Ad: Animation

Welcome to Animation

Want to create photorealistic, fluid

and exciting animations without

drawing out every image

Enter computer animation:

o Create well-defined character
models and meshes

o Set keyframes using kinematics

o Interpolate between keyframes
with splines

o Use a photorealistic renderer for
final results

PRE-PRODUCTION
IDEA STORY - 7imrveomi: mm\rc -
). 75 g7y .

PRODUCTION

ANIMATION

RIGGING/SETUP VFX
R&D MODELING TEXTURING &
LAYOUT A & A . LIGHTING
W) _ ; ~
{2 Al v RENDERING
v Ja & N & Y
-3 S _. 3 N %

) e

POST-PRODUCTION

COLOR CORRECTION FINAL OUTPUT

Ygee

COMPOSITING 2D VFX / MOTION GRAPHICS

ANDREW BEAN

Real world applications...

Snow castle

©Disney

https://docs.google.com/file/d/1rQGl5dhK4NIRShv3At5qLGwqyj9_dbsc/preview

* Spline Interpolation
e Skeleton Kinematics
e Linear Blend Skinning

e Particle Simulation

e Spline Interpolation
e Skeleton Kinematics
* Linear Blend Skinning

 Particle Simulation

15-462/662 | Computer Graphics

Splines Are Everywhere

e Splines are used in many parts

of the animation pipeline
o Can be used “literally” in designing
assets
o Or can also be used to describe
motion of objects when animating
o Any way more...

0,00 0,00

15-462/662 | Computer Graphics

What Are Splines?

e Splines are piecewise functions described by polynomials for each piece

e Think of them as several curves that are connected
at their endpoints

® FEach of these curves can be modified individually
without affecting the other curves, as long as
the endpoints are still connected

15-462/662 | Computer Graphics

What Type of Spline Should We Use?

Types of Splines:

o Natural Spline

O

O

O

A series of piecewise cubics

Hermite Spline

Each piece is defined by its endpoints and the tangent to the curve

Bezier Spline

Similar to Hermite, except Bezier defines “control points” that change the curve instead of
moving the tangent line

Catmull-Rom Spline

You specify keyframes (i.e. points that you want to go through) and you use a basic formula
to compute the tangents

B-Spline

Define keyframes (like Cat-Rom) and take a weighted average of nearby keyframes to
interpolate

Three Main Spline Properties

® |nterpolation:
o Does the spline pass through the control points
you specified?
e Continuity:
o CO: Are the keyframes continuous?
o C1: Are the first derivatives continuous?
o C2: Are the second derivatives
continuous?
® Locality:
o Changing one point / part of the curve

does not change the entire curve

What Type of Spline Should We Use?

[Interpolation] [Continuity] [Locality]
Linear
Natural
Hermite
Bezier

Catmull-Rom

B-Spline

15-462/662 | Computer Graphics Recitation 3 | PathTracer

* Spline Interpolation
e Skeleton Kinematics
* Linear Blend Skinning

 Particle Simulation

15-462/662 | Computer Graphics

Forward Kinematics

Idea: transformation applied to
parent joint is also applied to the
children joint

 “Bind” position: the rotation
should be zero

 “Posed” position: take into
account the “pose” of the joint
(euler angle)

Current Configuration

A Note About Spaces

Co Uo
e Bind-to-Local:
co = T(up) T(uy) ¢, 286
* Pose-to-Local: / o”é,,,"%

po = R(6y) T (uy) R(6,) T(uy) R(6;) p,
we give you compute_rotation_axes
which can be used to calculate this rotation
matrix

Rotations and transformations will be saved as
child-to-parent
* No need to invert

Inverse Kinematics

Idea: move the skeleton towards target point using gradient descent

i . , 1 . ..
Xpp1 =X —TV] (o)) = §|P(9(t)) —q|?
Procedure:
« Skeleton::gradient _in_current_ pose
* first calculate the jacobian via (]g) "X D

* then approximate gradient usmgjacoblan via Vof ~ aJ] (p(8) — q)

« Skeleton::solve 1k
* Use gradient descent to calculate the joints’ pose at the next time step
e See intro to optimization lecture

Inverse Kinematic Gradient

df

= lpi@) — AP
doy — d6y 442 I

Take gradient with respect to function

df dp;
— = E (pi(q) — h)

y y
dBk oD de

Expand p; into transformations. Each rotation in 3D is axis-aligned

355 = dz,‘{ [Mj=0:-1 R(67)R(6)R(67)T ()| ROPR(67 IR (67)y

Gradient breaks down into 3 parts:

