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Review:
Operators for Geometric Computing
“Intrinsic and Extrinsic Operators for Shape Analysis”
“Variational Quasi-Harmonic Maps for Computing Diffeomorphisms”
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Machine Learning on 3D Shapes?
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• Voxel grid

Geodesic CNN 
[Masci et al. 2015]

PointNet [Qi et al. 2016]3D ShapeNets [Wu et al. 2015]

• Point cloud • Mesh

[Maron et al. 2017]



The Operator/Matrix for Geometric Computing

• Geometry representation: many possibilities!

• Q: algorithms behave consistently across representations?
• A: work with continuous operator and discretize it as a matrix. 

• geometric computing: identify the right computational model. 

distance on point clouds [Crane et al. 2013]

triangle meshes, polygonal meshes, 
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triangle soups, implicit representations…



Bridging Geometric Computing and Applied Mathematics
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Computing Mathematics

• identify / discover mathematics most relevant in 
• designing geometric algorithms and numerical optimization
• that perform best on applications with empirical evaluation metrics 

• math/geometry ideas à discretized PDEs/discrete representation à 
optimization & numerical algorithms à geometric algorithms à applications 



Non-Euclidean Signals: Laplacian Spectral Basis

• Euclidean domain 𝕋!: Fourier bases, 1D: sin 𝑛x , cos(𝑛x) 

• Δ = ∇ ⋅ ∇= ∑!"#$ %!

%&"
!        Δ (sin 𝑛x ) = −𝑛' sin 𝑛x

• Spherical domain: spherical harmonics
• Δ =	. . .

• Any non-Euclidean domain: eigenfunctions of Laplace-Beltrami (Laplacian) 
• Δ = ∇ ⋅ ∇= #

()* +
𝜕!( det 𝑔 𝑔!,𝜕,)     𝑔: metric tensor
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Δ𝜙! = 𝜆𝜙!
Laplacian eigenfunctions [Levy 2006]

[Chung]



Image Processing.

• Laplacian on images
• finite difference as approximation

• #$(&)
#&

≈ $ &() *$(&*))
+

• Δ𝑓 𝑥, 𝑦 ≈
$ &(),- ($ &*),- ($ &,-() ($ &,-*) *.×$(&,-)

.
• via the stencil:

0 1 0
1 −4 1
0 1 0

Mesh Processing.

• Laplacian on meshes?
• similar idea,  Δ𝑢 ≈ ∑0∈𝒩(3) L30(u0 − u3)
but 
• irregular connectivity
• entries L30 depends on the shape of triangles 
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Laplacian Operator on Meshes? Δ = ∇ ⋅ ∇=
𝜕!

𝜕x"!
+
𝜕!

𝜕x!!



Triangle Mesh as Graph

• Graph: nodes connected by edges (ℰ)
• Dirichlet energy for u ∈ ℝ4×# (#nodes by 1)

• adjacency matrix J ∈ ℝ)×4	(#edges by #nodes)
• graph Laplacian L ∈ ℝ4×4	(#nodes by #nodes)

• Mesh: still a graph, except the edges comes from triangles
• graph has to be embeddable in 3D/2D
• edges are associated with some lengths (with triangle inequality)  
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L#$ =

𝑤#$ if 𝑖, 𝑗 	is	an	edge	

−E
$%#

L#$ if	𝑖 = 𝑗

0 otherwise

L = J"diag w 	J	

J&# = M
1 if	𝑒	is	an	edge	starts	at	𝑖
−1 if	𝑒	is	an	edge	ends	at	𝑖
0 otherwise

𝐸(u) =
1
2
;
{$,&}∈ℰ

	𝑤$& 	u$−u&
*	 =

1
2
u"Lu



Triangle Mesh as Graph

• Mesh: vertices connected by triangles (𝒯)
• Dirichlet energy for u ∈ ℝ4×# (#nodes by 1)

• grad matrix G ∈ ℝ'P×4 (2#faces by #vertices)
• assume 𝑢 is a piece-wise linear function in the triangle 𝑡 = {𝑖, 𝑗, 𝑘}
• ∇𝑢 = G+$𝑢$ + G+&𝑢& + G+,𝑢, ∈ ℝ* is the grad of 𝑢 in 𝑡 = {𝑖, 𝑗, 𝑘}

