Midterm Review

Midterm Overview

* 80 minutes, during class next Thursday
* Basic mathematical questions, no intense calculation
* Know your definitions and be able to apply them!
* No pseudocode
Review slides are a good hint as to what might be on the exam :)

* Cheat sheet: one 3x3 inch note (about the size of a post it note) front and back

* Please bring a blue/black pen to write your solutions

If you need to review any slides more in
depth,
look here for which lecture it came from

15-462/662 | Computer Graphics

* Transformations Review
e Rasterization Review
* Geometry Review

 Spatial Data Structures Review

15-462/662 | Computer Graphics

Transformations

* Homogeneous coordinates

3D Translation

3D Scale

3D Rotation
* Axis-Aligned rotation
* Axis-Angle rotation
* Rotations from orthonormal bases

15-462/662 | Computer Graphics

cos 6

—sin 6

oS O = O

3D Transforms in Homogeneous Coordinate

sin 6

cos 6

o O O

0

1
0
0

S = = &

i A

) -
0
0
1_

Matrix representations of 3D linear transformations just
get an additional identity row/column:

1

Q

—_ o O O
o = O O

oSO O =
oo = O
—_ <

Translation in Homogeneous Coordinates

* A 2D translation is similar to a 3D shear
* Moving a slice up/down the shear
moves the shape

* Recall shear is written as:
fuv(X) = X+ (v,x)u / \

fuy(X) = (I + uVT)X

* Inourcase, v =(0,0,1), so**

1 0 u cpi c(p1+up) e T prtuy
0 1 w cpy | = | c(pr+u) [i]
I 0O 0 1 1L ¢ |] C] p2 2

**most often in this class we will also use c=1

Non-Uniform Scaling

* To scale a vector u by a non-uniform amount (a, b, ¢):

a 0 O uj auq
0O b O u | = | bup
0 0 c us3 cu3
* The above works only if scaling is axis-aligned. What if it isn’t? o .

* lIdea:
* Rotate to a new axis R
* Perform axis-aligned scaling D
* Rotate back to original axis RT

A =RTDR

* Resulting transform A4 is a symmetric matrix

15-462/662 | Computer Graphics

3D Inverse Rotations

R' R
) . _
: 1
e, el e1 e €3
o LT
e,) T :
/] f/§ ele; eley efes
_ F/ = o — | ele; eser eles
§ k/'\\ e;{el egez 6;:63
e, - s -
(1,0,0) 1 0 0
~| 0 0
0 0

15-462/662 | Computer Graphics

Rotations From Orthonormal Bases

u
W
- .
= l/t_x v_x _W_x - ux - uy 'l/lZ
— 1z . -1
R= (-u, v, Wy R ' = Vy Vy v,
- MZ VZ _WZ —Wx —Wy —WZ

* Transformations Review
e Rasterization Review
* Geometry Review

 Spatial Data Structures Review

15-462/662 | Computer Graphics

Rasterization

* The “simpler” graphics pipeline
* Scene graph
* Clipping
* Rasterization
* Sampling
* Point-in-triangle tests
* Barycentric coordinates

* Textures

* Depth and Alpha blending

15-462/662 | Computer Graphics

Vertices

Primitives

Fragments

Pixels

The Graphics Pipeline

Vertex Generation

Vertex Processing

Primitive Generation

Primitive Processing

Fragment Generation
(Rasterization)

Fragment stream

Fragment Processing

Fragment stream

Pixel Operations

°3
s °4 Verticesin 3D space

°2

Vertices in positioned on screen

‘@ Triangles positioned on screen

'::;: % Fragments (one per pixel covered by triangle *)

15-362/662 | Computer Graphics

Vertex Shader

Memory v
struct input_vertex {)
float3 pos; // object space

| 1

{ Vertex Processing’ }.__ Uniform
l data

struct output_vertex {
float3 pos; // NDC space
};

1input vertex —> 1 output vertex
independent processing of each vertex

Vertex Shader Program *

uniform mat4 my_transform; // P*T

output_vertex my_vertex_program(input_vertex in) {

SUEPE. VerEeT it irs provide per-vertex operations that change
e sy ranstorn © ANApOES: [matcx-vactor milt vertices such as their positions and normal
} 2 fluid simulation

* (Note this is pseudocode, not GLSL syntax)

