
A4: Animation

15-462/662 | Computer Graphics Recitation 3 | PathTracer



15-462/662 | Computer Graphics

Welcome to Animation

Recitation 3 | PathTracer

● Want to create photorealistic, fluid 

and exciting animations without 

drawing out every image

● Enter computer animation:

○ Create well-defined character 

models and meshes

○ Set keyframes using kinematics

○ Interpolate between keyframes 

with splines

○ Use a photorealistic renderer for 

final results



15-362/662 | Computer Graphics

Real world applications…

https://docs.google.com/file/d/1rQGl5dhK4NIRShv3At5qLGwqyj9_dbsc/preview


15-462/662 | Computer Graphics

• Spline Interpolation 

• Skeleton Kinematics 

• Linear Blend Skinning 

• Particle Simulation

Recitation 3 | PathTracer



15-462/662 | Computer Graphics

• Spline Interpolation

• Skeleton Kinematics

• Linear Blend Skinning 

• Particle Simulation

Recitation 3 | PathTracer



15-462/662 | Computer Graphics

Splines Are Everywhere

Recitation 3 | PathTracer

● Splines are used in many parts 

of the animation pipeline
○ Can be used “literally” in designing 

assets

○ Or can also be used to describe 

motion of objects when animating

○ Any way more…



15-462/662 | Computer Graphics

What Are Splines?

Recitation 3 | PathTracer

● Splines are piecewise functions described by polynomials for each piece

● Think of them as several curves that are connected

at their endpoints

● Each of these curves can be modified individually

without affecting the other curves, as long as 

the endpoints are still connected



15-462/662 | Computer Graphics

What Type of Spline Should We Use?

Recitation 3 | PathTracer

● Types of Splines:
○ Natural Spline

• A series of piecewise cubics

○ Hermite Spline
• Each piece is defined by its endpoints and the tangent to the curve

○ Bezier Spline
• Similar to Hermite, except Bezier defines “control points” that change the curve instead of 

moving the tangent line

○ Catmull-Rom Spline
• You specify keyframes (i.e. points that you want to go through) and you use a basic formula 

to compute the tangents

○ B-Spline
• Define keyframes (like Cat-Rom) and take a weighted average of nearby keyframes to 

interpolate



15-462/662 | Computer Graphics

Three Main Spline Properties

Recitation 3 | PathTracer

● Interpolation:
○  Does the spline pass through the control points 

you specified?

● Continuity:
○ C0: Are the keyframes continuous?

○ C1: Are the first derivatives continuous?

○ C2: Are the second derivatives 

continuous?

● Locality:
○ Changing one point / part of the curve 

does not change the entire curve



15-462/662 | Computer Graphics

What Type of Spline Should We Use?

Recitation 3 | PathTracer



15-462/662 | Computer Graphics

• Spline Interpolation

• Skeleton Kinematics

• Linear Blend Skinning 

• Particle Simulation

Recitation 3 | PathTracer



15-462/662 | Computer Graphics

Forward Kinematics

Recitation 3 | PathTracer

Idea: transformation applied to 

parent joint is also applied to the 

children joint

• “Bind” position: the rotation 

should be zero

• “Posed” position: take into 

account the “pose” of the joint 

(euler angle)



15-362/662 | Computer Graphics Lecture 15 | Kinematics

A Note About Spaces

• Bind-to-Local:

• Pose-to-Local:

we give you compute_rotation_axes 
which can be used to calculate this rotation 
matrix

Rotations and transformations will be saved as 
child-to-parent
• No need to invert

 

 

need to undo 

p2’s orientation

these will be 

flipped



15-462/662 | Computer Graphics

Inverse Kinematics

Recitation 3 | PathTracer

Idea: move the skeleton towards target point using gradient descent

Procedure:
• Skeleton::gradient_in_current_pose

• first calculate the jacobian via 

• then approximate gradient using jacobian via 

• Skeleton::solve_ik
• Use gradient descent to calculate the joints’ pose at the next time step

• See intro to optimization lecture



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient

 

 

 

 

[ linear transformation ] [ derivative ] [ transformed point ]

Take gradient with respect to function 

 

Gradient breaks down into 3 parts:



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient

 

 

 

 [ linear transformation ] [ transformed point ]

 [ linear transformation’ ] [0,0,0]

