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Ray-Mesh Intersection
• Last lecture: closest triangle to a point

• What if we want to find the closest triangle a ray intersects?
• A ray is a point + a direction vector
• More constrained problem
• Naïve approach (brute force) still needs to check every 

triangle!

time
point along ray

origin unit direction

• Spatial data structures allow us to compute ray-mesh 
intersections without having to check every triangle

• Think of building these structures as a preprocessing step
• Building can take a while
• Searching must be fast!
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Ray-Plane Intersection
Given a plane defined as

𝐍!𝐱 = c

We can find the intersection point by plugging in the ray for 𝐱

𝐍!(𝐨 + 𝑡𝐝) = c

Then solve for 𝑡

𝑡 =
c − 𝐍!𝐨
𝐍!𝐝

Substitute the time into the ray equation to find the intersection point

𝐩 = 𝐨 +
c − 𝐍!𝐨
𝐍!𝑑

𝐝
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Ray-Triangle Intersection

• Not much different:
• i) Compute ray-plane intersection to find point p on plane
• ii) Perform point-in-triangle test for point p

• Barycentric coordinates

• Not a very efficient algorithm…
• Can we combine both steps into one?
• Idea: use triangle edges as bases for points on the plane

• That’s 3 equations, 3 unknowns (𝑡, 𝑢, 𝑣)
• If there’s a unique solution (𝑡,∗ 𝑢∗, 𝑣∗), and 

𝑡∗ ≥ 0, 𝑢∗ ≥ 0, 𝑣∗ ≥ 0, u∗ + v∗ ≤ 1, 
then there’s an intersection.
(be careful about the numerical rounding errors)

𝐨 + 𝑡𝐝 = 1 − 𝑢 − 𝑣 ∗ 𝒑𝟎 + 𝑢 ∗ 𝒑𝟏 + 𝑣 ∗ 𝒑𝟐
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Moller-Trumbore Algorithm

𝐨 + 𝑡𝐝 = 1 − 𝑢 − 𝑣 ∗ 𝒑𝟎 + 𝑢 ∗ 𝒑𝟏 + 𝑣 ∗ 𝒑𝟐

Given the below equation

Rearrange the terms until unknowns are on one side

𝐨 − 𝒑𝟎 = 𝑢 ∗ (𝒑𝟏 − 𝒑𝟎) + 𝑣 ∗ (𝒑𝟐 − 𝒑𝟎) − 𝑡𝐝

Rewrite in terms of variables**

𝒔 = 𝑢 ∗ 𝒆𝟏 + 𝑣 ∗ 𝒆𝟐 − 𝑡𝐝

Rewrite as a matrix operation

𝒔 = [𝒆𝟏 𝒆𝟐 −𝐝] =
𝑢
𝑣
𝑡

Solve using Cramer’s rule

𝑢
𝑣
𝑡
=

1
(𝒆𝟏 × 𝐝) = 𝒆𝟐

−(𝒔 × 𝒆𝟐) = 𝐝
(𝒆𝟏× 𝐝) = 𝒔

−(𝒔 × 𝒆𝟐) = 𝒆𝟏

**
𝒔 = 𝐨 − 𝒑𝟎
𝒆𝟏 = 𝒑𝟏 − 𝒑𝟎
𝒆𝟐 = 𝒑𝟐 − 𝒑𝟎

What if D=0? What does it mean?
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Moller-Trumbore Visualized

𝒔 = [𝒆𝟏 𝒆𝟐 −𝐝] =
𝑢
𝑣
𝑡

x

y
z

u

v

1

1

𝐨 − 𝒑𝟎 = [𝒑𝟏 − 𝒑𝟎 𝒑𝟐 − 𝒑𝟎 −𝐝] =
𝑢
𝑣
𝑡

• Matrix 𝐌&𝟏 transforms triangle to unit triangle at the 
origin with unit-length edges spanning 𝑢 and 𝑣
• Transforms ray to be orthogonal to the triangle

• Q: What if 𝑡 is negative?
• Ray intersection happens in negative direction!

i.e.

