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Review: The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔𝑜

emitted radiance at point 𝐩 in outgoing direction 𝜔𝑜

scattering function at point 𝐩 from incoming direction 𝜔𝑖 to outgoing direction 𝜔𝑜

incoming radiance to point 𝐩 from direction 𝜔𝑖 
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Reflectance Functions

• Reflectance Functions refer to how light reflects off a surface

• Bidirectional Reflectance Distribution Function (BRDF):
• Bidirectional – a function of two directions 𝜔𝑖 and 𝜔𝑜

• Reflectance – light changing directions
• Distribution – likelihood of light changing to a certain direction
• Function – it’s a function

• Represented as a Probability Distribution Function (PDF) 
• Indicating the likelihood an incident direction 𝜔𝑖 at point 𝐩 will 

reflect to an outgoing direction 𝜔𝑜
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Types of Reflectance Functions

• A BRDF is a passthrough function
• Example: an incoming ray 𝜔𝑖 at incident point p 

reflects 85% of red, 90% of green, and 50% of blue in 
the outgoing direction 𝜔𝑜 
• Written as 𝑓𝑟 p, 𝜔𝑖 → 𝜔𝑜 = < 0.85, 0.90, 0.50 >
• Remainder of light gets absorbed 

• Conservation of energy

• Multiply the BRDF function by the incident radiance to get 
the outgoing radiance:

• When people talk about BRDFs, think materials!
• Graphics is about seeing things
• How we see a BRDF defines how we see a material
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Types of Reflectance Functions

Ideal Specular

• Perfect mirror

Ideal Diffuse

• Uniform in all directions

Glossy Specular

• Majority of light in reflected direction

Retroreflective

• Reflects light back towards source
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Dirac Delta Distribution

• With ideal specular, the BRDF is a constant 
maximum reflectance (no energy absorbed) in the 
reflected direction
• 𝑓𝑟 p, 𝜔𝑖 → 𝜔′𝑖 = < 1.0, 1.0, 1.0 >

• 𝜔′𝑖 is the incoming direction reflected 
about intersection point p’s normal

• Can represent the PDF of an ideal specular as a 
dirac delta (𝜹) function
• 1 in one place, 0 everywhere else
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Reflectance Direction

• Isotropic BRDFs are fixed when the incident and 
exiting directions are rotated about the normal

• Anisotropic BRDFs vary when the incident and 
exiting directions are rotated about the normal

[ isotropic ] [ anisotropic ]
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Models Of Scattering

• How can we model “scattering” of light?
• Many different things could happen to a photon:

• Bounces off surface
• Transmitted through surface
• Bounces around inside surface
• Absorbed and re-emitted

• What goes in must come out! 
• Total energy must be conserved
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Much More Than Just A BRDF

• BRDFs - Bidirectional Reflectance Distribution Function 
• Describes light reflecting without entering the surface
• Ex: lambertian, mirror

• BTDFs - Bidirectional Transmittance Distribution Function 
• Describes light entering the surface
• Ex: glass

• BSDFs - Bidirectional Scattering Distribution Function
• Encapsulates BRDFs and BTDFs
• BRDFs are just more common in literature : ) 
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Much Much More Than Just A BRDF

• BSSRDFs, *SS - Surface Scattering
• Describes light entering and scattering the 

surface before being reflected out
• Ex: milk

• BSSTDFs, *SS - Surface Scattering
• BTDF but with subsurface scattering
• Ex: also milk

• BSSDFs, *SS - Surface Scattering
• Encapsulates BSSRDFs and BSSTDFs
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BRDF Examples

BRDFs can be a mix of diffuse and specular

[ diffuse ] [ plastic ] [ semi-gloss ]

[ mystic lacquer ] [ mirror] [ gold]
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Hemispherical Incident Radiance

Consider a hemisphere view from this point

At any point on any surface in the scene, there’s an incident radiance field that 
gives the directional distribution of illumination at the point
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Diffuse Exitant Radiance

[ incident radiance ] [ exitant radiance ]

Colors sampled from uniform hemisphere blend all colors into one average color.
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Ideal Specular Exitant Radiance

[ incident radiance ] [ exitant radiance ]

Incident radiance is “flipped around normal” to get exitant radiance.
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Plastic Exitant Radiance

[ incident radiance ] [ exitant radiance ]

Incident radiance gets flipped and blurred.
Common example of a material that has both diffuse and specular properties.
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Copper Exitant Radiance

[ incident radiance ] [ exitant radiance ]

More blurring, plus coloration (nonuniform absorption across frequencies).
Copper absorbs some colors, and emits the rest, giving it a “warm brown” color.