27 = RODOR(OJRONT (wo)-.. ROP) 767 R (6 JRODT ()... ROHR (67)R (67

[linear transformation] [transformed point]

Inverse Kinematic Gradient

dpi
=7?7??
de,{ . s

Fun fact: by transforming the axis of rotation and base point to local coordinates,
Then the derivative of the rotation R(H,f) by amount G,f around axis y and
center r of point p becomes:

dpi
y

=yX(@® —r)
constant for a

given handle \
p = [linear transformation] [R(6),)][transformed point]

r = [linear transformation’] [0,0,0]

specific to the < y = ([linear transformation’] [R(67,)]).rotate(6?)
current joint

[linear transformation’] = all rotations and transformations up to, but not including the kth bone

15-362/662 | Computer Graphics

Inverse Kinematic Gradient

vec3 gradient in current pose ()
for (auto &handle : handles) {

Vec3 h handle.target;
Vec3 p = // TODO: compute output point

// walk up the kinematic chain

for (BoneIndex b = handle.bone; b < bones.size(); b = bones|[b] .parent) {
Bone const &bone = bones [b] ;
Mat4 xf = // TODO: compute [linear transform’]

Vec3 r = xf * Vec3{0.0f, 0.0f, 0.0f};

Vec3 x = // TODO: compute bone’s x-axis in local space
Vec3d y = // TODO: compute bone’s y-axis in local space
Vec3 z = // TODO: compute bone’s z-axis in local space

gradient [b] .x += dot(cross(x, p - ¥), p h
gradient [b] .y += dot(cross(y, p - r), p - h);
gradient [b] .z += dot(cross(z, p - ¥r), p h
)
)
)

15-362/662 | Computer Graphics

Inverse Kinematic Gradient Descent

Steps:
e Call gradient_in_current_pose() to compute d loss / d pose
e Update positions of all the bones by the computed gradients
® Loop through each handle and calculate the loss
O loss is (Zh)%lp"(q) P2
e |If at a local minimum (e.g., gradient is near-zero), return 'true’
e If run through all steps, return false’

* Spline Interpolation
e Skeleton Kinematics
* Linear Blend Skinning

 Particle Simulation

15-462/662 | Computer Graphics

Linear Blend Skinning

Motivation: We control how much the mesh geometry
moves as the bones rotate by assigning each vertex a
“weight” per bone

Linear Blend Skinning

There are many ways one can assign

these weights

e Manually - assign weights by having
an artist “paint” the weights with a
3D program

e Automatically/Algorithmically

o One method is Linear Blend Skinning,

where we assign weights inversely
proportional to the distance between

the vertex and the bones

Linear Blend Skinning

Weights assigned via inverse distance from vertex to the bone (represented by a
line segment) up to a max distance define by bone::radius
point p (in joint space)
..

start

end

closest point on (start + joint->extent)

bone/line segment
to point p (O d)
max Yy — Qi
For weight of vertex i with bone j, L/‘\)ij — ’ ij

and distance between the two given by d: r

Note : need to normalize per vertex so all weights add to one!

Linear Blend Skinning

New vertex positions are thus a weighted sum of transformations under
the bone transformations
e Transformations are from bind space (B) to pose space (P)

v; = (X W;iPiB; D;

* Spline Interpolation
e Skeleton Kinematics
* Linear Blend Skinning

e Particle Simulation

15-462/662 | Computer Graphics

Particles in Scotty3D

Non-self-interacting, physics-simulated, spherical particles that interact with the

rest of the scene
Can use basic physics to simulate where a particle will be in the scene at a given

time
F = ma
q = dv
dt
dv _ F
dt m
dx
Z o = Y
8

Particles in Scotty3D

e Much easier to update position/velocity at small time-steps then continuously
over a large time period

e Forward Euler

o Can be unstable and does not conserve energy in a system — but that’s ok for
now

x +v - AT
t t
+ a - AT

X
t + At

(% (%
L+ At t

Particle Collisions

e (Can use Scotty3D’s ray tracing (that you implemented!) to detect if particle collides
with the scene within a timestep
o Assume all particles collide elastically (i.e. a particle's velocity should be the
same before and after a collision, with its direction reflected based on the
surface normal)

o Create a ray based on the particle’s position and velocity

o If the particles hits the scene within the current timestep
* Reflect the velocity

o Update velocity and position based on current timestep

o Repeat until entire timestep is consumed

Particle Collisions

e If the particles hits the scene within
the current timestep
o Reflect the velocity

® Note thisis not as simple as
checking if the ray hits something in
the scene

15-462/662 | Computer Graphics

