
Midterm Review

15-462/662 | Computer Graphics Lecture R01 | Midterm Review

15-462/662 | Computer Graphics Lecture R01 | Midterm Review

Midterm Overview

• 80 minutes, during class next Thursday
• Basic mathematical questions, no intense calculation
• Know your definitions and be able to apply them!
• No pseudocode
• Review slides are a good hint as to what might be on the exam :)

• Cheat sheet: one 3x3 inch note (about the size of a post it note) front and back

• Please bring a blue/black pen to write your solutions

15-462/662 | Computer Graphics

3D Inverse Rotations

Lecture 03 | Transformations

If you need to review any slides more in
depth,
look here for which lecture it came from

15-462/662 | Computer Graphics

• Transformations Review

• Rasterization Review

• Geometry Review

• Spatial Data Structures Review

Lecture R01 | Midterm Review

15-462/662 | Computer Graphics Lecture R01 | Midterm Review

Transformations

• Homogeneous coordinates

• 3D Translation

• 3D Scale

• 3D Rotation
• Axis-Aligned rotation
• Axis-Angle rotation
• Rotations from orthonormal bases

15-462/662 | Computer Graphics Lecture 03 | Transformations

3D Transforms in Homogeneous Coordinate

[point in 3D]

[rotate around 𝑦 by 𝜃] [shear by 𝑧 in (𝑠,𝑡) direction] [scale by 𝑎,𝑏,𝑐] [translate by (𝑢,𝑣,𝑤)]

Matrix representations of 3D linear transformations just
get an additional identity row/column:

15-462/662 | Computer Graphics Lecture 03 | Transformations

Translation in Homogeneous Coordinates

**most often in this class we will also use c = 1

15-462/662 | Computer Graphics

Non-Uniform Scaling

Lecture 03 | Transformations

15-462/662 | Computer Graphics

3D Inverse Rotations

Lecture 03 | Transformations

15-462/662 | Computer Graphics Lecture 04 | Rasterization

Rotations From Orthonormal Bases

-
-
-

- - -

15-462/662 | Computer Graphics

• Transformations Review

• Rasterization Review

• Geometry Review

• Spatial Data Structures Review

Lecture R01 | Midterm Review

15-462/662 | Computer Graphics Lecture R01 | Midterm Review

Rasterization

• The “simpler” graphics pipeline

• Scene graph

• Clipping

• Rasterization
• Sampling
• Point-in-triangle tests
• Barycentric coordinates

• Textures

• Depth and Alpha blending

The Graphics Pipeline

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Vertex Shader

* (Note this is pseudocode, not GLSL syntax)

• Vertex shaders provide per-vertex operations that change
attributes of vertices such as their positions and normal

• Example: fluid simulation

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Geometry Shader

* “Geometry Shader” in OpenGL/Direct3D/Metal terminology

Some guy in Unity having a hard time with geometry shaders (2014)

• Recently added to OpenGL in 2007
• As such, not many people use it

• Allows user to retarget the connectivity of their
geometry by specifying tessellation operations
or adding in additional geometry

• Example: computing vertex shader on
coarse geometry and then subdividing a
surface in the geometry shader

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Fragment Shader

• Separate triangles into fragments
• For each fragment, compute the output RGBA

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Frame-Buffer Operations

• Alpha Test
• Allows fragments with alpha value greater/less than a

constant specified by the user to pass

• Stencil Test
• Allows fragments that pass a user-defined per-pixel

function to pass
• Stored in stencil buffer
• Example: mattes + masking

• Depth Test
• Allows fragments that are closest in depth to pass

• Stored in Z-buffer

• Update Target
• If pixel passes, modify stencil depth and color buffers
• Reads can be done in parallel, writes require locking

• We’ll look at techniques later to accelerate this

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

15-462/662 | Computer Graphics

The “Simpler” Graphics Pipeline

Lecture 03 | Transformations

15-462/662 | Computer Graphics Lecture 03 | Transformations

Scene Graph

15-462/662 | Computer Graphics Lecture 04 | Rasterization

Clipping

• Clipping eliminates triangles not visible to the
camera (not in view frustum)

• Don’t waste time rasterizing primitives you can’t
see!