• “mesh” Laplacian L: still a graph Laplacian
• with weights depends on local geometry, i.e., G 
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L#$ =

𝑤#$ if 𝑖, 𝑗 	is	an	edge	

−E
$%#

L#$ if	𝑖 = 𝑗

0 otherwise

L = G"G

𝐸(u) =
1
2

;
+-{$,&,,}∈𝒯

||G+$u$ + G+&u& + G+,u,||*	 =
1
2
u"Lu

𝑘



Graph Laplacian vs. Mesh Laplacian

• Graph Laplacian L = J.J 
• J: edge-node adjacency matrix
• J ∈ ℝ)×4	(#edges by #nodes)
• Ju:	the difference per edge for u ∈ ℝ4×#

• Mesh Laplacian L = G.G
• G: face-vertex gradient matrix
• G ∈ ℝ'P×4 (2#faces by #vertices)
• Gu:	the gradient per triangle for u ∈ ℝ4×#
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Harmonic Functions: Mean Value Property 

• Optimization:

• R"u = b: the constraint that u is known at some nodes
• R is the binary selection matrix choosing known rows in u
• S is the binary selection matrix choosing unknown rows in u
• S"R = 𝟎

• Lagrangian multiplier method: 
• min 0

*
u"Lu + 𝜆" R"u − b

• Lu + R𝜆 = 0  à  S"Lu = 0 

• This implies the unknown u/ is 
 harmonic:  u/ equals to the weighted average of its neighbors' values
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min #
'u

QLu	 s. t. 	RQu = b  

u! =
1

∑,∈𝒩(!)L!,
B

,∈𝒩(!)

L!,u,



• min
V∈ℝ4

#
'u

QLu	 s. t. 	RQu = b

• SQGQG	u = 0 
• S selects unknown rows in u
• solve a linear system

• min
X(&)

	 #'∫Y |∇𝑢(x)|
'𝑑x 	s. t. 	𝑢|%Y = 𝑏(x)

• ∇ ⋅ ∇𝑢 x = 0
• for x ∈ Ω\𝜕Ω: where 𝑢 x  is unknown
• solve a linear PDE
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Discrete v.s. Continuous: Harmonic Interpolation

• A quadratic optimization with linear constraints
 minimize the derivation of u! or 𝑢(x) locally

• Mean Value Property:  u$ or 𝑢(x) equals to the weighted average of its neighbors' values

𝑏(𝜕Ω) 𝑢(Ω)



Laplace Equation: PDE 101

• Laplace equation

Images from [Etienne et al. 2014]

• Fact: forward PDE allows only one boundary condition  

Δ = ∇ ⋅ ∇=
𝜕!

𝜕x"!
+
𝜕!

𝜕x!!



𝑔(𝜕Ω)

𝑢(Ω)

𝑔1 𝜕Ω =
𝜕
𝜕n
𝑢(𝜕Ω)

A Closely Related Concept: Dirichlet-to-Neumann (DtN) Operator 𝒮

Dirichlet-to-Neumann (DtN) operator:

a.k.a the Steklov-Poincaré operator.
(temperature-to-flux, voltage-to-current)

Consider a shape Ω bounded by 
the surface Γ = 𝜕Ω.

𝑔1 𝜕Ω =
𝜕
𝜕n𝑢(𝜕Ω)15



Discrete Laplacian: A Sparse Matrix

discrete

L = G⊺G ∈ ℝ/×/

G ∈ ℝ!'×):	gradient operator (weighted)
𝑛: #vertices 
𝑓: #faces 

L is a graph Laplacian with geometry-determined edge weights. 
Same formula for curved and flat surfaces 

Finite Element Method (FEM) [Steinbach 2007]

Discrete Exterior Calculus (DEC) [Desbrun et al., 2005]
16

continuous	Δ = ∇ ⋅ ∇

L#$ =

\1 2 (cot 𝛼#$ + cot 𝛽#$) if 𝑖, 𝑗 	is	an	edge	

−E
$%#

L#$ if	𝑖 = 𝑗

0 otherwise



Tasks in Geometric Computing

• Distance 

• Segmentation [Reuter et al. 2009]

• Shape description [Sun et al. 2009]

• Shape retrieval [Bronstein et al. 2011]