𝐨 − 𝒑𝟎 = 𝐌 =
𝑢
𝑣
𝑡

i.e.
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Spatial Data Structures

• Naïve ray-mesh intersection requires checking every 
triangle for ray-triangle intersection
• Meshes have millions to billions of triangles
• O(n) exectution

• Idea: sort triangles in a way where we can perform quick 
intersection tests on groups of triangles at a time
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Bounding Box

• Precompute the smallest axis-aligned bounding box 
around all primitives
• Keep track of smallest and largest (x,y,z) coordinates 

for all primitives 

• Check for ray-box intersection
• If misses, we are done
• If passes, check all triangles

• Saves time for rays that clearly miss the mesh, but…
• Still O(n) for rays that intersect the box 
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More Bounding Boxes
• What if we had 2 levels of bounding boxes?

• Global bounding box
• Head bounding box
• Body bounding box

• Check for global ray-box intersection
• If misses, we are done
• If passes,

• Check for head ray-box intersection
• If misses, continue
• If passes, check all triangles in head

• Check for body ray-box intersection
• If misses, continue
• If passes, check all triangles in body

• Better, some rays can now pass the global bbox but 
neither the head/body bbox
• We have tighter checks rays need to pass in order to

search underlying triangles

can we make this recursive?
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A Hierarchy of…Bounding Volumes?

[ Level 0 ] [ Level 1 ] [ Level 2 ]
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Bounding Volume Hierarchy (BVH)

• Recursively partition nodes into smaller nodes 
• Stop when node contains no more than several 

primitives

• The resulting BVH mimics a tree
• Root node encompasses all primitives
• Each non-root node has a parent
• Each non-leaf node has two children

• Some BVHs can have more than 2 children
• Each leaf node points to a handful of primitives

Stanford Bunny BVH visualizing 10th level
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Let’s look at an example
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BVH Example

Bounding boxes will sometimes intersect!
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BVH Example

pass ✓
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BVH Example

pass ✓fail ✗
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BVH Example

pass ✓fail ✗

Are we done?
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BVH Example

pass ✓fail ✗pass ✓

We can find a closer triangle if we check here
Remember: bounding boxes will intersect!
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BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)
{

// test if ray hits node’s bbox
HitInfo hit = intersect(ray, node->bbox);
if (hit.prim == NULL || hit.t > best.t))  

return;
// for leaves, check each primitive
if (node->leaf) {

for (each primitive p in node->primList) {
hit = intersect(ray, p);
if (hit.prim != NULL && hit.t < best.t) {

best.prim = p;
best.t = t;

}
}

} else {
// traverse BOTH children
hit(ray, node->child1, best);
hit(ray, node->child2, best);

}
}

struct BVHNode {
// is the node a leaf
bool leaf;
// min/max coordinates enclosing primitives
Bbox bbox;
// left child (can be NULL)
BVHNode *child1;
// right child (can be NULL)
BVHNode *child2;
// for leaves, stores primitives
Primitive *primList;

}

struct HitInfo {
// the primitive the ray hit
Primitive *prim;
// the time along the ray the hit occured
float t;

}
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BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)
{

// test if ray hits node’s bbox
HitInfo hit = intersect(ray, node->bbox);
if (hit.prim == NULL || hit.t > best.t))  

return;
// for leaves, check each primitive
if (node->leaf) {

for (each primitive p in node->primList) {
hit = intersect(ray, p);
if (hit.prim != NULL && hit.t < best.t) {

best.prim = p;
best.t = t;

}
}

} else {
// traverse BOTH children
hit(ray, node->child1, best);
hit(ray, node->child2, best);

}
}

struct BVHNode {
// is the node a leaf
bool leaf;
// min/max coordinates enclosing primitives
Bbox bbox;
// left child (can be NULL)
BVHNode *child1;
// right child (can be NULL)
BVHNode *child2;
// for leaves, stores primitives
Primitive *primList;

}

struct HitInfo {
// the primitive the ray hit
Primitive *prim;
// the time along the ray the hit occured
float t;

}

We don’t ALWAYS need to check both children.
Recall the first example where we terminated

after searching only the closer bbox.

pass ✓
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Better BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)
{

if (node->leaf) {
// same as previous slide

} else {
BVHNode* child1 = node->child1;
BVHNode* child2 = node->child2;

HitInfo hit1 = intersect(ray, child1->bbox);
HitInfo hit2 = intersect(ray, child2->bbox);
// pick node with better time
BVHNode* first = (hit1.t <= hit2.t) ? 

child1 : child2;
BVHNode* second = (hit2.t <= hit1.t) ? 

child2 : child1;

hit(ray, first, best);
if (hit2.t < best.t)  

hit(ray, second, best);  
}

}
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Better BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)
{

if (node->leaf) {
// same as previous slide

} else {
BVHNode* child1 = node->child1;
BVHNode* child2 = node->child2;

HitInfo hit1 = intersect(ray, child1->bbox);
HitInfo hit2 = intersect(ray, child2->bbox);
// pick node with better time
BVHNode* first = (hit1.t <= hit2.t) ? 

child1 : child2;
BVHNode* second = (hit2.t <= hit1.t) ? 

child2 : child1;

hit(ray, first, best);
if (hit2.t < closest.t)  

hit(ray, second, best);  
}

}

Only check far bbox if closest primitive in 
the near bbox is farther than the closest point 

intersected in the far bbox.

