Radiometry

- Introduction to Rendering
- Radiometry
- Solid Angle

What is Rendering

- **Rendering** is the process of converting 2D or 3D data into a buffer of colors
	- The resulting buffer is saved as an image/video, commonly referred to as a **render**
	- Metamers are useful for matching color outputs from different displays
- No one correct way to make a render
	- Using different render algorithms will produce different results, even if the same input scene is used

Inside Out (2015) Pixar

Review: Rasterization

- Rasterization is a form of rendering:
	- Converting 3D (or even 2D) scenes into pixel buffers that we save out as images
- Input:
	- 2D/3D shapes
- Algorithm:
	- Check if pixel intersects shape
	- Shade pixel if passes intersection/depth test
	- Repeat
- Output:
	- An image
- Fits the definition of a renderer

Portal RTX (2022) Valve & Nvidia

New: Path Tracing

- Path Tracing is a form of rendering:
	- Converting 3D scenes into pixel buffers that we save out as images
- Input:
	- 3D shapes
- Algorithm:
	- Trace light rays into scene
	- Rays pick up color info from scene
	- Rays report color back to camera pixels
- Output:
	- An image
- We will explore this algorithm in depth today

Portal RTX (2022) Valve & Nvidia

Path Tracing vs. Rasterization

Minecraft RTX (2020) Microsoft & Nvidia

Path Tracing vs. Rasterization

Minecraft RTX (2020) Microsoft & Nvidia

Components of a Render

Recall: light helps us carry color information in a scene

• Introduction to Rendering

- Radiometry
- Solid Angle

The Light Source

Kirby & The Forgotten Land (2022) Nintendo

- Light sources emit electromagnetic radiation
	- In this class, we will treat light as a particle
	- Nice property: light paths are **ray-like**
		- We know how to work with rays
- Adding light into our scenes allow us to illuminate color
	- **A scene without lights will be just black**
	- Light bounces off objects (emittance), until it hits a sensor (eyes, camera, etc.)
- **Radiometry** is the measure of light

If Radiometry is the study of measuring light, then how do we measure light?

Radiant Energy

time: 8s

- **Radiant Energy** is total number of hits over the complete duration of the scene
	- This quantity captures the total energy of all the photons hitting the scene
- **Joules** is an energy measurement for photons
- **Example:** Radiant Energy: 40 Joules
	- \cdot 40 *(J)*

Radiant Density

time: 8s

- **Problem:** Larger sensor window allows for more light to enter (not a fair comparison!)
- **Radiant Density** is total number of hits per unit area
	- Compute hits per second in some "really small" area, divided by area
- **Example:** Radiant Density: 40 J / 10 m^2
	- $4 (J/m^2)$

Radiant Flux

time: 2s

- **Problem:** Longer exposure allows for more light to enter (not a fair comparison!)
- **Radiant Flux** is total number of hits per second
	- Rather than record total energy over some (arbitrary) duration, may make more sense to record total hits per second
- **Watts** *(W)* measures Joules / second
- **Example:** Radiant Flux: 40 J / 2 s
	- 20 $(J/s) = 20$ *(W)*

Irradiance

- **Problem:** Larger sensor window + Longer Exposure
- **Irradiance** is total number of hits per second per unit area
	- Solves both issues
- **Example:** Irradiance: $40 \text{ J} / 2 \text{ s} / 10 \text{ m}^2$
	- 2 $(J/s/m^2) = 2 (W/m^2)$

Radiant Recap

Radiant Energy

(total number of hits) *Joules (J)*

Radiant Energy Density

(hits per unit area) *Joules per sq meter (J/m* 2 *)*

Radiant Flux (total hits per second) *Watts (W)*

Radiant Flux Density a.k.a. *Irradiance* (hits per second per unit area) *Watts per sq meter(W/m²)*

Varying Wavelengths

- We defined radiance as **total number of hits**
	- Yet we measure radiance as **total energy**
	- This assumes all photons have the same energy

$$
Q = \frac{hc}{\lambda}
$$

- Photon energy (Q) is inversely proportional to wavelength (λ)
	- Planck's constant (h) and speed of light (c) are both constants
	- Higher wavelengths (red) have lower energy
- No longer can assume radiance as just **total number of hits**
	- Instead need to measure **radiance per wavelength**
		- Helps us build a **Spectral Power Distribution**