• Discarding individual fragments is expensive
• “Fine granularity”

• Makes more sense to toss out whole primitives
• “Coarse granularity”

• What if a primitive is partially clipped?
• Partially enclosed primitives are triangulated

into non-overlapping smaller triangles that fit in
the frustrum

• If part of a triangle is outside the frustrum, it means
at least one of its vertices are outside the frustrum
• Idea: check which side of halfspaces the vertices

are at

= in frustrum

15-462/662 | Computer Graphics Lecture 03 | Transformations

Rasterization

• Triangle
• Bounding box
• Incremental triangle traversal
• Hierarchical coverage

• For each Primitive (Triangle):
• For each Pixel:

• If Pixel in Primitive:
• Pixel color = Interpolated triangle color

15-462/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• Measurements must all either be positive or
negative for point to be in triangle

OR

• Orientation no longer matters
• Just be consistent!

15-462/662 | Computer Graphics

Barycentric Coordinates

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Barycentric Coordinates [Another Way]

Lecture 05 | Texturing

• Directly proportional to the signed area created by
the triangle composed of the other two target points
and a point within the triangle

• Can be computed as:

• Note that signed distance / area implies barycentric
coordinates can be negative, but they will still sum to
1! (if on the same plane, otherwise we project point
to the plane containing our triangle)

** Interesting read of barycentric coordinates for n-gons:
https://www.inf.usi.ch/hormann/barycentric/

15-462/662 | Computer Graphics Lecture 03 | Transformations

Coverage via Samples

• Sample : Discrete measurement of a signal
• Multisampling vs Supersampling

• Approximate the coverage of the area of a pixel by
taking n samples

• Per sample coverage & depth test + texture
lookup + alpha blending

15-462/662 | Computer Graphics

Nearest Neighbor Sampling

• Idea: Grab texel nearest to requested location
in texture

• Requires:
• 1 memory lookup
• 0 linear interpolations

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Bilinear Interpolation Sampling

• Idea: Grab nearest 4 texels and blend them
together based on their inverse distance from
the requested location

• Blend two sets of pixels along one axis,
then blend the remaining pixels

• Requires:
• 4 memory lookup
• 3 linear interpolations

Lecture 05 | Texturing

Lerp 1 & 2 Lerp 3

15-462/662 | Computer Graphics

Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the
results together

• Requires:
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)

15-462/662 | Computer Graphics

Mip-Map [L. Williams ‘83]

Lecture 05 | Texturing

• Storing an RGB Mip-Map can be fit into an
image twice the width and twice the height of
the original image

• See diagram for proof :)
• Does not work as nicely for RGBA!

• Issue: bad spatial locality
• Requesting a texel requires lookup in 3

very different regions of an image

15-362/662 | Computer Graphics

Anisotropic Filtering

• Anisotropic filtering is dependent on direction
• an – not, iso – same, tropic – direction

• Idea: create a new texture map that downsamples
the x and y axis by 2 separately

• Instead of taking the max, use each
coordinate to index into correct location in
map

Lecture 05 | Texturing

• Texture map is now a grid of downsampled
textures

• Known as a RipMap

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-462/662 | Computer Graphics

Alpha Values

Lecture 05 | Texturing

• Common image format: RGBA
• Alpha channel specifies

‘opacity’/transparency of object
• Most common encoding is 8-bits per

channel

• Compositing A over B != B over A
• Consider the extreme case of two

opaque objects…

• Non-premultiplied alpha vs Premultiplied
alpha

fully opaque

fully transparent

[nyc over…koala?][koala over nyc]

where is
the
koala…

• Popular algorithm for rendering in modern games

• Idea: restructure the rendering pipeline to perform
shading after all occlusions have been resolved

• Not a new idea. Implemented in several classic
graphics systems, but not directly supported in
most high-end GPUs

• But modern graphics pipeline provides
mechanism to allow applications to implement
deferred shading efficiently

Deferred Shading

Assassin’s Creed III (2012) Ubisoft

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Shrek (2001) Digital Illusions Canada

Deferred Shading

• Two-pass approach:
• Fragment shader outputs surface properties

of nearest surface (G-Buffer)
• Surface properties used to render final image

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Two-Pass Algorithm

• Pass 1: Geometry Pass
• Render scene geometry using traditional pipeline
• Write visible geometry information to G-Buffer

• Pass 2: Shading Pass
• For each G-Buffer sample, compute shading
• Read G-Buffer data for current sample
• Accumulate contribution of all lights
• Output final surface color for sample

