rigid bodies, connected by joints
• Joints have various behaviors

• Ball (shoulder)
• Hinge (elbow)

• Also have constraints (e.g., range of angles)
• Human neck can’t rotate around fully
• Owl necks can!

• Hierarchical structure (body → leg → foot)

• In animation, often called a character rig
• Character rigs are scene graphs!



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Character Rigging

• Character rigging is a separate job from character modeling 
and character animation
• Focuses on:

• Optimal joint placement
• Joint angle extent
• Joint hierarchy

• Not all human rigs are the same!
• Depends on character model proportions/movements

Up (2009) Pixar



15-362/662 | Computer Graphics Lecture 15 | Kinematics

How do we animate a rig?



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Forward Kinematics

• Consider moving the hand 𝑐"
• Rotate shoulder (moves 𝑐% and 𝑐")
• Then rotate elbow (moves 𝑐")

• New elbow position 𝑝% computed as:

• Can also be written as:

• New hand position 𝑝" computed as:



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Forward Kinematics

• Consider moving the hand 𝑐"
• Rotate shoulder (moves 𝑐% and 𝑐")
• Then rotate elbow (moves 𝑐")

• If we view it as coordinate space transformation, this can also 
be written as:

𝑝" = 𝑇 𝑝$ 𝑅 𝜃$ 𝑇 𝑢$ 𝑅 𝜃% 𝑇 𝑢% 0, 0, 0 (

𝑝% = 𝑇 𝑝$ 𝑅 𝜃$ 𝑇 𝑢$ 0, 0, 0 (



15-362/662 | Computer Graphics Lecture 15 | Kinematics

A Note About Spaces

• World Space: absolute coordinate space

• (Skeleton) Local Space: the model’s space
• Often use the rig’s center as the origin

• Bone Space: For a given bone 𝑖, the origin is the bone’s base 
point and the axes are rotated by its rotations and all the 
parent rotations before it
• Bind Space: a form of Bone Space, but no rotations, just 

translations
• Think of Bind Space as the model in T-pose position 

with no rotations applied, just the offsets

• Pose Space: a form of Bone Space, with both rotations 
and translations applied
• Think of it as the model that is posed with rotations

c" = 𝑇 𝑝$ 𝑇 𝑢$ 𝑇 𝑢% 0, 0, 0 ( = 𝐵 0, 0, 0 (

𝑝" = 𝑇 𝑝$ 𝑅 𝜃$ 𝑇 𝑢$ 𝑅 𝜃% 𝑇 𝑢% 0, 0, 0 ( = 𝑃 0, 0, 0 (



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Forward Kinematics

• [ + ] Computationally efficient
• [ + ] Easy interface to work with
• [ + ] Explicit control over every joint
• [ - ] Produces rigid animations
• [ - ] Hard to model real-world motions
• [ - ] Requires more keyframes

• Results often look robot-like

Big Hero 6 (2014) Disney



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Linear Blend Skinning

• Vertices track with bones
• Known as blend skinning

• For each vertex 𝑖, compute weights 𝑤#) for each bone 𝑗
• Weights are normalized for each vertex

• Weights average transforms of each bone to compute 
posed vertex position 𝑣′# from bind vertex 𝑣#

• 𝑃) is bone 𝑗’s bone-to-pose transform
• 𝐵) is bone 𝑗’s bone-to-bind transform 

• It should type-check : )

B
)

𝑤#) = 1

𝑣′# =B
)

(𝑤#)𝑃)𝐵)*%)𝑣#

Monster’s Inc (2001) Pixar



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Computing Weights

• 𝑟 is the radius of the bone
• 𝑑#) is the distance between 𝑣# and its closest projection 

onto the bone 

• Make sure to normalize weights

D𝑤#) =
max(0, 𝑟 − 𝑑#))

𝑟

𝑤#) =
D𝑤#)

∑) D𝑤#)

Why do we need r?