• When integrating the BRDF over the hemisphere, total 
value will be less than or equal to 1

• Conservation of energy: outgoing energy should be less 
than or equal to incoming energy
• Energy should not be created
• Energy lost is absorbed into the intersected material

• BRDF helps capture that absorption

• BRDF can never be negative

• A negative BRDF would imply negative energy???
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Integration of BRDF
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Radiometric Description of BRDF

• Recall: differential irradiance landing on surface 
from differential cone of directions 𝜔𝑖

• Recall: differential radiance reflected in direction 
𝜔𝑟 (due to differential irradiance from 𝜔𝑖) 

• BRDF captures the ratio between the incoming 
irradiance and the outgoing radiance

• Given the incoming irradiance, computes the 
outgoing radiance

measured in steradians
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Change Of Syntax

• Surface-local space
• Normal is 𝑛 = < 0, 1, 0 >
• Unit directions 𝑤𝑖 and 𝑤𝑜 point away from 

intersection point 𝑝

• All material interactions will occur in surface-local space
• Transform 𝑤𝑖 to surface-local space
• Compute new outgoing ray 𝑤𝑜 
• Transform 𝑤𝑜 back to world space
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Lambertian Material

• Also known as diffuse

• Light is equally likely to be reflected in each output 
direction
• BRDF is a constant, relying on albedo (𝜌)

• BRDF can be pulled out of the integral

• Easy! Pick any outgoing ray 𝑤𝑜 

Minions (2015) Illumination Entertainment
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Lambertian Material

• The albedo (𝜌)  describes how much of each color is 
is reflected

• Why does the Lambertian PDF divide by 𝝅?
• Consider our irradiance integral:

• If the albedo is 1, then the integral is greater 
than 1 (cosine integral over hemisphere is 𝜋)
• Divide the albedo by 𝜋 to normalize the 

irradiance so it is less than or equal to 1



• Reflectance equation described as:

• Recall incoming and outgoing rays share same origin 
point p

• BRDF represented by dirac delta (𝛿) function
• 1 when ray is perfect reflection, 0 everywhere else
• All radiance gets reflected, nothing absorbed

• In practice, no hope of finding reflected direction via 
random sampling
• Simply pick the reflected direction!

15-362/662 | Computer Graphics Lecture 12 | BRDFs

Reflective Material
[ side view ]

[ top view ]
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• 𝜂𝑖 and 𝜂𝑡 describe the index of refraction of the incoming 
and outgoing mediums
• Example: 𝜂𝑖 is air, 𝜂𝑡 is water 

• 𝜂 is the ratio of the speed of light in a vacuum to that 
in a second medium of greater density
• The larger the 𝜂, the denser the material

Vacuum
Air (sea level)
Water (20°C)
Glass
Diamond

1.0
1.00029
1.333
1.5-1.6
2.42

Medium 𝜼
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• Can rewrite the equation as:
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• Can rewrite the equation as:

what if the term in the square root is negative?



0 < 𝑐𝑜𝑠2𝜃 < 1
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Refractive Material
[ side view ]

[ top view ]

We know that:

0 < 1 − (1 − 𝑐𝑜𝑠2𝜃) < 1

And so:

But if 𝜂𝑖/ 𝜂𝑡 > 1 then it is possible that:

This is known as total internal reflection, and happens when 
the incoming index 𝜂𝑖 is denser than the outgoing index 𝜂𝑡

Hence 𝜂𝑖/ 𝜂𝑡 > 1 
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Total Internal Reflection

• When going from a more dense (i.e water) to less dense 
(i.e air) material, light will bend more towards the horizon
• The incident angle that causes an outgoing 90deg 

angle is the critical angle
• Can solve for critical angle by solving for 𝜃:

• When the critical angle is exceeded, the ray is 
reflected back into the surface

1 −
𝜂𝑖

2

𝜂𝑡
2 (1 − 𝑐𝑜𝑠2𝜃) = 0

reflections at surface 
of water viewing from 
under the surface 
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Optical Manhole

• Works the other direction too
• Light rays from air entering water bend 

themselves into a smaller solid angle 
• Pitch black in surrounding areas

• Gives the illusion that light is a small cone 
around user
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Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• BRDF represented by dirac delta (𝛿) function
• 1 when ray is perfect refraction, 0 everywhere else
• Edge Case: 1 when ray is total internal reflection
• All radiance gets reflected, nothing absorbed