Leadwerks Engine

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

15-462/662 | Computer Graphics

• Transformations Review

• Rasterization Review

• Geometry Review

• Spatial Data Structures Review

Lecture R01 | Midterm Review

15-462/662 | Computer Graphics Lecture 06 | Geometry

Implicit Geometry

• Points aren’t known directly, but satisfy some
relationship

• Example: unit sphere is all points such that
x2+y2+z2=1

• More generally, in the form f(x,y,z) = 0

• Finding example points is hard
• Requires solving equation

• Checking if points are inside/outside is easy
• Just evaluate the function with a given point

f(x,y)

f = 0

+
1

-
1

15-462/662 | Computer Graphics Lecture 06 | Geometry

Explicit Geometry

15-462/662 | Computer Graphics Lecture 06 | Geometry

Manifold Properties

• For polygonal surfaces, we will check for “fins” and
”fans”

• Every edge is contained in only two polygons (no “fins”)
• The extra 3rd or 4th or 5th or so forth polygon is the

fin of a fish

• The polygons containing each vertex make a single “fan”
• We should be able to loop around the faces around a

vertex in a clear way

15-462/662 | Computer Graphics Lecture R01 | Midterm Review

Geometry Types

• What is implicit geometry
• Algebraic surfaces
• Constructive solid geometry
• Signed distance fields

• What is explicit geometry
• Point clouds
• Triangle meshes

• Be able to compare the pros and cons of implicit and explicit geometry

• Manifold mesh requirements

15-362/662 | Computer Graphics Lecture 06 | Geometry

What are some ways to describe the connectivity of
geometry?

15-362/662 | Computer Graphics Lecture 06 | Geometry

Polygon Soup

• Most basic idea imaginable:
• For each triangle, just store three coordinates
• No other information about connectivity
• Not much different from point cloud

• A “Triangle cloud”?

• Pros:
• [+] Really stupid simple

• Cons:
• [-] Really stupid
• [-] Redundant storage of vertices
• [-] Very difficult to find neighboring polygons

(x0,y0,
z0)

(x1,y1,
z1)

(x2,y2,
z2)

(x3,y3,
z3)

x0,y0,z0 x1,y1,z1
x3,y3,z3
x1,y1,z1 x2,y2,z2
x3,y3,z3

0

1

2

3

15-362/662 | Computer Graphics Lecture 06 | Geometry

Adjacency List

• A little more complicated:
• Store triples of coordinates (x,y,z)
• Store tuples of indices referencing the coordinates

needed to build each triangle

• Pros:
• [+] No duplicate coordinates
• [+] Lower memory footprint
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry
• [+] Easy to change connectivity of geometry

• Cons:
• [-] Very difficult to find neighboring polygons
• [-] Difficult to add/remove mesh elements

15-362/662 | Computer Graphics Lecture 06 | Geometry

Incidence Matrices

• If we want to know our neighbors, let’s store them:
• Store triples of coordinates (x,y,z)
• Store incidence matrix between vertices + edges,

and edges + faces
• 1 means touch, 0 means no touch
• Store as sparse matrix

• Pros:
• [+] No duplicate coordinates
• [+] Finding neighbors is O(1)
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry

• Cons:
• [-] Larger memory footprint
• [-] Hard to change connectivity with fixed indices
• [-] Difficult to add/remove mesh elements

15-462/662 | Computer Graphics Lecture R01 | Midterm Review

Halfedge Mesh

• What are the components of a halfedge mesh?

• How to traverse around a vertex? A face? An edge?

• Why can we not represent a non-manifold mesh using halfedge geometry?

• What makes a good mesh?

15-362/662 | Computer Graphics Lecture 06 | Geometry

Halfedge Data Structure

• Let’s store a little, but not a lot, about our neighbors:
• Halfedge data structure added to our geometry
• Each edge gets 2 halfedges

• Each halfedge ”glues” an edge to a face

• Pros:
• [+] No duplicate coordinates
• [+] Finding neighbors is O(1)
• [+] Easy to traverse geometry
• [+] Easy to change mesh connectivity
• [+] Easy to add/remove mesh elements
• [+] Easy to keep geometry manifold

• Cons:
• [-] Does not support nonmanifold geometry

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

15-462/662 | Computer Graphics Lecture 06 | Geometry

Halfedge Data Structure

• Makes mesh traversal easy
• Use “twin” and “next” pointers to move around the

mesh
• Use “vertex”, “edge”, and “face” pointers to grab

element

Halfedge* h = f->halfedge;
do {
 h = h->next;
 // do something w/ h->vertex
}
while(h != f->halfedge);

Halfedge* h = v->halfedge;
do {
 h = h->twin->next;
}
while(h != v->halfedge);

Example: visit all vertices in a face Example: visit all neighbors of a vertex

Note: only makes sense if mesh is
manifold!