• Correspondence [Ovsjanikov et al. 2012]

• Shape exploration [Rustamov et al. 2013]

• Vector field processing [Azencot et al. 2013]

• Simulation [Azencot et al. 2014]

• Deformation [Boscaini et al. 2015]

Geodesic distance
~ log of heat kernel
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Tasks in Geometric Computing

• Distance 

• Parameterization 

• Shape description [Sun et al. 2009]

• Shape retrieval [Bronstein et al. 2011]

• Correspondence [Ovsjanikov et al. 2012]

• Shape exploration [Rustamov et al. 2013]

• Vector field processing [Azencot et al. 2013]

• Simulation [Azencot et al. 2014]

• Deformation [Boscaini et al. 2015]

Conformal parameterization 
or diffeomorphism
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Tasks in Geometric Computing

• Distance 

• Parameterization

• Shape descriptor

• Correspondence 

• [Ovsjanikov et al. 2012]

• Shape exploration [Rustamov et al. 2013]

• Vector field processing [Azencot et al. 2013]

• Simulation [Azencot et al. 2014]

• Deformation [Boscaini et al. 2015]

Multi-scale curvature

19[Lombaert et al. 2013]



Tasks in Geometric Computing

• Distance 

• Parameterization

• Shape descriptor

• Correspondence 

• Shape classification 

• Shape exploration [Rustamov et al. 2013]

• Vector field processing [Azencot et al. 2013]

• Simulation [Azencot et al. 2014]

• Deformation [Boscaini et al. 2015]

Query: Cat

Expected hits:
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Laplacian: Ubiquitous in Shape Analysis & Geometry Processing

• Distance [Crane et al. 2013]

• Parameterization [Mullen et al. 2008]

• Shape description [Sun et al. 2009]

• Correspondence [Ovsjanikov et al. 2012]

• Shape classification [Bronstein et al. 2011]

• Shape exploration [Rustamov et al. 2013]

• Deformation [Boscaini et al. 2015]

• Shape optimization...

• Mesh generation…

21



Operator Substitution

L	 → L("), $L, or S
This talk covers: 
• Search for a matrix L(a) = G⊺AG: same sparsity pattern to L = G⊺G (major focus)
• Learn from data FEM kernels to assemble entries KL!,
• Design explicitly a different matrix S: more informative/robust

Why?
• New operators  à (much) more expressive computational models
• Systematically improve potentially every task in geometric computing  
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Optimization in the Space of Laplacians
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“Harmonicity”: The Key Notion of “Smoothness”

24

u! =
1

∑"∈𝒩(!) 1
3

"∈𝒩(!)

u"

• Key: what is a smooth function on the mesh/graph?
• Harmonic function: a function u whose value at each node/vertex 𝑖 equals 

to the average over 𝒩 𝑖 , the neighbors of 𝑖

Δu !: =
1

∑"∈𝒩(!) 1
3

"∈𝒩(!)

(u! − u")



“Harmonicity”: The Key Notion of “Smoothness”
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u! =
1

∑"∈𝒩(!) L!"
3

"∈𝒩(!)

L!"u"

• Key: what is a smooth function on the mesh/graph?
• Quasi-harmonic function: a function u whose value at each node/vertex 𝑖 

equals to the weighted average over 𝒩(𝑖), the neighbors of 𝑖

Δ(')u ! =
1

∑"∈𝒩(!) L!"
3

"∈𝒩(!)

L!"(u! − u")

L!,
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• Smooth Δ = ∇ ⋅ ∇
• Harmonic: Δ𝑢 = 0

• Smooth Δ(8) = ∇ ⋅ [A(x)∇]
• Quasi-harmonic: Δ(")𝑢 = 0

• 𝑢$ equals to the average over 𝑖’s neighbors

0 = ;
&∈2($)

(𝑢& − 𝑢$)

• 𝑢$ equals to the weighted-average over 𝑖’s 
neighbors

0 = ;
&∈2($)

L$&(𝑢& − 𝑢$)

Quasi-Harmonic Function and Generalized Laplacians

;



Inverse Problems of PDEs for 
Computing Diffeomorphisms
“Variational Quasi-Harmonic Maps for Computing Diffeomorphisms.”
Yu Wang, Minghao Guo, and Justin Solomon.
ACM Transactions on Graphics (TOG) 42(4). ACM SIGGRAPH 2023 Journal Track. 
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Diffeomorphisms

