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Review:
Operators for Geometric Computing

“Intrinsic and Extrinsic Operators for Shape Analysis”
“Variational Quasi-Harmonic Maps for Computing Diffeomorphisms”



Machine Learning on 3D Shapes?

* Voxel grid * Point cloud * Mesh
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% [Maron et al. 2017]

Geodesic CNN
[Masci et al. 2015]

3D ShapeNets [Wu et al. 2015] PointNet [Qi et al. 2016]



The Operator/Matrix for Geometric Computing

 Geometry representation: many possibilities!

triangle meshes, polygonal meshes,

distance on point clouds [Crane et al. 2013] triangle soups, implicit representations...

e Q: algorithms behave consistently across representations?

* A: work with continuous operator and discretize it as a matrix.
* geometric computing: identify the right computational model.



Bridging Geometric Computing and Applied Mathematics

2

Computing

Mathematics

* identify / discover mathematics most relevant in

e designing geometric algorithms and numerical optimization

e that perform best on applications with empirical evaluation metrics

* math/geometry ideas = discretized PDEs/discrete representation =
optimization & numerical algorithms = geometric algorithms = applications




Non-Euclidean Signals: Laplacian Spectral Basis

e Euclidean domain T¢: Fourier bases, 1D: sin(nx), cos(nx)
2

cA=V.V=3Y% 16 2 A (sin(nx)) = —n? sin(nx)

* Spherical domain: spherical harmonics

e A=...
[Chung]

* Any non-Euclidean domain: eigenfunctions of Laplace-Beltrami (Laplacian)

° — . \/— l] . I
A=V-V ma( |det glg" 0;) g: metric tensor

Ap; = A

Laplacian eigenfunctions [Levy 2006] /



Laplacian Operator on Meshes?

Image Processing. Mesh Processing.
e Laplacian on images e Laplacian on meshes?
* finite difference as approximation * similaridea, Au = X ey Lij(w; — u;)
. ) ftD)-f(x-1) but
Af}x( ) 2 * irreqular connectivity
° X, y ~ o . N ,
PO f 1)+ oy + D+ F (ry—1)—4%F () entries L;j depends on the shape of triangles
4

* via the stencil:
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Triangle Mesh as Graph

* Graph: nodes connected by edges (&)
* Dirichlet energy for u € R™? (#nodes by 1)

1 2 1
E(u) =3 z Wl-j(ul-—uj) = EuTLu
{i,j}e€
* adjacency matrix ] € R®*" (#edges by #nodes)
 graph Laplacian L € R™™ (#nodes by #nodes)
(

Wij if{{,j} is an edge 1 ifeisanedgestarts ati
L =14— z Ly ifi =j Jet ={—1 ifeisanedgeendsati
Jj#i 0 otherwise
L 0 otherwise

L =] diag(w) ]

* Mesh: still a graph, except the edges comes from triangles
* graph has to be embeddable in 3D/2D
* edges are associated with some lengths (with triangle inequality)



Triangle Mesh as Graph

* Mesh: vertices connected by triangles (J')
* Dirichlet energy for u € R™? (#nodes by 1)

1 2 L 7
E(u) =§ z [|Gtiu; + Gejuj + Geeug||© = Eu Lu
t={i,j kYT k

e grad matrix G € R2X™ (2#faces by #vertices)

* assume u is a piece-wise linear function in the triangle t = {i, j, k}
e Vu = (Gtiui + Ggjuj + Gtkuk) € R?isthegradofuint = {i, ], k}

* “mesh” Laplacian L: still a graph Laplacian L=G'G

* with weights depends on local geometry, i.e., G

( Wij if {i, j} is an edge

J#i
L 0 otherwise
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Graph Laplacian vs. Mesh Laplacian

» Graph Laplacian L = J1] * Mesh Laplacian L = G'G
* |: edge-node adjacency matrix * G: face-vertex gradient matrix
« ] € R®*M (#edges by #nodes) e G € R2XM (D#tfaces by #vertices)

* Ju: the difference per edge for u € R*™! * Gu: the gradient per triangle for u € R™*!
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Harmonic Functions: Mean Value Property