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

15-462/662 | Computer Graphics Lecture 06 | Geometry

Halfedge Data Structure

• Halfedge meshes are always manifold!

• Halfedge data structures have the following constraints:

h->twin->twin == h // my twin’s twin is me
h->twin != h // I am not my own twin
h2->next = h //every h’s is someone’s “next”

• Keep following next and you’ll traverse a face
• Keep following twin and you’ll traverse an edge
• Keep following next->twin and you’ll traverse a vertex

• Q: Why, therefore, is it impossible to encode the red figures?
• First shape violates first 2 conditions
• Second shape violates 3rd condition

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

A Good Mesh Has…

• Good approximation of original shape
• Keep only elements that contribute information

about shape
• More elements where curvature is high

• Regular vertex degree
• Degree 6 for triangle mesh, 4 for quad mesh

• Better polygon shape
• More regular computation
• Smoother subdivision

[good
]

[okay
]

[bad
]

[
d

eg
re

e
6

]
[

d
eg

re
e

20

]

subdivid
e

subdivid
e

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

A Good Mesh Has…

• Good triangle shape
• All angles close to 60 degrees

• More sophisticated condition: Delaunay
• For every triangle, the unique circumcircle (circle

passing through all vertices of the triangle) does
not encase any other vertices

• Many nice properties:
• Maximizes minimum angle
• Smoothest interpolation

• Tradeoff: sometimes a mesh can be approximated
best with long & skinny triangles

• Doesn’t make the mesh Delaunay anymore
• Example: cylinder

[good
]

[bad
]

[delaunay
]

15-462/662 | Computer Graphics Lecture R01 | Midterm Review

Halfedge Mesh Operations

• Local Operations
• EdgeBevel
• EdgeCollapse
• EraseVertex
• FaceBevel
• EdgeFlit
• EdgeVertexSplit
• VertexBevel
• EraseEdge
• FaceCollapse
• …

• Global Operations
• Loop Subdivision
• Isotropic Remeshing
• Simplification
• …

15-462/662 | Computer Graphics Lecture 06 | Geometry

Local Operations

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision Using Local Ops

Step 1:

Step 2:
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Isotropic Remeshing

Step 1: Step 2:

Step 3: Step 4:

collapsesplit

flip average

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Simplification Algorithm Basics

• Greedy Algorithm:
• Assign each edge a cost
• Collapse edge with least cost
• Repeat until target number of elements is reached

• Particularly effective cost function: quadric error metric**

[300 triangles
]

[30 triangles
]

[3,000 triangles
]

[30,000 triangles
]

**invented at CMU (Garland & Heckbert
1997)

No need to
remember the

specific metric!

15-462/662 | Computer Graphics

• Transformations Review

• Rasterization Review

• Geometry Review

• Spatial Data Structures Review

Lecture R01 | Midterm Review

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

Spatial Data Structures

• Primitive-partitioning acceleration structure:
• Partitions node’s primitives into disjoint sets (but sets may overlap

in space)
• Bounding Volume Hierarchy

• How to construct a BVH
• How to traverse a BVH
• Axis-aligned vs non-axis aligned BVHs

• Space-partitioning acceleration structures:
• Partitions space into disjoint regions (but primitives may be

contained in multiple regions)
• K-D Trees
• Uniform Grids
• Quad/OctTreees

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Construction

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Example

Bounding boxes will sometimes
intersect!

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

Axis-Aligned BVH

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

K-D Trees

B

A

A

B C

C

D

E F

D E

F

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

Uniform Grid

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

Quad-Tree/Octree

• Like uniform grid, easy to build
• Has greater ability to adapt to location of scene

geometry than uniform grid
• Still not as good adaptability as K-D tree

• Quad-tree: nodes have 4 children
• Partitions 2D space

• Octree: nodes have 8 children
• Partitions 3D space

15-462/662 | Computer Graphics Lecture R01 | Midterm Review