 [ linear transformation’ ]  (

[ linear transformation’ ] = all rotations and transformations up to, but not including the kth bone

specific to the 
current joint 

constant for a 
given handle



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient

vec3 gradient_in_current_pose() {

  for (auto &handle : handles) {

    Vec3 h = handle.target;
    Vec3 p = // TODO: compute output point

    // walk up the kinematic chain
    for (BoneIndex b = handle.bone; b < bones.size(); b = bones[b].parent) {
      Bone const &bone = bones[b];
      Mat4 xf = // TODO: compute [linear transform’]

      Vec3 r = xf * Vec3{0.0f, 0.0f, 0.0f};

      Vec3 x = // TODO: compute bone’s x-axis in local space
      Vec3 y = // TODO: compute bone’s y-axis in local space
      Vec3 z = // TODO: compute bone’s z-axis in local space

      gradient[b].x += dot(cross(x, p - r), p - h);
      gradient[b].y += dot(cross(y, p - r), p - h);
      gradient[b].z += dot(cross(z, p - r), p - h);    
    }
  }
}



15-362/662 | Computer Graphics Lecture 15 | Kinematics

Inverse Kinematic Gradient Descent

Steps:

●Call gradient_in_current_pose() to compute d loss / d pose

●Update positions of all the bones by the computed gradients

● Loop through each handle and calculate the loss
○ loss is

● If at a local minimum (e.g., gradient is near-zero), return 'true'

● If run through all steps, return `false`



15-462/662 | Computer Graphics

• Spline Interpolation

• Skeleton Kinematics

• Linear Blend Skinning 

• Particle Simulation

Recitation 3 | PathTracer



15-462/662 | Computer Graphics

Linear Blend Skinning

Recitation 3 | PathTracer

Motivation: We control how much the mesh geometry 

moves as the bones rotate by assigning each vertex a 

“weight” per bone



15-462/662 | Computer Graphics

Linear Blend Skinning

Recitation 3 | PathTracer

There are many ways one can assign 

these weights

● Manually - assign weights by having 

an artist “paint” the weights with a 

3D program

● Automatically/Algorithmically
○ One method is Linear Blend Skinning, 

where we assign weights inversely 

proportional to the distance between 

the vertex and the bones



15-462/662 | Computer Graphics

Linear Blend Skinning

Recitation 3 | PathTracer

Weights assigned via inverse distance from vertex to the bone (represented by a 

line segment) up to a max distance define by bone::radius

For weight of vertex i with bone j, 

and distance between the two given by d: 

 Note : need to normalize per vertex so all weights add to one!



15-462/662 | Computer Graphics

Linear Blend Skinning

Recitation 3 | PathTracer

New vertex positions are thus a weighted sum of transformations under 

the bone transformations

● Transformations are from bind space (B) to pose space (P)



15-462/662 | Computer Graphics

• Spline Interpolation

• Skeleton Kinematics

• Linear Blend Skinning 

• Particle Simulation

Recitation 3 | PathTracer



15-462/662 | Computer Graphics

Particles in Scotty3D

Recitation 3 | PathTracer

● Non-self-interacting, physics-simulated, spherical particles that interact with the 

rest of the scene

● Can use basic physics to simulate where a particle will be in the scene at a given 

time

Fg



15-462/662 | Computer Graphics

Particles in Scotty3D

Recitation 3 | PathTracer

● Much easier to update position/velocity at small time-steps then continuously 

over a large time period

● Forward Euler

○ Can be unstable and does not conserve energy in a system – but that’s ok for 

now



15-462/662 | Computer Graphics

Particle Collisions

Recitation 3 | PathTracer

● Can use Scotty3D’s ray tracing (that you implemented!) to detect if particle collides 

with the scene within a timestep

○ Assume all particles collide elastically (i.e. a particle's velocity should be the 

same before and after a collision, with its direction reflected based on the 

surface normal)

○ Create a ray based on the particle’s position and velocity

○ If the particles hits the scene within the current timestep

• Reflect the velocity 

○ Update velocity and position based on current timestep

○ Repeat until entire timestep is consumed



15-462/662 | Computer Graphics

Particle Collisions

Recitation 3 | PathTracer

● If the particles hits the scene within 

the current timestep

○ Reflect the velocity 

● Note this is not as simple as 

checking if the ray hits something in 

the scene