• In practice, no hope of finding refracted direction via 
random sampling
• Simply pick the refracted direction!
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Refractive Isn’t Just Refractive

Refraction

Reflection
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Fresnel Reflectance

• The amount of reflectance increases for refractive 
material as the angle from the normal increases
• i.e the angle gets steeper

• Known as the Fresnel coefficient

Lafortune et al. (1997)
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Fresnel Coefficient

Computing the Fresnel coefficient is kinda hard…
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Schlick’s Approximation

Easier to compute : )

Harder to spell : (

𝑐𝑜𝑠𝜃 is the same as 𝑛 ∙ 𝜔
for normal 𝑛 and ray 𝜔
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Glass

• Comprised of both reflection (Fresnel) and refraction (Snell)

void glass(ni, nf, ray ri, ray *rf)

{

  bool internal_reflect = refract(ni, nf, ri, rf);

  if(internal _reflect) {

    // if refraction fails, reflect

    reflect(ri, rf);

    return;

  }

  // compute Fresnel for probability split

  float fr = fresnel(ni, nf, *rf);

  float p = rand();

  if (p < fr) {

    // fr% chance of reflecting

    reflect(ri, rf);

  }

  else {

    // 1 - fr% chance of refracting

    // already refracted, nothing left to do

  }

}
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Glass

• Transmitted radiance is not the same along 
boundaries
• Solid angle is compressed/expanded 

when changing material IORs

• Need to multiply attenuation by a factor to 
account for compression/expansion



15-362/662 | Computer Graphics Lecture 12 | BRDFs

Glass

Transmitted flux:

𝑑𝜙𝑜 = 𝜏 𝑑𝜙𝑖

Redefine in terms of radiance:

𝐿0 𝑐𝑜𝑠𝜃𝑜 𝑑𝐴 𝑑𝜔0 = 𝜏 (𝐿𝑖 𝑐𝑜𝑠𝜃𝑖 𝑑𝐴 𝑑𝜔𝑖)

Convert solid angles to spherical angles:

𝐿0 𝑐𝑜𝑠𝜃𝑜 𝑑𝐴 𝑠𝑖𝑛𝜃𝑜 𝑑𝜃𝑜 𝑑𝜑𝑜 = 𝜏 (𝐿𝑖 𝑐𝑜𝑠𝜃𝑖 𝑑𝐴 𝑠𝑖𝑛𝜃𝑖 𝑑𝜃𝑖 𝑑𝜑𝑖)

Differentiate Snell’s law w.r.t 𝜃: 

𝜂0 𝑐𝑜𝑠𝜃𝑜 𝑑𝜃𝑜 = 𝜂𝑖 𝑐𝑜𝑠𝜃𝑖 𝑑𝜃𝑖

 𝑐𝑜𝑠𝜃𝑜 𝑑𝜃𝑜

 𝑐𝑜𝑠𝜃𝑖 𝑑𝜃𝑖
=

𝜂𝑖

𝜂0

𝐿0 𝜂𝑖
2𝑑𝜑𝑜 = 𝜏 (𝐿𝑖 𝜂𝑜

2𝑑𝜑𝑖)

Substitute above equation and Snell’s law into Eq. 3: 

𝐿0 = 𝜏 (𝐿𝑖

𝜂𝑖
2

𝜂𝑜
2)

Eq 1:

Eq 2:

Eq 3:

Eq 4:

Eq 5:

Eq 6:

Eq 7:

𝒅𝝋𝒐 = 𝒅𝝋𝒊
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Glass

[ without Fresnel ]
constant reflection

[ with Fresnel ]
varying reflection
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Recall: Environment Light

• Sample light directly from an image
• No intensity falloff. Image distance is at infinity
• Very easy to check for visibility

• Every point in active area

• We’ll learn how to build this in a future lecture

Uncharted 4 (2016) Naughty Dog

Lecture 12 | BRDFs

now
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Environment As A Light

• Environment lighting is more than just placing a 
background image in the scene
• Scene elements can use the background as a 

light source, sampling emitted colors the same 
way we would sample from regular lights

• Saves heavily on compute costs
• No need to create complex background 

geometry
• Think of it as baking diffuse information into a 

texture and then using that texture as a light

• Best part: any image can be used as an 
environment light!

