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• Monte-Carlo Sampling

• Biased vs Unbiased Estimators

• Physically-Based Rendering Methods
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What Makes A Render Expensive

• Number of Rays
• How many rays traced into the scene

• Measured as samples (rays) per pixel [spp]

• Number of Ray Bounces
• How ray bounces before termination

• Measured as ray bounce/depth

• Choosing the right number is difficult
• Similar to sample theory

Star Wars VII: The Force Awakens (2015) Lucasfilm
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Number Of Ray Samples

• Number of Rays
• How many rays traced into the scene

• Measured as samples (rays) per pixel [spp]

• Increasing number of rays increases image quality
• Anti-aliasing
• Reduces black spots from terminating emission 

occlusion
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Number Of Ray Samples

Pinhole

• Having more rays similar to taking more 
samples in rasterization
• Samples taken in a larger sample 

buffer and resolved into smaller 
output buffer

• More likely to find terminating ray that 
reaches light source/not be occluded

Lecture 13 | Variance Reduction



15-362/662 | Computer Graphics

Number Of Ray Bounces

• Number of Ray Bounces
• How ray bounces before termination

• Measured as ray bounce/depth

• Increasing ray bounces increases image quality
• Better color blending around images
• More details reflected in specular images
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Number Of Ray Bounces

Pinhole

• Having more ray bouncing allows for 
better color blending
• Final ray will be a larger mix of 

blue/orange than the original 
yellow

• Can render more interesting reflective 
and refractive paths with more bounces
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Direct VS Indirect Illumination

• Direct Illumination: Direct path from emitter 
to point

• Indirect Illumination: Multi-bounce path 
from emitter to point

• Bounce describes how many piecewise linear 
rays we can stich together to form a path
• Direct is 1-bounce
• Indirect is N-bounce

• Some authors say Direct is 0-
bounce [index at 0]
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Direct VS Indirect Illumination
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[ Direct + Reflection + Refraction ]** [ Global ]

**Normally can’t do reflection & refraction in direct illumination
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Wait a minute…
direct illumination looks like rasterization
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Direct VS Rasterization

• Food for thought: rasterization traces rays from a 
point in the output buffer to a shape in the scene
• Even in rasterization, shapes have depth
• We only care about the closest object we 

see (transparency disabled)

• Both rasterization and direct illumination only 
ever trace one ray!
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Direct VS Indirect Illumination

Minecraft (2020) Microsoft

• Direct Illumination gives you efficiency
• Easy to render
• Straightforward complexity
• Comparable to rasterization in difficulty
• Amendable to ray packeting
• Easy real-time performance

• Indirect (Global) Illumination gives you quality
• Some materials require multi-bounces

• Ex: refraction
• Ambient occlusion
• Higher contrast
• Samples converge to true values

• More bounces = ↓ efficiency, ↑ quality 
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So how do we take multiple samples?
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Continuous Vs. Discrete

• Our eyes see a continuous signal of energy

• Our digital cameras see a discrete signal of energy
• Computers process discrete values

• Let the following integral be the true continuous 
signal of the scene:

• Approximate the integral by taking multiple samples 
of our discrete scene function:
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Sampling Rays

• Issue: Responsible for picking rays since 
we are no longer integrating over every 
possible ray direction in hemisphere
• Some rays will be better than others
• Again, similar to sample theory

• Idea: pick rays from a PDF 
• Uniform PDF: ray sampled in 

uniformly random direction in 
hemisphere

• Cos-weighted PDF: rays are more 
likely to be sampled in the direction 
of the normal

[ uniform sampling ] [ cosine sampling ]
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But wait,
Isn’t taking non-uniform samples biased?
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• Monte-Carlo Sampling

• Biased vs Unbiased Estimators

• Physically-Based Rendering Methods
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Biased vs. Unbiased Renderer

• An unbiased renderer tries to mimic the 
uniformity of real life
• Does not introduce systematic bias
• Taking more samples will reduce error
• Approaches ground truth with infinite 

sampling

• A biased renderer will take shortcuts to 
make renders look better
• Taking more samples may introduce 

even more signal than the original 
image

• Usually faster rendering/less samples
• Can seek out more difficult paths

• When comparing render methods, makes 
more sense to compare unbiased methods
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Biased vs. Unbiased Example
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• In a biased simulator, draw samples proportional to the PDF
• More samples drawn where PDF is high
• Under-sampling where PDF is low

• To turn a biased simulator unbiased, divide by the PDF of 
the sample
• Samples with a high PDF are divided by a high value, 

not increasing its contribution much
• Samples with a low PDF are divided by a low value, 

increasing its contribution a lot
• Produces an unbiased sample set 
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The Monte Carlo Estimator

• Named Monte Carlo after the famous gambling 
location in Monaco 
• Shares the same random characteristic as a 

roulette game

• Algorithm:
• Sample a direction based on the PDF 𝑝(𝑤𝑗)
• Compute the incident radiance of the direction
• Divide by the PDF 𝑝(𝑤𝑗) to make unbiased