• Diffeomorphism 𝜙: a smooth map with smooth inverse (𝜙c# must exist)
• diffeomorphisms: all physically possible deformation (no negative volume)

• Homeomorphism 𝜙: smooth à continuous
• injective: 𝜙 x ≠ 𝜙(y) for x ≠ y 
• inversion-free: det	𝐷𝜙 x > 0, ∀x, positive Jacobian 𝐷𝜙 x ∈ R*×*	

28

𝜙 = (𝑢, 𝑣)



Diffeomorphism = Smooth Injective / Inversion-free Mapping

• The map 𝜙 = (𝑢, 𝑣) can be a:
deformation, shape representation, correspondence, parameterization, …

𝜙 = (𝑢, 𝑣)

[Aigerman and Kovalsky 2016]

• Foundational, wherever using computers to represent shapes 
 in physics, engineering, shape optimization, computer vision, mesh generation…
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• Homeomorphism = Inversion-freeness (Under conditions) e.g. [Lipman 2014]

    det	[∇𝑢 ∇𝑣] > 0

[Models from Keenan Crane]

𝜙



Our Solution: (Quasi) Harmonic Maps

• Previous works, at high-level:  
  
• largely relying on constrained numerical optimization 
• solved by customized barrier / interior point methods
• while minimizing some energy 𝐸, e.g., the Winslow functional from physics

• Starting point: quasi-harmonic map ∇ ⋅ A(x) ∇ 𝑢, 𝑣 = (0, 0)
• Our method

• First review relevant ideas from
• geometric graph theory
• complex analysis / 2D PDEs 

30

min	𝐸 𝑢, 𝑣 	 s. t. 	 det	[∇𝑢 ∇𝑣] > 0

min	𝑅 𝑢, 𝑣, A 	 s. t. 	 ∇ ⋅ A(x) ∇ 𝑢, 𝑣 = (0, 0)



Problem: Flatten a Surface subject to Positional Constraints

31How to find a map 𝜙 that is diffeomorphic (and minimizes certain functional)? 
Question?

𝜙 = (𝑢, 𝑣)

Ω: source domain, a 
curved or flat surface

Γ: target domain, flat

𝜙:Ω → Γ

Images from [Kovalsky et al. 2020]



Review: Tutte Embedding = Discrete Quasi-Harmonic Maps

• Fixed boundary, interior nodes placed at neighbors’ weighted average  
•  interior positions found by solving a linear system

• Convex boundary à edges do not intersect (injective!) 
• [Tutte 1962]: created the field of geometric graph theory 

[Images from Kyri Pavlou]
William T. Tutte
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x! =3
"

𝑤!"	x"



Review: Continuous Quasi-Harmonic Maps

• Quasi / A x -harmonic: point x placed at neighbors’ weighted average

∇ ⋅ A x ∇𝑢 x = 0, 	 ∀x ∈ Ω\𝜕Ω
∇ ⋅ A x ∇𝑣 x = 0, 	 ∀x ∈ Ω\𝜕Ω

• Dirichlet boundary condition: fix the boundary 

𝑢(x) = 𝑏((x), 	 ∀x ∈ 𝜕Ω
𝑣(x) = 𝑏)(x), 	 ∀x ∈ 𝜕Ω

• Map 𝑢, 𝑣  diffeomorphic/injective for convex boundary
• A x = I: by RKC theorem in complex analysis
• A x ≠ I: generalization by [Alessandrini and Nesi 2001]

Tibor Radó
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Harmonic maps onto convex regions are diffeomorphic. 
Theorem [Radó–Kneser–Choquet (RKC)]



Quasi-Harmonic Maps, aka, Tutte Embedding

Image from 
[Du et al. 2021]

• Fix boundary, interior nodes placed at neighbors’ weighted average [Tutte 1962] 
• Fail for non-convex boundary: flipped triangles (in red color)---our condition fixes it!
• There is a hope with extra conditions [Gortler, Gotsman, Thurston 2006] 
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Idea: in x! = ∑"𝑤!"	x", carefully choose weights 𝑤^_  can remove flips  
Method: search within a (differentiable) family of Tutte embeddings