Lecture 12 | BRDFs

Monster’s University (2013) Pixar
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Polar Coordinates

• Normally refer to coordinates on an image by 
cartesian [𝑥, 𝑦] coordinates

• Since we ”wrap” an image around a scene as a 
sphere, more intuitive to refer to coordinates on an 
image by polar [𝜃, 𝜑] coordinates
• Easy to convert back to cartesian

Lecture 12 | BRDFs
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Uniform Sampling

• When our ray terminates, we randomly sample a 
light source
• If the light source we pick is the environment 

map, where on the image do we sample?

• Idea: randomly sample a direction on the unit 
sphere, trace ray to environment map

• Surface area of unit sphere is 4𝜋, pdf is 
1

4𝜋

• Scotty3D has a hemisphere sampler, how can we 
extend that to a sphere sampler?
• Flip a coin, flip the sign

• Cut the pdf in half: 
1

2𝜋
∗

1

2
=

1

4𝜋

Lecture 12 | BRDFs

focus on all areas equally
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Uniform Sampling

Lecture 12 | BRDFs

void env_lighting(ray ri)

{

  // generate ray uniformly

  ray rf = hemisphere::sampler();

  // half chance of flipping ray

  // our ”clever” sphere sampler

  float p = rand();

  if (p > 0.5) {

    rf.y = -rf.y;

  }

  // double the options, half the pdf

  float pdf = hemisphere::pdf() * 0.5;

  // trace ray into environment map

  trace_ray(rf);

}

• Why do we need to trace the environment 
lighting ray? Can just sample image pixel
• Environment lighting ray may still be 

occluded by scene geometry!
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Uniform Sampling

Lecture 12 | BRDFs

• Issue: uniform sampling takes a long time 
to converge
• Mixing dark regions of the image 

with light regions
• Gives appearance of high 

variance
• Will converge with enough samples, 

but needs a lot of samples

• Is there another approach we can use that 
prioritizes areas with high info (light)?
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Importance Sampling

Lecture 12 | BRDFs

focus on bright 
regions

• Idea: sample a direction on the unit sphere 
proportional to the luminance at that pixel
• Brighter areas are more important

• Algorithm:
• Assign a probability to each pixel 

proportional to its luminance
• Use inversion sampling to pick a sample 

based on the new probability distribution
• Create and trace a ray to pixel
• Divide contribution by PDF of selected pixel

• Division helps keep sampler unbiased
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Creating A PDF

Lecture 12 | BRDFs

• PDF of a pixel should be proportional to its flux
• Flux = luminance ∗ solid angle
• Luminance is 𝐿
• Solid angle is 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑

• Area for each pixel is the same
• Simplifies to 𝐿𝑠𝑖𝑛𝜃

• Already have a mapping from [𝑥, 𝑦] to [𝜃, 𝜑]

• To make sure distribution is valid, need to 
normalize PDFs
• Divide every PDF by the sum of all PDFs

• How can we use that info to sample pixel with a 
discrete probability distribution?
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Inversion Sampling

Lecture 12 | BRDFs

• Convert PDF to CDF:

• Image is 2D, CDF is 1D
• Flatten image into 1D array

• Recall images are 1D in memory

• Generate random number 𝑟 between 0 and 1
• Find index 𝑖 such that:

• Convert 𝑖 to polar coordinates [𝜃, 𝜑]
• Construct and trace ray from polar 

coordinates

𝑐𝑑𝑓(𝑖)  =  𝑝𝑑𝑓(𝑖)  +  𝑐𝑑𝑓(𝑖 − 1)

𝑐𝑑𝑓 𝑖 − 1 < 𝑟 <  𝑐𝑑𝑓(𝑖)
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Importance Sampling

Lecture 12 | BRDFs

void env_lighting(ray ri)

{

  // generate pdf and cdf

  vector<float> pdf = Image::pdf();

  vector<float> cdf = Image::cdf(pdf);

  

  // inversion sampling

  float p = rand();

  auto i = upper_bound(cdf.begin(), 

                       cdf.end(), p);

  

  // create ray from target pixel

  ray rf = ray_from_index(i);

  // trace ray into environment map

  trace_ray(rf);

}

• Notice how we do not even use the 
incoming ray
• Both uniform and importance 

ignore incident directions
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Uniform vs. Importance

Lecture 12 | BRDFs

Importance sampling is better able to capture directional light 
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Uniform vs. Importance

Lecture 12 | BRDFs

Importance sampling is better able to capture sparse lights
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