Lambert's Law

• Irradiance (E) at surface is proportional to the flux (Φ) and the cosine of angle (θ) between light direction and surface normal:

$$
E = \frac{\Phi}{A'} = \frac{\Phi \cos \theta}{A}
$$

- Consider rotating a plane away from light rays
	- Plane will darken until it is perpendicular to light rays, then it will be completely black

Lambert's Law

[Summer] *Norther Hemisphere*

[Winter] *Norther Hemisphere*

Explains why Pittsburgh is so cold all the time…

N-Dot-L Lighting

- Our first (and most basic) way to shade a surface
	- Inspired by Lambert's Law
- **Algorithm:** take dot product of unit surface normal (N) and unit direction to light (L)

```
// compute contribution of light onto surface
double surfaceColor( Vec3 N, Vec3 L )
{
```

```
float f = dot(N, L);
 return f;
```


}

N-Dot-L Lighting

- **Problem:** what if light source is on other side of primitive?
	- Previous algorithm would light primitive, even if facing wrong direction
- **Solution:** ensure dot product sign is positive
	- Orientations match

```
// compute contribution of light onto surface
double surfaceColor( Vec3 N, Vec3 L )
{
   float f = dot(N, L);
```

```
return max(0, f);
```
}

What kind of lights do we have?

Directional Light

- **Abstraction:** infinitely bright light source "at infinity"
	- All light directions (L) are therefore identical
	- All planes with the same orientation get the same contribution
- "infinitely bright" means light does not get weaker with distance
- **Example:** the sun

Point Light

- **Abstraction:** point light with no volume placed in 3D space
	- Varying light directions (L)
- Light gets weaker with distance
- **Example:** a lightbulb

Area Light

- **Abstraction:** geometry with volume that emits light
	- Varying light directions (L)
		- When constructing L, can pick any point on light geometry
- Point lights are not physically accurate
	- Everything in life has volume
	- Point lights are approximated to take up infinitely small space
- Light gets weaker with distance
- **Example:** a square ceiling light

Can make a light source out of any geometry Even a cow…

Irradiance Falls Off With Distance

- As light moves away from a light source, it "spreads out"
	- Weakens the light the farther from the light source
- Radiant flux (Φ) spread out over spherical surface:

$$
E_1 = \frac{\Phi}{4\pi r_1^2} \to \Phi = 4\pi r_1^2 E_1
$$

\n
$$
E_2 = \frac{\Phi}{4\pi r_2^2} \to \Phi = 4\pi r_2^2 E_2
$$

\n
$$
\frac{E_2}{E_1} = \frac{r_1^2}{r_2^2} = \left(\frac{r_1}{r_2}\right)^2
$$

• Irradiance (E) gets quadratically darker with distance

Irradiance Falls Off With Distance

- **Analogy:** throwing a stone in water
	- Ripples spread out from origin, getting smaller as they spread farther
- Same energy spread out over larger area, leads to smaller ripples the farther out

Quadratic Falloff of Lights

[light moving in 1mm increments]

• Introduction to Rendering

• Radiometry

• Solid Angle

A wise man once said "solid angles are the quaternions of rendering"

That wise man was me

Solid Angle

• **Angle:** ratio of subtended arc length on circle to radius

• Circle has 2π radians (r)

• **Solid Angle:** ratio of subtended area on sphere to radius squared

$$
\Omega = \frac{A}{r^2}
$$

- Sphere has 4π steradians (sr)
	- $A = 4\pi r^2$, divide out r^2

Solid Angle in Astronomy

http://xkcd.com/1276/

- Sun and moon both subtend ~60µ sr as seen from Earth
	- Even though they vary greatly in size, they also vary greatly in distance
- Surface area of earth: ~510M km2
- Projected area:

$$
510 \text{Mkm}^2 \frac{60 \mu \text{sr}}{4 \pi \text{sr}} = 510 \frac{15}{\pi} \approx 2400 \text{km}^2
$$

• **Goal:** when parameterizing a unit sphere in terms of (θ, φ) , how does a small change d θ or d φ affect the solid angle?