Main Theory:  Diffeomorphism = {Quasi-harmonic} + { Dirichlet & Neumann BCs}

35



Ours

Main Theory:  Diffeomorphism = {Quasi-harmonic} + { Dirichlet & Neumann BCs}

• Main Theorem: map (𝑢, 𝑣) is diffeomorphic if-and-only-if such an A x 	exists: 
• (1) Quasi-harmonic: 

∇ ⋅ A x ∇𝑢 x = 0, 	 ∀x ∈ Ω\𝜕Ω
∇ ⋅ A x ∇𝑣 x = 0, 	 ∀x ∈ Ω\𝜕Ω

• (2) Dirichlet boundary condition: specify the boundary positions (trivial). 

𝑢(x) = 𝑏X(x), 	 ∀x ∈ 𝜕Ω
𝑣(x) = 𝑏j(x), 	 ∀x ∈ 𝜕Ω

• (3) Neumann boundary condition: specify the A x -weighted normal derivative. 
n x ⊺ A x ∇𝑢 x 	 A x ∇𝑣 x = 4n x ⊺	 ∀x ∈ 𝜕Ω

• 𝐧 x : normal on source domain
• ,𝐧 x : normal on target domain

36

Same 
as 
Tutte



A Condition Feasible Computationally
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Ours: correct & feasible computationally
 the nature boundary condition: the best thing you can hope for!
 made possible discrete injectivity

Neumann boundary condition: specify the A x -weighted normal derivative 
n x ⊺ A x ∇𝑢 x 	 A x ∇𝑣 x = Gn x ⊺	 ∀x ∈ 𝜕Ω

• 𝐧 x : normal on source domain
• ;𝐧 x : normal on target domain

n x ⊺ ∇𝑢 x 	 ∇𝑣 x = Gn x ⊺	 ∀x ∈ 𝜕Ω
A possible variant: 
 theoretically correct 
 computationally inconsistent (with the PDE) 



Our Starting Point: {Diffeomorphic Mapping} = {Inverse PDE}
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∇ ⋅ A x ∇𝑢 x = 0, 	 ∀x ∈ Ω\𝜕Ω	
∇ ⋅ A x ∇𝑣 x = 0, 	 ∀x ∈ Ω\𝜕Ω 
𝑢(x) = 𝑏X(x), 	 ∀x ∈ 𝜕Ω 
𝑣(x) = 𝑏j(x), 	 ∀x ∈ 𝜕Ω 
n x ⊺ A x ∇𝑢 x = 𝑔X x , ∀x ∈ 𝜕Ω 
n x ⊺ A x ∇𝑣 x = 𝑔j x , ∀x ∈ 𝜕Ω 

min
X,j,a

	𝑅 𝑢, 𝑣, A  

s. t.

minX,j	𝐸 𝑢, 𝑣 	
s. t. 	 det	[∇𝑢(x) ∇𝑣(x)] > 0

(barrier methods,
 interior point methods)

PDE-constrained optimization
complicated but more efficiently solvable with our method!
many unsuccessful attempts (augmented Lagrangian etc., too slow)

Constraints: copy-paste previous conditions
Objective 𝑅: is some regularizer or energy 𝐸(𝑢, 𝑣) 



Application: Bijective Parameterizations Optimizing Different Energies

• By choosing different regularizer 𝑅. 
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area preserving

none: 
𝑅 = 0

as-rigid-as-possible



Swap Two Point Landmarks Using Our Method
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• The discrete solution can be quite different from the continuous one
• Require careful consideration from discrete geometry

swap two point landmarks with an up-sampled mesh our setting: no up-sampling



Our Framework Leads to a Family of Methods

• Different functionals in our framework provide variant means solving the problem 

41



Experiments

• Our method is extremely robust and fast
• Pass a challenge with 11k tests [Du et al. 2021]; up to 1000 faster

[Du et al. 2021] 42

diffeomorphisms by our method,  shapes already cut into disk topology



Inverse PDEs v.s. Geometric Optimization

aliasing patterns:
triangulation-sensitive 43

smoother
50X faster

and support many 
objectives



Application: Collision Avoidance by way of Injectivity

• Task: Put the Cheeseman in an hour-glass
• Ours: warp the shape + surrounding space

• ensuring shape-mesh + air-mesh inversion-free
 avoids penetration / self-intersection