« Optimization: min %uTLu s.t. RTu=b

e RTu = b: the constraint that u is known at some nodes
* Ris the binary selection matrix choosing known rows in u

e Sisthe binary selection matrix choosing unknown rows in u
« STR=0

* Lagrangian multiplier method:
* min %uTLu + AT(RTu — b)
« Lu+RA=0 > STLu=0
* This implies the unknown u; is
harmonic: u; equals to the weighted average of its neighbors' values

u; = z L;ju;
]EN(l) U ]EN(l)
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Discrete v.s. Continuous: Harmonic Interpolation

e A quadratic optimization with linear constraints
minimize the derivation of u; or u(x) locally

.1 T T - 1 2
e min —u Lu s.t. R'u=b e min = |.|Vu(x)|“dx s.t. u = b(X
min 2 min = [, Vu ()| o0 = b()
b(0) u(Q)
« STGTGu =0 V- [Vu®)] =0
* S selects unknown rows in u » for x € Q\0Q: where u(x) is unknown
* solve a linear system e solve alinear PDE

* Mean Value Property: u; or u(x) equals to the weighted average of its neighbors' values

13



Laplace Equation: PDE 101

Definition (Laplace Equation: Mixed boundary condition)
Consider a partition of the boundary: dQ0 = dQy U 0Qp such that dQy N AQp = @.

Af(x) =0, vx € Q\JQ (interior)
f(x) = fo(x), Vx € d(lp (Dirichlet condition)
n-Vix) =go(x), Vx€09dQy (Neumann condition)

Images from [Etienne et al. 2014]

%  0°
A=V V=—+
0x%  0x3

e Fact: forward PDE allows only one boundary condition



A Closely Related Concept: Dirichlet-to-Neumann (DtN) Operator &

Consider a shape ) bounded by
the surface I' = 0().

Au(x) =0 x €()
u(x) = g(x) x €edl

9(98) 00) = > u(00
where g(I') is Dirichlet data gn(0Q) = Z-u(00)

Neumann data g,, = %u(f‘)

Dirichlet-to-Neumann (DtN) operator:

S =g gn
a.k.a the Steklov-Poincaré operator.

(temperature-to-flux, voltage-to-current) w(Q)

0
gn(0Q) = a—nulgé‘ﬂ)



Discrete Laplacian: A Sparse Matrix

continuous A — V . V

discrete

L=G'Ge R™"

G € R?/*™: gradient operator (weighted)
n: #vertices
f: #faces

1 (cota;; + cotf;;) if{i,j}is anedge
2 J J

Lij = o —z L;; ifi =j
J#i

L 0 otherwise

L is a graph Laplacian with geometry-determined edge weights.
Same formula for curved and flat surfaces

Finite Element Method (FEM) [Steinbach 2007]

Discrete Exterior Calculus (DEC) [Desbrun et al., 2005]
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Tasks in Geometric Computing

Geodesic distance
~ log of heat kernel

* Distance

17



Tasks in Geometric Computing

Conformal parameterization
or diffeomorphism

* Distance

e Parameterization

18



Tasks in Geometric Computing

Multi-scale curvature

Distance

Parameterization

Shape descriptor

Correspondence

[Lombaert et al. 2013] *°



Tasks in Geometric Computing

Query: Cat

Expected hits:

Distance

Parameterization

Shape descriptor

Correspondence

Shape classification

20



Laplacian: Ubiquitous in Shape Analysis & Geometry Processing

Distance [Crane et al. 2013]
Parameterization [Mullen et al. 2008]
Shape description [Sun et al. 2009]
Correspondence [Ovsjanikov et al. 2012]
Shape classification [Bronstein et al. 2011]
Shape exploration [Rustamov et al. 2013]
Deformation [Boscaini et al. 2015]

Shape optimization...

Mesh generation...

21



L > L@® [ orS

This talk covers:

e Search for a matrix L& = GTAG: same sparsity pattern to L = G'G (major focus)
e Learn from data FEM kernels to assemble entries f.l-j

* Design explicitly a different matrix S: more informative/robust

Why?
 New operators = (much) more expressive computational models

* Systematically improve potentially every task in geometric computing

22



Optimization in the Space of Laplacians



“Harmonicity”: The Key Notion of “Smoothness”

e Key: what is a smooth function on the mesh/graph?