15-362/662 | Computer Graphics

Geometry Shader

Memory
| I O -
Vertex Generation T T T T 1
D T
Some guy in Unity having a hard time with geometry shaders (2014)
* Recently added to OpenGL in 2007
: - * As such, not many people use it
yl‘ll““ "jpll;i‘h") Jc—— nd.n
* Allows user to retarget the connectivity of their

geometry by specifying tessellation operations

or adding in additional geometry
* Example: computing vertex shader on
coarse geometry and then subdividing a

surface in the geometry shader

* “Geometry Shader” in OpenGL/Direct3D/Metal terminology
15-362/662 | Computer Graphics

Fragment Shader

Vertex Generation

Vertex Processing

Primitive Generation

Primitive Processing

Rasterization
(Fragment Generation)

]])) e
oomERO

.
.
—

struct fragment // note similarity to output_vertex from before
{
float x,y; // screen pixel coordinates (sample point location) . o
float z; // depth of triangle at sample point * Separate triangles into fragments

float3 normal; // interpolated application-defined attribs * For eaCh fragment' Compute the OUtPUt RGBA

float2 texcoord; // (e.g., texture coordinates, surface normal)

15-362/662 | Computer Graphics

Frame-Buffer Operations

* Alpha Test
SEPRCE output. P agmant Memory * Allows fragments with alpha value greater/less than a
Sk constant specified by the user to pass
:i:::t :ilor;
¥ | * Stencil Test
* Allows fragments that pass a user-defined per-pixel
l function to pass
[Stenciltest) | StenclBuffer * Stored in stencil buffer
l i * Example: mattes + masking
_.:EEIE. ZBuffer
l " * Depth Test
(" updte target } >/ cotor Butfero * Allows fragments that are closest in depth to pass

* Stored in Z-buffer

Color Buffer N

Update Target
* |f pixel passes, modify stencil depth and color buffers
* Reads can be done in parallel, writes require locking
* WEe'll look at techniques later to accelerate this

The “Simpler” Graphics Pipeline

W [-

Eflegimacmasons . o . A .
Transform/position objects in Project objects onto
the world the screen Sample triangle coverage
Combine samples into ﬁnal Sample texture maps/ Interpolate triangle
image (depth, alpha, ... evaluate shaders attributes at covered samples

15-462/662 | Computer Graphics

Scene Graph

Suppose we want to build a skeleton out of cubes

Idea: transform cubes in world space
» Store transform of each cube

Problem: If we rotate the left upper leg, the lower left
leg won’t track with it
* Better Idea: store a hierarchy of transforms
* Known as a scene graph
* Each edge (+root) stores a linear

transformation
* Composition of transformations gets applied

left
lower leg
right
lower leg

head

left arm body right arm

to nodes :
. right left
* Keep transformations on a stack to upper leg upper leg
reduce redundant multiplication
. left
right lower leg

Lower left leg transform: 4,44, lower leg

Clipping

* Clipping eliminates triangles not visible to the
camera (not in view frustum)
* Don’t waste time rasterizing primitives you can’t
seel!

* Discarding individual fragments is expensive
* “Fine granularity”

* Makes more sense to toss out whole primitives
* “Coarse granularity”

* What if a primitive is partially clipped?
* Partially enclosed primitives are triangulated
into non-overlapping smaller triangles that fit in
the frustrum

* |If part of a triangle is outside the frustrum, it means
at least one of its vertices are outside the frustrum
* Idea: check which side of halfspaces the vertices
are at

N

<

Al

D = in frustrum

Rasterization

e Triangle o
* Bounding box -
* Incremental triangle traversal
* Hierarchical coverage

* For each Primitive (Triangle): *
* For each Pixel: o

* |If Pixel in Primitive:
* Pixel color = Interpolated triangle color

15-462/662 | Computer Graphics

Point-In-Triangle Test

* Measurements must all either be positive or
negative for point to be in triangle

(a¢ x ab) - (a¢ x ag) > 0 &&

(ch x cd) - (cb xcq) > 0 &&

(ba x bc) - (ba x bq) >0

OR

@xa_c') . (@ xag) < 0 &&

(cd x ¢b) - (cb xTq) < 0 &&

(bc x ba) - (ba x bq) < 0

* Orientation no longer matters
* Just be consistent!

Barycentric Coordinates

* Inversely proportional to the signed distance between
the target point and a point within the triangle

* Can be computed as:

¢i(x) = di(x)/h;

* How would you compute h;? d; (x)?