• Result: a unified engine for physics & collision 

Our method 
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Why Inverse PDE is Better?  Evidences from Inverse Problems of PDEs

∫ ∇𝑢 A -A	∇𝑢 A
+∫ ∇𝑣 A -A	∇𝑣 A

Problem: min
+,(,)	

E(A, 𝑢, 𝑣)	

Solvers: operating in the space of:
• ours in (A) 

min
a	

{	min
X,j

	E A, 𝑢, 𝑣 	}

a tight upper bound
smooth & 𝐶mdifferentiable

• prior work in (𝑢, 𝑣): 
min
X,j	

{	min
a
	E A, 𝑢, 𝑣 	}

non-smooth & grad vanish 

45

previous works: 
vanishing gradient
à hard to optimize



A Geometry Approach for
Topological Constraints
“Fast Quasi-Harmonic Weights for Geometric Data Interpolation.”
Yu Wang and Justin Solomon.
ACM Transactions on Graphics (TOG) 40(4). ACM SIGGRAPH 2021.
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Animation with Sparse Control

47

• A tool for artist to direct animation with sparse control



Skinning Animation

48

• Skinning: drive deformation by 
propagating transformations at 
skeletons to all vertices
• Fast
• Common in computer games



Skinning Animation
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• Skinning: drive deformation by 
propagating transformations at 
skeletons to all vertices
• Fast
• Common in computer games



Skinning Animation
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• Skinning: drive deformation by 
propagating transformations at 
skeletons to all vertices
• Fast
• Common in computer games



Skinning Animation
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• Skinning: drive deformation by 
propagating transformations at 
skeletons to all vertices
• Fast
• Common in computer games



Problem: Skinning Weight Computing

• Skinning/interpolation weights: a partition-of-unity that decay from 1 to 0
• 𝑤"(⋅) is a fundamental geometry quantity. E.g., ∇𝑤"(⋅) defines the foliation. 

Mathematically:

𝑤.(x) 𝑤!(x) 𝑤"(x) 𝑤/(x) 𝑤0(x) 
52



(Monotonic) Bounded Biharmonic Weights [Jacobson et al. 2011, 2012]

[Jacobson et al. 2011, 2012]

𝑠. 𝑡.

BBW or monotonic BBW (MBBW)

Objective: Weight Smoothness

Constraint: Desired Properties

A generalized B-spline, for a non-Euclidean domain Ω. 

53

• used extensively beyond animation 
• take hours on large example



Monotonicity Constraint

• Monotonicity: no local extremum away from control handles
• A topological constraint [Jacobson et al. 2012]

• A necessary condition for diffeomorphic shape morphing

• Without monotonicity à noticeable artifacts 

54



Our Model: Quasi-Harmonic Weights

• Consider solutions to the anisotropic Laplace equations

• For any A x , the weights 𝑤"(x) satisfy:

55

For any A(x)	, the generated 𝑤(x) automatically satisfy all conditions  

Δ1 = ∇ ⋅ [A(x)∇]



• Search within the family of quasi-harmonic weights

Our Method

56

PDE-constrained optimization
• not necessarily easier
• but we find an efficient solver

Δ1 = ∇ ⋅ [A(x)∇]



Evaluation: Timing

• Our inverse PDE solver: orders-of-magnitude faster than previous methods 

BBW [Jacobson et al. 2011] 
MBBW [Jacobson et al. 2012] 

57



Geometric Computing beyond the Laplacian

• Optimization in a larger space of Laplacians. 
• Design Laplacian-like operators. 
• Learn Laplacian-like operators from data.

58



Shape Classification backed by 
Modern Geometric Analysis
“Steklov Spectral Geometry for Extrinsic Shape Analysis”
Yu Wang, Mirela Ben-Chen, Iosif Polterovich, Justin Solomon
ACM Transactions on Graphics 38(1)
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Parallel Roles of Geometry and Image Processing 

60

• Image processing & analysis
• input: 2D array

• Image classification

• Local features: SIFT etc.

• Geometry processing & analysis
• input: 2-dim manifold in 3D

• Shape classification

• Local features: curvatures etc. 