15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Review: Closest Point on a Line Segment

Compute the vector p from the line base a along the line

⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

Normalize to get a time

𝑡 =
⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩
⟨𝐛 − 𝐚, 𝐛 − 𝐚⟩

Clip time to range [0,1]and interpolate

p
p p

p

p

p

pp
p

p

a

b

𝒂 + (𝐛 − 𝐚)𝑡



15-362/662 | Computer Graphics Lecture 07 | Geometry Processing

Weight Painting

• Computer animation applications also 
allow you to specify weights on your own
• Known as weight painting

• UI uses color to illustrate magnitude of 
each vertex/bone pair

• Part of the rigging pipeline

• To obtain smoothly varying weights, can 
use Laplacian to smooth the field
• (Recall Special Topics #2)

Blender (2021) Ton Roosendaal



15-362/662 | Computer Graphics

• Splines

• Forward Kinematics

• Inverse Kinematics

Lecture 15 | Kinematics



15-362/662 | Computer Graphics Lecture 15 | Kinematics

How Humans Move

• We don’t think about the movement of each 
individual joint
• Instead, we think about a part of our body, and 

where we want it to go
• Our body solves for the correct movements 
• Ex: hand moves to reach a doorknob

• No unique solution
• Many ways to catch a ball

• What if our rig behaved a similar way…



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematics

• Identify a bone on the rig 𝑖 and a handle ℎ that it should 
reach for
• Can try to satisfy multiple targets (𝑖, ℎ)

• Loss function 𝑓 𝑞 for rig configuration 𝑞 is:

• Where 𝑝# 𝑞 is the position of the end of bone 𝑖

• Goal: compute the gradient ∇𝑓 𝑞
• Gradient represents how changing each joint will 

change the loss function
• Apply gradient descent with some step size 𝜏:

𝑓 𝑞 = B
(#,,)

1
2
𝑝# 𝑞 − ℎ "

𝑞 = 𝑞 − 𝜏 ∇𝑓 𝑞

Foundry (2020) Foundry Hub



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient

𝑑𝑓
𝑑𝜃.

/ = B
(#,,)

𝑝# 𝑞 − ℎ
𝑑𝑝#
𝑑𝜃.

/

𝑑𝑓
𝑑𝜃.

/ =
𝑑
𝑑𝜃.

/ B
(#,,)

1
2 𝑝# 𝑞 − ℎ "

01!
02"

# =
0
02"

# ∏)3$,#*%𝑅 𝜃)4 𝑅 𝜃)
/ 𝑅 𝜃)5 𝑇 𝑢) 𝑅 𝜃#4 𝑅 𝜃#

/ 𝑅 𝜃#5 𝑢#

01!
02"

# = 𝑅 𝜃$4 𝑅 𝜃$
/ 𝑅 𝜃$5 𝑇 𝑢$ … 𝑅 𝜃.4

0
02"

#𝑅 𝜃.
/ 𝑅 𝜃.5 𝑇 𝑢# … 𝑅 𝜃#4 𝑅 𝜃#

/ 𝑅 𝜃#5 𝑢#

[ linear transformation ] [ derivative ] [ transformed point ]

Take gradient with respect to function 

Expand 𝑝# into transformations. Each rotation in 3D is axis-aligned

Gradient breaks down into 3 parts:



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient

01!
02"

# = 𝑅 𝜃$4 𝑅 𝜃$
/ 𝑅 𝜃$5 𝑇 𝑢$ … 𝑅 𝜃.4

0
02"

#𝑅 𝜃.
/ 𝑅 𝜃.5 𝑇 𝑢# … 𝑅 𝜃#4 𝑅 𝜃#

/ 𝑅 𝜃#5 𝑢#

[ linear transformation ] [ derivative ] [ transformed point ]

To calculate this derivative:

Option 1: directly differentiating the rotation matrix:



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient

01!
02"

# = 𝑦 × (𝑝 − 𝑟)

Fun fact: by transforming the axis of rotation and base point to local coordinates,
Then the derivative of the rotation 𝑅 𝜃.