Xi 1
Xk
¢i(x) ¢i(x) Pr(x) 0
&

15-462/662 | Computer Graphics

Barycentric Coordinates [Another Way |

** Interesting read of barycentric coordinates for n-gons:
https://www.inf.usi.ch/hormann/barycentric/

* Directly proportional to the signed area created by

the triangle composed of the other two target points
and a point within the triangle

Can be computed as:

area(x, xj, xi)

¢i(x) =

area(x;, xj, Xi)

Note that signed distance / area implies barycentric
coordinates can be negative, but they will still sum to
1! (if on the same plane, otherwise we project point
to the plane containing our triangle)

Coverage via Samples

* Sample : Discrete measurement of a signal
* Multisampling vs Supersampling

* Approximate the coverage of the area of a pixel by
taking n samples
* Per sample coverage & depth test + texture
lookup + alpha blending

°1° O® ® @ O
@ 0000
X I X e
© ® e 00
© 0000

15-462/662 | Computer Graphics

Nearest Neighbor Sampling

* Idea: Grab texel nearest to requested location
in texture x' « round(x — 0.5), y' « round(y) — 0.5

* Requires: t « tex.lookup(x',y")

* 1 memory lookup
* 0 linear interpolations

15-462/662 | Computer Graphics

Bilinear Interpolation Sampling

* Idea: Grab nearest 4 texels and blend them
together based on their inverse distance from x" « floor(x —0.5), y' « floor(y —0.5)
the requested location)
* Blend two sets of pixels along one axis, Ax < (x—0.5) - x
then blend the remaining pixels Ay «(y—0.5)—y

txy) < tex.lookup(x’,y")

* Requires: ; ,
tix+1,y) < tex.lookup(x'+1,y")

* 4 memory lookup o
* 3linear interpolations Lxy+1) < tex.lookup(x',y’ +1)
tixt+1,y+1) € tex.lookup(x’,+1y" + 1)

Lerp1 &2

Lerp 3 ty < (1—Ax) * t(x,y) + Ax * t(x+1,y)
o | o ot —s | — ! ty « (1= Ax) * tiyr1) T AX * Lirrryem)
°
_ > .
. . ool o . l t(_(l_Ay)*tx“I'Ay*ty

Trilinear Interpolation Sampling

* Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the

results together

* Requires:
* 8 memory lookup

* 7 linear interpolations

Level ceil(d)

Bilerp (3 Lerps)

Level floor(d)

Bilerp (3 Lerps)

= L] L]

(1 Lerp)

L« \/max(sz,Lyz)
d < log, L

d' « floor(d)
Ad «d —d

ty « tex[d']. bilinear(x,y)
tg+1 < tex[d’ + 1]. bilinear(x,y)
t—(1—-Ad)*xty +Ad *xtz,4

Mip-Map (L. williams ‘83]

B d
m B
Storing an RGB Mip-Map can be fit into an 5
image twice the width and twice the height of R G
the original image
* See diagram for proof :)

* Does not work as nicely for RGBA!

Issue: bad spatial locality
* Requesting a texel requires lookup in 3
very different regions of an image

Anisotropic Filtering

Anisotropic filtering is dependent on direction
* an-not, iso — same, tropic — direction

Idea: create a new texture map that downsamples
the x and y axis by 2 separately
* Instead of taking the max, use each
coordinate to index into correct location in

map -
L i\v&’%)

(dx: dy) = (logZ‘ ,Li) logZ L?/)

Texture map is now a grid of downsampled
textures
* Known as a RipMap

Depth Buffer (Z-buffer)

@® — sample passed depth test

o (@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@)
o (@) (@) (@) (@) (@) (@) (@) (@) [] (] (@)
o (@) (@) (@) (@) (@) (@) (@) (@) [] [] (@)
o (@) (@) (@) (@) (@) [] [] [] (]
o (@) (@) (@) (@) (@) [[[[

o o o o o o o O o o o o o o
o (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o]
[color buffer] [depth buffer]

near NN | far

Depth Buffer (Z-buffer)

@® — sample passed depth test
o o o o (o] (o] (o] (o] (o] (o] (o] (o] (] (o] (o] (o] (o]
o o o o o o O O O e o ® e o
o o (o] (o] (o] (o] () [] [] [] [] (o]
o o (o] (o] (o] [] [] [] [] [] {
o o o O O e e e o o o
o (o] [J [] [] [] [] [] []
o (o] o (] [] [] [] [] []
o o o o o o o o o o O o o o o o o
o o o o (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o]
[color buffer] [depth buffer]

near [T [far

Depth Buffer (Z-buffer)