𝑓 	 = 𝑐!𝑓 	 = 𝑐"

[Lombaert et al. 2013]



Geometric Computing Tasks

• Task: shape analysis and 3D vision
• shape classification

• feature extraction

61

𝑓 	 = 𝑐

g 	 =
• Approach
• Theory: insights taken from modern spectral geometry
• Tools: borrowed from computational electromagnetics 



Mathematically Justified Embedding: Laplacian Eigenvalues 

• Solve the eigenvalue problem

𝐋 ∈ ℝ)×)

𝛌𝟏
𝛌𝟐
𝛌𝟑

𝛌𝐧

𝜙! 𝜙" 𝜙# 𝜙$=

𝜙
!
𝜙
"
𝜙
#

𝜙
$

• 𝜆., 𝜆/, … , 𝜆0 ∈ ℝ0: Shape2Vector scheme, mathematically justified  

Laplacian eigenmodes
[Levy 2006]

62

Δ𝜙! = 𝜆𝜙!



Even Better: Intrinsic Invariance

Intrinsic/Laplacian approaches are invariant to isometry (“pose invariant”)
Real-world objects are usually subject to (near-) isometries

Isometry 𝒯: length-preserving map
𝒯

Geodesic
Euclidean

63



Laplacian Shape Classification

64

𝑓 	 ≈ 𝑓 	

𝑓 	 =𝑓 	
𝑓 	 ≠𝑓 	



(Intrinsic) Laplacian can be Counterintuitive

Isometry 𝒯

65
• Same Laplacian operator à same Laplacian eigenvalues



(Intrinsic) Laplacian Information is Incomplete 

Origami images from http://image.google.com/

Intrinsic geometry: any origami is equivalent to a piece of flat paper!

Isometry 𝒯
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Laplacian Lacks Robustness

• Should be identical
• But completely different are their Laplacian eigenvalues---Why? 
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• The surface connected to legs • Not connected. The surface only 
touches the legs

• Topology errors à completely 
different Laplacian eigenvalues 68

Laplacian is Sensitive to Topological Noises



Our Solution: Replace the Laplacian Δ with Operator 𝒮

Δ → 𝒮
L → S
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Our Solution: DtN Operator and Steklov Eigenvalue Problem

• Discrete Dirichlet-to-Neumann (DtN) operator: S ∈ ℝ1×1    𝑛: number of vertices

• This eigenvalue problem of S is known as the Steklov eigenvalue problem. 
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𝐒 ∈ ℝ)×)

𝛌𝟏
𝛌𝟐
𝛌𝟑

𝛌𝐧

𝜙! 𝜙" 𝜙# 𝜙$=

𝜙
!
𝜙
"
𝜙
#

𝜙
$



Operator 𝒮: Encode Extrinsic Geometry, Backed by Spectral Geometry

71𝑓 	 ≈𝑓 	

For smooth domains in ℝ3, the Steklov heat kernel admits the asymptotic 
expansion         [Polterovich and Sher 2015]

↔ 𝒮
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Steklov Kernels for Shape Segmentation

Level sets of Steklov eigenfunctions conform to mean curvatures 
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Spectral clustering with geodesics / heat kernels à shape segmentation



Laplacian Segmentation: Much Worse than Ours
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Replacing the Laplacian eigenfunctions 
with the Steklov ones---we can only 
distinguish the cubes 



Robust to Noises
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Boundary Approach: Robust to Non-watertight Surface

Steklov eigenfunctions: stable to topological changes for open surfaces 
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One or two cuts added

𝑓 	 =𝑓 	



Laplacian Steklov Shape Classification
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𝑓 	 ≈ 𝑓 	

𝑓 	 ≠𝑓 	
𝑓 	 =𝑓 	



Summary: Mathematical Geometric Processing: Laplacian & Beyond

• A Tutorial on Laplacian

• Quasi-harmonic maps
• search for a deformed Laplacian

• Extrinsic shape analysis
• design a new operator

• Learn operator kernel from data
• for a different operator kernel

• Future: potentially every tasks in geometric computing… 

• Links to the paper: https://wangyu9.github.io/
• For further questions:  wangyu9@mit.edu 
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• 3min for the poll:  
https://tinyurl.com/15362-guestlec2

https://wangyu9.github.io/
mailto:wangyu9@mit.edu
https://tinyurl.com/15362-guestlec2


Thank you!       Q&A
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