/ by amount 𝜃.
/ around axis 𝑦 and 

center 𝑟 of point 𝑝 becomes:

𝑝 = [ linear transformation ] [𝑹 𝜽𝒌
𝒚 ] [ transformed point ]

𝑟 = [ linear transformation’ ] [0,0,0]

𝑦 = [ linear transformation’ ] [𝑹 𝜽𝒌𝒛 ] ).rotate(𝜽𝒌
𝒚)(

[ linear transformation’ ] = all rotations and transformations up to, but not including the kth bone

specific to the 
current joint 

constant for a 
given handle

Option 2: use geometric intuition

𝑝 − 𝑟

𝑦 is pointing out of the screen

𝛿𝑝 is perpendicular to 𝑝 − 𝑟

(𝑟)

(𝑝)



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient

∇𝑓.
/ = 𝑝# 𝑞 − ℎ Y [𝑦. × 𝑝# 𝑞 − 𝑟. ]

• Note: all joints that come before joint 𝑘 can also contribute to the movement of joint 𝑘
• Example: moving your shoulder moves your hand

• Need to also compute how every joint prior to joint 𝑘 affects the movement of joint 𝑘
• Gives us a gradient for each joint in range [0 - k]

∇𝑓.*%
/ = 𝑝# 𝑞 − ℎ Y [𝑦.*% × 𝑝# 𝑞 − 𝑟.*% ]

∇𝑓.*"
/ = 𝑝# 𝑞 − ℎ Y [𝑦.*" × 𝑝# 𝑞 − 𝑟.*" ]

∇𝑓$
/ = 𝑝# 𝑞 − ℎ Y [𝑦$ × 𝑝# 𝑞 − 𝑟$ ]

…

𝑝

𝑟

𝑦specific to the 
current joint 

constant for a 
given handle



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient

• Each joint 𝑘 will have its own vector gradient 09
02"

= < 09
02"

$, 09
02"

#, 09
02"

% >

• Same process for computing each component, just use 𝑥. , 𝑦. , or 𝑧.

• What if we have multiple target pairs (𝑖, ℎ)?
• Gradient becomes a sum!

∇𝑓.
/ =B

#,,
𝑝# 𝑞 − ℎ Y [𝑦. × 𝑝# 𝑞 − 𝑟. ]

∇𝑓.*%
/ =B

#,,
𝑝# 𝑞 − ℎ Y [𝑦.*% × 𝑝# 𝑞 − 𝑟.*% ]

∇𝑓.*"
/ =B

#,,
𝑝# 𝑞 − ℎ Y [𝑦.*" × 𝑝# 𝑞 − 𝑟.*" ]

∇𝑓$
/ =B

#,,
𝑝# 𝑞 − ℎ Y [𝑦$ × 𝑝# 𝑞 − 𝑟$ ]

…



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient
vec3 gradient_in_current_pose() {

for (auto &handle : handles) {

Vec3 h = handle.target;
Vec3 p = // TODO: compute output point

// walk up the kinematic chain
for (BoneIndex b = handle.bone; b < bones.size(); b = bones[b].parent) {
Bone const &bone = bones[b];
Mat4 xf = // TODO: compute [linear transform’]

Vec3 r = xf * Vec3{0.0f, 0.0f, 0.0f};

Vec3 x = // TODO: compute bone’s x-axis in local space
Vec3 y = // TODO: compute bone’s y-axis in local space
Vec3 z = // TODO: compute bone’s z-axis in local space

gradient[b].x += dot(cross(x, p - r), p - h);
gradient[b].y += dot(cross(y, p - r), p - h);
gradient[b].z += dot(cross(z, p - r), p - h);    

}
}

}



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient

• How do we apply the gradient?
• Iterate through each joint 𝑗 and apply ∇𝑓)
• Make sure to clear all gradients after each step!

• Recompute the loss function

• If loss is lower than some threshold, terminate
• Otherwise continue until max steps exceeded

𝜃) = 𝜃) − 𝜏 ∇𝑓)

𝑓 𝑞 = B
(#,,)

1
2 𝑝# 𝑞 − ℎ "

my 
optimizer