@® — sample passed depth test
o o o o (o] (o] (o] (o] (o] (o] (o] (o] (] (o] (o] (o] (o]
o o o o o o o o « e @ e o
o o (o] (o] (o] (o] [[] [] [] [] (o]
o o (o] (o] (o] [] [] [] [] [] {
o o o o of & & e e o o
o (o] () ([[] [] [] [] []
o (o] [(] [] [] [] [] []
o o o o o o o o o o O o o o o o o
o o o o (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o]
[color buffer] [depth buffer]

near [T [far

Depth Buffer (Z-buffer)

@® — sample passed depth test
o o o o (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o]
o o o o o o o o © e e e o
o o (o] (o] (o] (o] ([[] [] [] ([J (@)
o o (o] (o] (o] [] [] [) [) ([J ([J
(o) (o) (o] (o] (o] ([([([([([([
(o] (o) ([J ([(] (] (] (] (]
(o] (o) ([J ([J o o o o o
o o o o o o o o o o o0 o o o o o o
o o o o (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o]
[color buffer] [depth buffer]

near [T [far

Alpha Values

fully opaque

* Common image format: RGBA
* Alpha channel specifies
‘opacity’/transparency of object a=3/4
* Most common encoding is 8-bits per
channel a=1/2

« Compositing A over B != B over A a=1/4
e Consider the extreme case of two

) [koala over nyc] [nyc over...koala?] a=0
opaque objects...

fully transparent

* Non-premultiplied alpha vs Premultiplied
alpha

C=agB+(1—ag)asA (' =B+ (1 —ap)A’ where is

the
koala...

15-462/662 | Computer Graphics

Deferred Shading

* Popular algorithm for rendering in modern games

* Idea: restructure the rendering pipeline to perform
shading after all occlusions have been resolved

* Not a new idea. Implemented in several classic
graphics systems, but not directly supported in
most high-end GPUs

* But modern graphics pipeline provides
mechanism to allow applications to implement
deferred shading efficiently

Assassin’s Creed Il (2012) Ubisoft

15-362/662 | Computer Graphics

|
Shrek (2001) Digital Illusions Canada

Deferred Shading

Vertex Generation
— - Two-pass approach:
O Fragment shader outputs surface properties

(Vertex Processing.] of nearest surface (G-Buffer)
» Surface properties used to render final image

Primitive Generation

Primitiv Procesing

Rasterization

(Fragment Generation)

Geometry pass-through

»| “G-buffer”

15-362/662 | Computer Graphics

Two-Pass Algorithm

e Pass 1: Geometry Pass ?\
* Render scene geometry using traditional pipeline e
* Write visible geometry information to G-Buffer i

* Pass 2: Shading Pass
* For each G-Buffer sample, compute shading
* Read G-Buffer data for current sample
* Accumulate contribution of all lights
* OQutput final surface color for sample

Leadwerks Engine

* Transformations Review
e Rasterization Review
* Geometry Review

 Spatial Data Structures Review

15-462/662 | Computer Graphics

Implicit Geometry

Points aren’t known directly, but satisfy some
relationship
* Example: unit sphere is all points such that
x2+y2+z22=1

More generally, in the form f(x,y,z) =0

Finding example points is hard
* Requires solving equation

Checking if points are inside/outside is easy
* Just evaluate the function with a given point

el

R

Explicit Geometry

* All points are given directly
* The polygons we were given during rasterization is
an example of explicit geometry

\
myj
7
/

\
==
[L

/

B
_/—
anr el

* More generally: BaRi
=
2 3
f:R —>R;(U,’U)l—>(£,y,2) '\ \\—///
* Given any (u, v), we can find a point on the surface o U

* Can limit (u, v) to some range
* Example: triangle with barycentric coordinates

* Finding example points is easy
* We are given them for free

* Checking if points are inside/outside is hard
* We are given the output values and need to find
input values that satisfy the geometry

15-462/662 | Computer Graphics

Manifold Properties

v

* For polygonal surfaces, we will check for “fins” and
Ilfans"

* Every edge is contained in only two polygons (no “fins”)
+ The extra 3™ or 4" or 5 or so forth polygon is the
fin of a fish

* The polygons containing each vertex make a single “fan” 0
* We should be able to loop around the faces around a
vertex in a clear way

15-462/662 | Computer Graphics

Geometry Types

What is implicit geometry
* Algebraic surfaces
* Constructive solid geometry
* Signed distance fields

What is explicit geometry
* Point clouds
* Triangle meshes

Be able to compare the pros and cons of implicit and explicit geometry

Manifold mesh requirements

What are some ways to describe the connectivity of
geometry?