• Repeat, averaging the samples together
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Monte Carlo Uniform Sampling

• Let 𝑓(𝑤) be the incident radiance [ignoring BRDF]
• Let 𝑝(𝑤) be the PDF of the sampled direction 𝑤

• Taking random samples leads to:

• PDF is constant in all directions, just multiply by scalar 2𝜋
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Monte Carlo Cosine Sampling

• Let 𝑓(𝑤) be the incident radiance [ignoring BRDF]
• Let 𝑝(𝑤) be the PDF of the sampled direction 𝑤

• Taking random samples leads to:

• PDF removes the cosine term, we now get more radiance per sample!
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How do we get a good sense of “how well” we did?
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Variance

• Variance is how far we are from the average, 
on average

• Discrete:

• Continuous:
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Variance In Rendering
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[ low variance ][ high variance ]



15-362/662 | Computer Graphics

Variance Reduction Example

• What’s the expected value of the integrand?
• Just by inspection: 1/2 (half black, half white)

• What’s the variance?
• (1/2)(0-1/2)2 + (1/2)(1-1/2)2 = (1/2)(1/4) + (1/2)(1/4) = ¼

• How do we reduce the variance?
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Trick question!
You can’t reduce the variance of an integrand.

Can only reduce variance of an estimator.
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Bias & Consistency

• An estimator is consistent if it converges to 
the correct answer:

• An estimator is unbiased if it is correct on 
average:

• consistent != unbiased
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near infinite # of samples

even if just 1 sample
[ biased ] [ unbiased ]
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Consistent Or Unbiased?
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[ m = 4 ] [ m = 16 ]

[ m = 64 ] [ m = ∞ ]

• Estimator for the integral over an image:
• Take n = m x m samples at fixed grid 

points
• Sum the contributions of each box
• Let m go to ∞

• Is the estimator:
• Consistent?
• Unbiased?
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Consistent Or Unbiased?
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[ m = 1 ] [ m = 1 ]

[ m = 1 ] [ m = 1 ]

• Estimator for the integral over an image:
• Take only a single random sample of the 

image (n=1)
• Multiply it by the image area
• Use this value as my estimate

• Is the estimator:
• Consistent?
• Unbiased?

• What if I let my estimator go to ∞
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What is my true image?
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The Cornell Box
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How do we take good samples?
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Uniform Sampling

• Place samples uniformly apart in grid fashion
• [ + ] Easy to compute
• [ - ] We still have jagged edges, just at higher resolutions
• [ - ] More samples needed
• [ - ] Does not fix moiré pattern
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Random Sampling

• Place samples randomly
• [ + ] Easy to compute
• [ - ] Introduces noise, noticeable at low resolutions
• [ - ] Lack of distance between samples
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Jittered Sampling

• Divide into N x N grid, place a sample randomly per grid cell
• [ + ] Easy to compute
• [ + ] A more constrained version of random sampling
• [ - ] Ensures distance between samples, but not enough!
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N-Rooks Sampling

• All samples start on the diagonal, randomly shuffle (x, y) coordinates 
until rooks condition satisfied
• [ + ] Provides good sample sparsity
• [ - ] Expensive to compute
• [ - ] Possibility of not terminating
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Multi-Jittered Sampling

• Jittering + n-rook sampling
• [ + ] Provides good sample sparsity
• [ + ] Easier to satisfy rook condition
• [ - ] Expensive to compute
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Hammersley Sampling

• Sample according to a fixed, well formed distribution
• [ + ] Can pre-compute results
• [ + ] Evenly distributed in 2D space
• [ - ] No randomness in results
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Low-Discrepancy Sampling
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• In general, number of samples should be 
proportional to area

• Discrepancy measures deviation from this ideal

some family of regions 
𝑺 (box, disk, etc…)

overall discrepancy

area of 𝑺

# of samples in 𝑺

total # of samples in 𝑿

discrepancy of sample 
points 𝑿 in a region 𝑺



Low-Discrepancy Sampling

• A uniform grid has the lowest discrepancy
• But even low-discrepancy patterns can exhibit poor behavior
• We want patterns to be anisotropic (no preferred direction)
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Blue Noise

• Monkey retina exhibits blue noise pattern [Yellott 1983]
• No preferred directions (anisotropic)
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[ “blue noise” ]



Blue Noise Fourier Transform
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[ pattern ]

[ wavelength x ][ wavelength x ]
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[ pattern ]

[ Fourier Transform ] [ Fourier Transform ]

• Regular pattern has “spikes” at regular intervals

• Blue noise is spread evenly over all frequencies in all directions
• Bright center “ring” corresponds to sample spacing



Blue Noise Fourier Transform
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• Monte-Carlo Sampling

• Biased vs Unbiased Estimators

• Physically-Based Rendering Methods
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Previous Methods
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[ backward path tracing ]