> $dA = (r d\theta)(r \sin \theta d\phi)$ $=r^2\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\phi$

• **Goal:** when parameterizing a unit sphere in terms of (θ, φ) , how does a small change d θ or d φ affect the solid angle?

$$
dA = (r d\theta)(r \sin \theta d\phi)
$$

= $r^2 \sin \theta d\theta d\phi$

• Recall:

$$
\theta = \frac{l}{r}
$$

• Longitude of subtended area is $r\theta$

• **Goal:** when parameterizing a unit sphere in terms of (θ, φ) , how does a small change d θ or d φ affect the solid angle?

$$
dA = (r d\theta)(r \sin \theta d\phi)
$$

= $r^2 \sin \theta d\theta d\phi$

• Recall:

$$
\theta = \frac{l}{r}
$$

- Latitude of subtended area is $r'\varphi$
- r' is really $rsin\theta$ because we reparametrize in terms of φ

• **Goal:** when parameterizing a unit sphere in terms of (θ, φ) , how does a small change d θ or d φ affect the solid angle?

> $dA = (r d\theta)(r \sin \theta d\phi)$ $=r^2\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\phi$

• Differential solid angle is then:

$$
\mathrm{d}\omega=\frac{\mathrm{d}A}{r^2}=\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\phi
$$

Radiance

- **Radiance** is the measure of radiant energy
	- *per unit time*
	- *per unit area*
	- *per unit solid angle*
	- *per unit wavelength*
- Easier way to express: **Radiance** is the measure of irradiance
	- *per unit solid angle*
	- *per unit wavelength*
- Even easier way to express: **Radiance** is energy along a ray defined by an origin point and direction
	- *per unit area* describes starting location
	- *per unit solid angle* describes location light is heading

$$
L(p,\omega) = \lim_{\Delta \to 0} \frac{\Delta E_{\omega}(p)}{\Delta \omega} = \frac{dE_{\omega}(p)}{d\omega}
$$

$$
E(p) = \lim_{\Delta \to 0} \frac{\Delta \phi(p)}{\Delta A} = \frac{d\phi(p)}{dA}
$$

$$
L(p,\omega) = \frac{dE_{\omega}(p)}{d\omega} = \frac{d^2\phi(p)}{dA d\omega} \left[\frac{W}{m^2 s r}\right]
$$

Surface Radiance

- \cdot **Issue:** what if dA is not perpendicular to surface normal?
	- **Solution:** Lambert's Law!

$$
L(p,\omega) = \frac{dE_{\omega}(p)}{d\omega} = \frac{d^2\phi(p)}{dA d\omega} = \frac{d^2\phi(p)}{dA'd\omega \cos \theta}
$$

Surface Radiance (Flipped)

- **Issue:** what if we have irradiance E in terms of A' ?
	- **Solution:** Flip Lambert's Law!

$$
L(p, \omega) = \frac{dE_{\omega}(p)}{d\omega} = \frac{d^2\phi(p)}{dA' d\omega} = \frac{d^2\phi(p)\cos\theta}{dA d\omega}
$$

$$
L(p, \omega) = L'(p, \omega)\cos\theta
$$

d

 $A' = A / \cos \theta$

Irradiance From The Environment

- In rendering, we want to measure all the incoming light into a point
- Computing irradiance (E) on surface, due to incoming light from all directions:

$$
E(\mathsf{p}) = \int_{H^2} L_i(\mathsf{p},\omega) \cos \theta d\omega
$$

- Incoming light is incident onto dA'
- Lambert's Law adds $\cos \theta$ to convert it to dA

Irradiance From The Environment

- Why do we use hemispheres for radiance calculations?
	- Recall we approximate scene geometry using explicit primitives
		- Each primitive has a planar representation
- When light enters or exits the primitive, it can only do so on one side of the primitive
	- Hence, all possible ray directions are limited to a hemisphere on the primitive

Radiance In Rendering

- Rendering is all about computing radiance
	- We will use rays to simulate light interactions in a scene
		- Integrating over these light rays gives us a way to render a scene
- Radiance is constant (and linear) in a **vacuum**
	- Normally air friction causes radiance values to scatter/lose energy due to particle-particle interactions
		- We will be rendering in vacuums of space to ignore these imperfections :)

Radiance In Rendering

Radiometric & Photometric Terms

Photometric Units

"Thus one nit is one lux per steradian is one candela per square meter is one lumen per square meter per steradian. Got it?" —James Kajiya