15-362/662 | Computer Graphics

* Most basic idea imaginable:
* For each triangle, just store three coordinates
* No other information about connectivity
* Not much different from point cloud
* A “Triangle cloud”?

F, ’4%
\

o)
A "' 2z "i -
s R
. Py ¢ 1»-‘ ‘4",‘:"{4'
e Pros: 3 %“;”“ :%6:‘? b
* [+] Really stupid simple «.wm..\.(:
X I
z1l
e Cons:
e [-] Really stupid (%0,0,
[-] y stup (x2,y2, 20)

* [-] Redundant storage of vertices
* [-] Very difficult to find neighboring polygons

15-362/662 | Computer Graphics

Adjacency List

* Alittle more complicated:
* Store triples of coordinates (x,y,z)
* Store tuples of indices referencing the coordinates
needed to build each triangle

* Pros:
* [+] No duplicate coordinates
[+] Lower memory footprint
[+] Easy to keep geometry manifold
[+] Supports nonmanifold geometry
[+] Easy to change connectivity of geometry

* Cons:
* [-] Very difficult to find neighboring polygons
* [-] Difficult to add/remove mesh elements

Incidence Matrices

* |f we want to know our neighbors, let’s store them:
* Store triples of coordinates (x,y,z)
* Store incidence matrix between vertices + edges,
and edges + faces
* 1 means touch, 0 means no touch
* Store as sparse matrix

* Pros:
* [+] No duplicate coordinates
* [+] Finding neighbors is O(1)
* [+] Easy to keep geometry manifold
* [+] Supports nonmanifold geometry

* Cons:
* [-] Larger memory footprint
* [-] Hard to change connectivity with fixed indices
* [-] Difficult to add/remove mesh elements

Halfedge Mesh

What are the components of a halfedge mesh?

How to traverse around a vertex? A face? An edge?

* Why can we not represent a non-manifold mesh using halfedge geometry?

What makes a good mesh?

15-462/662 | Computer Graphics

Halfedge Data Structure

Let’s store a little, but not a lot, about our neighbors:

* Halfedge data structure added to our geometry
* Each edge gets 2 halfedges
* Each halfedge “glues” an edge to a face

Pros:

* [+] No duplicate coordinates

* [+] Finding neighbors is O(1)
[+] Easy to traverse geometry
[+] Easy to change mesh connectivity
[+] Easy to add/remove mesh elements
[+] Easy to keep geometry manifold

Cons:
* [-] Does not support nonmanifold geometry

struct Halfedge

{

Halfedge* twin;
Halfedge* next;
Vertex* vertex;

Edge* edge;
Face* fac
g next

face

twin

Halfedge
edge

vertex

Halfedge Data Structure

struct Halfedge

{

Halfedge* twin;

* Makes mesh traversal easy
« Use “twin” and “next” pointers to move around the gZii:iEe;;iZi
mesh Edge* edge; ,
* Use “vertex”, “edge”, and “face” pointers to grab Face* face;
element ¥

Example: visit all vertices in a face Example: visit all neighbors of a vertex

halfedge

Halfedge* h = f->halfedge; Halfedge* h = v->halfedge;

do { 0 do |
P E h = h->twin->next;
// do something w/ h->vertex ¢) 5 Vertex

while(h != v->halfedge) ;

}

while(h != f->halfedge) ;

Note: only makes sense if mesh is
manifold!

Halfedge Data Structure

* Halfedge meshes are always manifold!

* Halfedge data structures have the following constraints:
h->twin->twin == h // my twin’s twin is me
h->twin != h // I am not my own twin

h2->next = h //every h’s is someone’s “next”

Keep following next and you’ll traverse a face
Keep following twin and you’ll traverse an edge
Keep following next->twin and you’ll traverse a vertex

Q: Why, therefore, is it impossible to encode the red figures?
* First shape violates first 2 conditions
 Second shape violates 3™ condition

15-462/662 | Computer Graphics

A Good Mesh Has...

* Good approximation of original shape

* Keep only elements that contribute information
about shape

* More elements where curvature is high

* Regular vertex degree
* Degree 6 for triangle mesh, 4 for quad mesh
* Better polygon shape
* More regular computation
* Smoother subdivision

subdivid

[degree 6

[degree 20

[good [okay [bad
]]]

15-462/662 | Computer Graphics

A Good Mesh Has...