* Harmonic function: a function u whose value at each node/vertex i equals
to the average over V' (i), the neighbors of i

1
L D @—u)

EN (i)

U; =

I
™M
~
Mm
2 |~
—
J:
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“Harmonicity”: The Key Notion of “Smoothness”

e Key: what is a smooth function on the mesh/graph?

* Quasi-harmonic function: a function u whose value at each node/vertex i
equals to the weighted average over IV (i), the neighbors of i

E (w) 1 E
u; = Ll]u] (A U.)i =Z 1. Ll-j(ul-—uj)
JeN(l) JEN (1)

Lij JEN (i) JjeN (D)

25



-Harmonic Function and Generalized Laplacians

eSmoothA =V -V
e Harmonic: Au = 0

* u; equals to the average over i’s neighbors

0= z (w — u;)

+ smooth AW = V - [A(x)V]
» Quasi-harmonic: Ay =0

* u; equals to the weighted-average over i’s
neighbors

0= z Lij(uj — u;)

JEN(D)

26




Inverse Problems of PDEs for
Computing Diffeomorphisms

“Variational Quasi-Harmonic Maps for Computing Diffeomorphisms.”
Yu Wang, Minghao Guo, and Justin Solomon.
ACM Transactions on Graphics (TOG) 42(4). ACM SIGGRAPH 2023 Journal Track.

27



Diffeomorphisms

» Diffeomorphism ¢: a smooth map with smooth inverse (¢p 1 must exist)
 diffeomorphisms: all physically possible deformation (no negative volume)

* Homeomorphism ¢: smooth = continuous

* injective: p(x) = ¢p(y) forx #y
* inversion-free: det D¢ (x) > 0, Vx, positive Jacobian Dg(x) € R?*?

¢ = (u,v)

7N\

28



Diffeomorphism = Smooth Injective / Inversion-free Mapping

* The map ¢ = (u, v) can be a:
deformation, shape representation, correspondence, parameterization, ...

¢ = (u,v)
7N
TR

[Aigerman and Kovalsky 2016]

* Foundational, wherever using computers to represent shapes
in physics, engineering, shape optimization, computer vision, mesh generation...

* Homeomorphism = Inversion-freeness (Under conditions) e.g. [Lipman 2014]
det [Vu Vv] > 0

29
[Models from Keenan Crane]



Our Solution: (Quasi) Harmonic Maps

e Previous works, at high-level:

min E(u,v) s.t. det[VuVv] >0
* largely relying on constrained numerical optimization
* solved by customized barrier / interior point methods
* while minimizing some energy E, e.g., the Winslow functional from physics

» Starting point: quasi-harmonic map V- [A(x) [V(w, v)]] = (0, 0)
e Our method
min R(u,v,A) s.t. V- [A(X) [V(u, v)]] = (0,0)

* First review relevant ideas from
e geometric graph theory
e complex analysis / 2D PDEs

30



Problem: Flatten a Surface subject to Positional Constraints

Problem Setup

Suppose Q) is a two-dimensional Riemannian manifold with disk topology, and consider a
planar domain T € R? whose boundary 0T is a simple closed curve. Assume

¢ = (u,v) : Q - I' diffeomorphically maps 0 onto dI'. Denote the (given) boundary
map as [by, b,](*) : 90 — R?, and denote the outward normal to dT as A(-) : 90 — ST,

(): source domain, a
curved or flat surface $:Q—>T

¢ = (uv)
" [': target domain, flat

Images from [Kovalsky et al. 2020]

Question?
How to find a map ¢ that is diffeomorphic (and minimizes certain functional)?



Review: Tutte Embedding = Discrete Quasi-Harmonic Maps

* Fixed boundary, interior nodes placed at neighbors’ weighted average
e interior positions found by solving a linear system

* Convex boundary =2 edges do not intersect (injective!)
e [Tutte 1962]: created the field of geometric graph theory

Xi = ZWU Xj
J

William T. Tutte

[Images from Kyri Paviou]
32



Review: Continuous Quasi-Harmonic Maps

* Quasi / A(x)-harmonic: point x placed at neighbors’ weighted average

V- [AX)Vux)] =0, Vxe O\
V- [AX)Vv(xX)] =0, Vxe€ Q\dQ
* Dirichlet boundary condition: fix the boundary

u(x) = b, (x), Vx€ 9d
v(x) = b,(x), Vx€ I
* Map (u, v) diffeomorphic/injective for convex boundary

* A(x) = I: by RKC theorem in complex analysis
« A(x) # I: generalization by [Alessandrini and Nesi 2001]

Tibor Radd

Theorem [Radé—Kneser—Choquet (RKC)]

Harmonic maps onto convex regions are diffeomorphic.