Fails: cannot intersect point lights

[ backward path tracing + connect to light ]

Works: reaches point lights

[ forward path tracing ]

Fails: cannot intersect pinhole camera

[ forward path tracing + connect to camera ]

Works: reaches pinhole camera
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Path Tracing Can Be Biased
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[ backward path tracing + connect to light ]

works: reaches point lights

[ forward path tracing + connect to camera ]

works: reaches pinhole camera

• Deliberately connect terminating rays to light 
(forward) or camera (backward)

• Probability of sampling a ray that hits a non-
volume source (point light, pinhole camera) is 0
• We bias our renderer by choosing those rays
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Bidirectional Path Tracing

Lecture 13 | Variance Reduction

• If path-tracing is so great, why not do it twice?
• Main idea of bidirectional!

• Trace a ray from the camera into the scene
• Trace a ray from the light into the scene

• Connect the rays at the end

• Unbiased algorithm
• No longer trying to connect rays through 

non-volume sources

• Can set different lengths per ray
• Example: Forward m = 2, Backward m = 1
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Bidirectional Path Tracing

Lecture 13 | Variance Reduction

Issue: what if these are mirrors!
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Bidirectional Path Tracing
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Issue: what if these are mirrors!

• In cases of mirrors, we cannot choose any ray path

• Instead, continue tracing rays until diffuse surfaces 
are reached on both rays
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Bidirectional Path Tracing
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[ final image ]

• Each row shows path length

• As we move over images in a row, 
we decrease forward ray depth 
and increase a backward ray 
depth
• Overall length kept constant 

per row
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Bidirectional Path Tracing
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[ final image ]

• Not easy to tell which path 
lengths work well for a scene!
• The glass egg is illuminated 

at specific path lengths for 
forward and backward rays
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Good Paths Are Hard To Find
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[ Bidirectional Path Tracing ]

[ Metropolis Light Transport ]

Once we find a good path, 
perturb it to find nearby 

“good” paths
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Metropolis Hasting Algorithm
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• “Once we find a good path, perturb it to find 
nearby ‘good’ paths” – previous slide

• Algorithm: take random walk of dependent 
samples
• If in an area where sampling yields high 

values, stay in or near the area
• Otherwise move far away

• Sample distribution should be proportional to 
integrand
• Make sure mutations are “ergodic” (reach 

whole space)
• Need to take a long walk, so initial point 

doesn’t matter

float r = rand();

// if f(x’) >> f(x[i]), then a is large

// and we increase chances of moving to x’

// if f(x’) << f(x[i]), then a is small

// and we increase chances of staying at x

float a = f(x’)/f(x[i]);

if (r < a) 

  x[i+1] = x’;

else

  x[i+1] = x;

x[ i ]

x’
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Metropolis Hasting: Sampling An Image
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[ short walk ] [ long walk ] [ original image ]

• Want to take samples proportional to image density 𝑓

• Occasionally jump to a random point (ergodicity)

• Transition probability is ’relative darkness’ 
• 𝑓(𝑥′)/𝑓(𝑥𝑖)
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Metropolis Light Transport

Lecture 13 | Variance Reduction

[ Path Tracing ] [ Metropolis Light Transport ]

• Similar idea: mutate good paths

• Water causes paths to refract a lot
• Small mutations allows renderer to find 

contributions faster

• Path Tracing and MLT rendered in the same time
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If there are so many good sampling methods,
why not combine them?
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Multiple Importance Sampling
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• Multiple Importance Sampling: combine strategies to 
preserve strengths of all of them
• Think of it as taking multiple rays/samples at each 

bounce

𝒋𝒕𝒉 sample taken 
with 𝒊𝒕𝒉 strategy

sum over strategies

sum over samples

fraction of samples 

taken with  𝒌𝒕𝒉 strategy 

𝒌𝒕𝒉 strategy PDF 
total # of samples
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Multiple Importance Sampling
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[ sample materials ] [ sample both ] [ sample lights ]

• Normally need to pick next ray bounce as hitting a material or hitting light
• MIS allows us to take both rays and average them together
• At each bounce, trace a ray as normal, and another ray to the light
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Photon Mapping
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• Trace particles from light, deposit “photons” in KD-tree
• Useful for, e.g., caustics, fog

• Voronoi diagrams can improve photon distribution
• Careful: poor Voronoi resolution causes aliasing!
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Finite Element Radiosity
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• Transport light between patches in scene
• Solve large linear system for equilibrium distribution

• Good for diffuse lighting; hard to capture other light paths
• Light paths travel in groups
• Difficult when light diverges
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Rendering Algorithm Chart

Lecture 13 | Variance Reduction

method consistent? unbiased?

Rasterization no no

Path Tracing almost almost

Bidirectional Path Tracing yes yes

Metropolis Light Transport yes yes

Photon Mapping yes no

Finite Element Radiosity no no
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