* Good triangle shape
* All angles close to 60 degrees

* More sophisticated condition: Delaunay
* For every triangle, the unique circumcircle (circle
passing through all vertices of the triangle) does
not encase any other vertices
* Many nice properties: X
* Maximizes minimum angle
* Smoothest interpolation

* Tradeoff: sometimes a mesh can be approximated

best with long & skinny triangles
* Doesn’t make the mesh Delaunay anymore

* Example: cylinder /i ﬂ

[bad

Halfedge Mesh Operations

* Local Operations
* EdgeBevel
* EdgeCollapse
* EraseVertex
* FaceBevel
* EdgeFlit
* EdgeVertexSplit
* VertexBevel
* EraseEdge
* FaceCollapse

* Global Operations
* Loop Subdivision
* Isotropic Remeshing
* Simplification

Local Operations

Loop Subdivision Using Local Ops

Step 1:
Split all edges in any order

Step 2:

Flip new edges until they touch two new vertices

flip

~

Isotropic Remeshing

Step 1: Step 2:
flip average
Step 3: Step 4:
split collapse
—

15-462/662 | Computer Graphics

Simplification Algorithm Basics

* Greedy Algorithm: yy
: o
* Assign each edge a cost re ’leed
* Collapse edge with least cost S, e,he"’b lo
* Repeat until target number of elements is reached c'ﬁc,be"t/,e
(J

* Particularly effective cost function: quadric error metric**

[30,000 triangles [3,000 triangles [300 triangles [30 triangles
]]]]

**invented at CMU (Garland & Heckbert
15-4€2/662 | Computer Graphics

* Transformations Review
e Rasterization Review
* Geometry Review

 Spatial Data Structures Review

15-462/662 | Computer Graphics

Spatial Data Structures

* Primitive-partitioning acceleration structure:
* Partitions node’s primitives into disjoint sets (but sets may overlap
in space)
* Bounding Volume Hierarchy
* How to construct a BVH
* How to traverse a BVH
* Axis-aligned vs non-axis aligned BVHs

e Space-partitioning acceleration structures:
* Partitions space into disjoint regions (but primitives may be
contained in multiple regions)
* K-D Trees
* Uniform Grids
* Quad/OctTreees

BVH Construction

For axis x,y,z:
Initialize buckets
For each primitive p in node:
B = compute_bucket(p.centroid)
B.bbox.enclose(p.bbox)
B.prim_count++
For each of |B| - 1 possible partitions
Evaluate cost (SAH), keep track of lowest cost partition
Recurse on lowest cost partition found (or make node leaf)

Yy ' A 4 T4 A 4

4 P A V»A"VA

primitives | 1 | 9 (10| 7 |6 [a |5 [3]8|2]n] primitives [9 | 4 [10[7| 1|6 |5 [11]2]8]:

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Example

VAN

Bounding boxes will sometimes
intersect!

15-462/662 | Computer Graphics

Axis-Aligned BVH

* Are non-axis-aligned BVHs actually faster?
* Yes, and no.

5 Sp
C = Crapy + = NyCpri + _CNBCtri

Sc S

* Surface area ratio“;—A decreases with better-fitting bboxes
©

* Boundingbox intersection cost Ct,.,,, increases with more
compute required to check unaligned bbox

* How to check for intersection with non-axis-aligned bbox?
* Bbox now has an extra transform matrix T taking it from its

local space to its parent space
* Apply the inverse transform to the ray and compute °
axis-aligned intersections 1
* Larger memory overhead, now need to store the
transform with each node

15-462/662 | Computer Graphics

* Recursively partition space via axis-aligned

D partitioning planes
D * Interior nodes correspond to spatial splits
V A * Node traversal proceeds in front-to-back order
* Unlike BVH, can terminate search after first hit
A is found
A \\ * Still 0(log(N)) performance

AL = o om A

Uniform Grid

Partition space into equal sized volumes (volume-
elements or “voxels”)
Each grid cell contains primitives that overlap voxel.
(very cheap to construct acceleration structure)
Walk ray through volume in order
* Very efficient implementation possible (think: 3D
line rasterization)
* Only consider intersection with primitives in
voxels the ray intersects

What is a good number of voxels?
* Should be proportional to total number of
primitives N
* Number of cells traversed is proportional to
0(3N)
* Aline going through a cube is a cubed root
 Still not as good as O(log(N))

Quad-Tree/Octree

A

Like uniform grid, easy to build
Has greater ability to adapt to location of scene
geometry than uniform grid

 Still not as good adaptability as K-D tree

Quad-tree: nodes have 4 children
* Partitions 2D space

Octree: nodes have 8 children
* Partitions 3D space

15-462/662 | Computer Graphics