Quasi-Harmonic Maps, aka, Tutte Embedding

* Fix boundary, interior nodes placed at neighbors’ weighted average [Tutte 1962]
* Fail for non-convex boundary: flipped triangles (in red color)---our condition fixes it!
* There is a hope with extra conditions [Gortler, Gotsman, Thurston 2006]

Idea: inx; = 2; w;; X;, carefully choose weights w;; can remove flips
Method: search within a (differentiable) family of Tutte embeddings

Image from
[Du et al. 2021]
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Main Theory: Diffeomorphism = {Quasi-harmonic} + { Dirichlet & Neumann BCs}

Theorem (Main result: continuous version)

¢ = (u,v) is a diffeomorphism if and only if there exist

(1) a positive definite tensor field A(+) satisfying %I < A(xX) < K], (+ smooth conditions)
(2) a positive function s : Al = R that s(x) = S, forsome K,S > 0,

such that ¢ is A(x)-harmonic with a special Cauchy boundary condition, i.e.:

V- [AX)Vu(x)] =0 vx € 0\ 0
V- [AX)Vv(x)] =0 vx € Q\ 0L
u(x) = by (x) Vx € 0Q)
v(x) = by (%) Vx € 0Q)

n(x)’ [A(x)Vu(x) A(x)w(x)] = s)Ax)  Vx €

35



Main Theory: Diffeomorphism = {Quasi-harmonic} + { Dirichlet & Neumann BCs}

* Main Theorem: map (u,v) is diffeomorphic if-and-only-if such an A(x) exists:

gum—

e (1) Quasi-harmonic:
V- [AX)Vu(x)] =0, VxeQ\oQ

V- [AX)Vr(x)] =0, Vxe Q\dQ
Same

as —
Tutte| * (2) Dirichlet boundary condition: specify the boundary positions (trivial).

u(x) = by (x), Vxe i
L v(x) = by,(x), Vx € IQ

* (3) Neumann boundary condition: specify the A(x)-weighted normal derivative.
ours n(x)' [A)Vu(x) AX)Vr(x)] = i(x)" Vx € dQ

* n(x): normal on source domain
* 1i(x): normal on target domain

36



A Condition Feasible Computationally

Neumann boundary condition: specify the A(x)-weighted normal derivative
n(x)'[A)Vu(x) AX)Vv(x)] = ikx)" Vx € dQ

* n(x): normal on source domain
e 1i(x): normal on target domain

Ours: correct & feasible computationally
the nature boundary condition: the best thing you can hope for!
made possible discrete injectivity

n(x)'[Vu(x) V)] =ikx)" Vxe oQ
A possible variant:

theoretically correct
computationally inconsistent (with the PDE)

37



Our Starting Point: {Diffeomorphic Mapping} = {Inverse PDE}

lrtnver R(u,v,A) min,, , E(u, v)
s.t.] V- [AVu(x)] =0, Vx€E Q\dQ ‘= s.t. det [Vu(x) Vv(x)] > 0
V- [AVv(x)] =0, VxeQ\iQ (barrier methods,
- u(®) = by(x), Vx € 00 interior point methods)
v(X) = by (X), Vx € 0Q)
n(x)'[AX)Vux)] = g,(x), Vx € 9Q
n(x)'[AX)Vv(x)] = g,(x), Vx € 9Q

Constraints: copy-paste previous conditions

Objective R: is some regularizer or energy E(u, v)

PDE-constrained optimization

complicated but more efficiently solvable with our method!

many unsuccessful attempts (augmented Lagrangian etc., too slow)

38



Application: Bijective Parameterizations Optimizing Different Energies

* By choosing different regularizer R.

area preserving

none:
R=0

as-rigid-as-possible

39



Swap Two Point Landmarks Using Our Method

* The discrete solution can be quite different from the continuous one

e Require careful consideration from discrete geometry

swap two point landmarks with an up-sampled mesh our setting: no up-sampling

40



Our Framework Leads to a Family of Methods

 Different functionals in our framework provide variant means solving the problem

Weight
Dirichlet
(DtN)

Poisson
Functional
(NtD)

Neumann
Residual

41



* Our method is extremely robust and fast
e Pass a challenge with 11k tests [Du et al. 2021]; up to 1000 faster

diffeomorphisms by our method, shapes already cut into disk topology

[Du et al. 2021] 42



Inverse PDEs v.s. Geometric Optimization

aliasing patterns: smoother and support many
objectives

43

triangulation-sensitive 50X faster



Application: Collision Avoidance by way of Injectivity

e Task: Put the Cheeseman in an hour-glass

e Ours: warp the shape +
e ensuring shape-mesh + inversion-free

avoids penetration / self-intersection

e Result: a unified engine for physics & collision

Our method

44



Why Inverse PDE is Better? Evidences from Inverse Problems of PDEs

Problem: min E(A, u,v)
Au,v

Solvers: operating in the space of:

* prior work in (u, v): * oursin (A)
min { min E(A, u, v) } min { min E(A, u, v) }
u,v A A u,v
non-smooth & grad vanish a tight upper bound

smooth & C®differentiable

[ vu(A)TA vu(A)
+ [ Vv(A)TA Vv(A)

previous works:
vanishing gradient
— hard to optimize

45



A Geometry Approach for
Topological Constraints

“Fast Quasi-Harmonic Weights for Geometric Data Interpolation.”

Yu Wang and Justin Solomon.
ACM Transactions on Graphics (TOG) 40(4). ACM SIGGRAPH 2021.
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Animation with Sparse Control

e A tool for artist to direct animation with sparse control

47



Skinning Animation

e Skinning: drive deformation by
propagating transformations at
skeletons to all vertices

e Fast

« Common in computer games

48



Skinning Animation

e Skinning: drive deformation by
propagating transformations at
skeletons to all vertices

e Fast

« Common in computer games
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Skinning Animation

e Skinning: drive deformation by
propagating transformations at
skeletons to all vertices

e Fast

« Common in computer games
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Skinning Animation

e Skinning: drive deformation by
propagating transformations at
skeletons to all vertices

e Fast

« Common in computer games
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Problem: Skinning Weight Computing

» Skinning/interpolation weights: a partition-of-unity that decay from 1to 0
* w;(-) is a fundamental geometry quantity. E.g., Vw;(-) defines the foliation.

Mathematically:

w1 (%) W (%) w3 (%) Wy (%) ws (%)



(Monotonic) Bounded Biharmonic Weights pacosson etat. 2011, 2012

A generalized B-spline, for a non-Euclidean domain (). ¢ used extensively beyond animation
e take hours on large example

Objective: Weight Smoothness

S.t.

Constraint: Desired Properties

_ >

BBW or monotonic BBW (MBBW)

[Jacobson et al. 2011, 2012]
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Monotonicity Constraint

* Monotonicity: no local extremum away from control handles
* A topological constraint pacobson et al. 2012]
* A necessary condition for diffeomorphic shape morphing

* Without monotonicity = noticeable artifacts

54



Our Model: Quasi-Harmonic Weights

e Consider solutions to the anisotropic Laplace equations M =V - [AX)V]

* For any A(x), the weights w;(x) satisfy:

For any A(x) , the generated w(x) automatically satisfy all conditions

55



Our Method

* Search within the family of quasi-harmonic weights A =V - [AX)V]

ming X7, fh 14w ]2

s.t. wj(ci) = i Vi,j=1,....m
AAw](x) =0 Vxe Q,Vj=1,...m
Vﬁw]'(x) =0 Vx € 0Q,Vj=1,....m
A(x) >0 Vx € Q

PDE-constrained optimization
* not necessarily easier
* but we find an efficient solver
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Evaluation: Timing

e Our inverse PDE solver: orders-of-magnitude faster than previous methods

BBW [Jacobson et al. 2011]
MBBW [Jacobson et al. 2012]
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Geometric Computing beyond the Laplacian

* Design Laplacian-like operators.

58



Shape Classification backed by
Modern Geometric Analysis

“Steklov Spectral Geometry for Extrinsic Shape Analysis”

Yu Wang, Mirela Ben-Chen, losif Polterovich, Justin Solomon
ACM Transactions on Graphics 38(1)



Parallel Roles of Geometry and Image Processing

* Image processing & analysis * Geometry processing & analysis
* input: 2D array * input: 2-dim manifold in 3D

* Image classification * Shape classification

e Local features: SIFT etc. * Local features: curvatures etc.

[Lombaert et al. 2013] ©°



Geometric Computing Tasks

* Task: shape analysis and 3D vision
* shape classification

e feature extraction
e Approach

* Theory: insights taken from modern spectral geometry
e Tools: borrowed from computational electromagnetics

61



Mathematically Justified Embedding: Laplacian Eigenvalues

 Solve the eigenvalue problem

Ap; = A;

L € R™*" =l b1 D2 P3 bn ..l

Laplacian eigenmodes
[Levy 2006]

e (A, Ay, .o, A) € RE: Shape2Vector scheme, mathematically justified
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Even Better: Intrinsic Invariance

Intrinsic/Laplacian approaches are invariant to isometry (“pose invariant”)

Real-world objects are usually subject to (near-) isometries

Isometry J': length-preserving map
T

7N\

Geodesic

Euclidean

63



fC)=f0C )

fC)#fC )



(Intrinsic) Laplacian can be Counterintuitive

lsometry T

PN

e Same Laplacian operator = same Laplacian eigenvalues

65



(Intrinsic) Laplacian Information is Incomplete
I%\

Intrinsic geometry: any origami is equivalent to a piece of flat paper!

66
Origami images from http://image.google.com/



Laplacian Lacks Robustness

* Should be identical

e But completely different are their Laplacian eigenvalues---Why?
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Laplacian is Sensitive to Topological Noises

* The surface connected to legs * Not connected. The surface only
touches the legs

* Topology errors = completely

different Laplacian eigenvalues o



Our Solution: Replace the Laplacian A with Operator S

69



Our Solution: DtN Operator and Steklov Eigenvalue Problem

e Discrete Dirichlet-to-Neumann (DtN) operator: S € R"*" n: number of vertices

Definition
S: the Dirichlet-to-Neumann operator. The Steklov eigenvalue problem

SY = A




Operator &: Encode Extrinsic Geometry, Backed by Spectral Geometry

Theorem (Lassas 2001)

Denote Q4,Q, € R3 as two domains, and a : Q; = Q, is a bijection. Under proper

assumptions, if the two domains have the same Dirichlet-to-Neumann operators (under
map composition), then & must be a rigid motion.

For smooth domains in R3, the Steklov heat kernel admits the asymptotic

expad nsion [Polterovich and Sher 2015]
(0] (0.0) (0.0] 1
() = ) e g0 ~ Y @)+ Y h(otlogt, a0 = 5
i=0 k=0 =1 H(x)
a(x) = e

H(x): mean curvature 1 . K
K (x): Gaussian curvature a2(x) = 167 <H(x) T3 )

oS fC )=fC )



eigenfunctions: eigenfunctions: eigenfunctions:
low-frequency middle-frequency high-frequency

Quantities

Defined using
Eigenfunctions
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Steklov Kernels for Shape Segmentation

Spectral clustering with geodesics / heat kernels = shape segmentation

Level sets of Steklov eigenfunctions conform to mean curvatures

|

7N
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Laplacian Segmentation: Much Worse than Ours
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Replacing the Laplacian eigenfunctions
with the Steklov ones---we can only
distinguish the cubes
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Robust to Noises

76



Boundary Approach: Robust to Non-watertight Surface

Steklov eigenfunctions: stable to topological changes for open surfaces

»

One or two cuts added

fC )

fC )
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Summary: Mathematical Geometric Processing: Laplacian & Beyond

* A Tutorial on Laplacian

Quasi-harmonic maps
 search for a deformed Laplacian

Extrinsic shape analysis
* design a new operator

* 3min for the poll:
https://tinyurl.com/15362-guestlec?

Learn operator kernel from data
 for a different operator kernel

Future: potentially every tasks in geometr

ICc computing...

Links to the paper: https://wangyu9.github.io/

For further questions: wangyu9@mit.edu
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https://wangyu9.github.io/
mailto:wangyu9@mit.edu
https://tinyurl.com/15362-guestlec2

Thank you! Q&A
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