This means there’s a potential
to find a better primitive : )
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So we know how to traverse a BVH,
But how do we build one?
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BVH Partitioning

What is the best way to partition these primitives?
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BVH Partitioning

We can split them into equal # of primitives…
…but bboxes take up large area
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BVH Partitioning

We can split them into the smallest possible bboxes…
…but some bboxes will have many more primitives
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

Surface Area Heuristic gives us a quantitative way of telling us if a partition is good
A better partition will have a lower cost
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

• Fixed cost associated with bbox intersection
• Having too large a BVH depth means we have to 

check too many bboxes before finding a primitive
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

• For a convex object A inside a parent convex object 
B, the probability that a random ray that hits B also 
hits A is given by the ratio of the surface areas 𝑆+
and 𝑆, of these objects:
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

• For a node 𝐶+ , this is the cost of checking all 
primitives held by this box
• All triangles have the same cost 𝐶'(-
• For 𝑁+ triangles, cost is 𝑁+𝐶'(-



• Minimizes surface area deviation
• Minimizes primitive deviation

• New equation:

• 𝐶'()*, 𝐶'(- and 𝑆. are constants, so we can 
remove them when computing the minimum 
cost:
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Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

𝐶 = 𝐶!"#$ +
𝑆%
𝑆'
𝑁%𝐶!"( +

𝑆&
𝑆'
𝑁&𝐶!"(

𝐶) = 𝑆%𝑁% + 𝑆&𝑁&
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We know what a good partition is,
but how do we actually build a partition
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Building Partitions

for(axis : [x, y, z]) {              // check all axis-aligned partitions
sort(primitives, axis);     // sort primitives by centroid
n = primitives.length();
for(int i = 0; i < n; i++) {

a = bbox(primitves[0,i]);
b = bbox(primitves[i,n]);
// surface area heuristic
cost = a.area * i + b.area * (n – i);
if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

}
}
// create children bounding boxes based on best axis and partition location
partition(best_axis, best_partition);
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Building Partitions

for(axis : [x, y, z]) {              // check all axis-aligned partitions
sort(primitives, axis);     // sort primitives by centroid
n = primitives.length();
for(int i = 0; i < n; i++) {

a = bbox(primitves[0,i]);
b = bbox(primitves[i,n]);
// surface area heuristic 
cost = a.area * i + b.area * (n – i); 
if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

}
}
// create children bounding boxes based on best axis and partition location
partition(best_axis, best_partition);

Checking every partition in a scene with millions of primitives
is incredibly expensive!
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Building Partitions

for(axis : [x, y, z]) {              
sort(primitives, axis);
n = primitives.length();
for(int i = 0; i < n; i+=32) {         // check every B primitives (B = 32)

a = bbox(primitves[0,i]);
b = bbox(primitves[i,n]);

cost = a.area * i + b.area * (n – i);
if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

}
}

partition(best_axis, best_partition);
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Building Partitions

for(axis : [x, y, z]) {              
sort(primitives, axis);
n = primitives.length();
for(int i = 0; i < n; i+=32) {         // check every B primitives (B = 32)

a = bbox(primitves[0,i]);
b = bbox(primitves[i,n]);

cost = a.area * i + b.area * (n – i);
if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

}
}

partition(best_axis, best_partition);

Still a lot of iterating over primitives each loop!
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Building Partitions

for(axis : [x, y, z]) {              
sort(primitives, axis);
n = primitives.length();
bin_n = bin.length(); 
for(int i = 0; i < n; i++) {

bin = compute_bucket(primitves[i].centroid)   // find bin that triangle lies in
bin.bbox.add(primitves[i]); }                 // add triangle to bin

for(int j = 0; j < bin_n; j++) {        
a = bbox(bin[0,j]);       // add bins to partitions instead of triangles
b = bbox(bin[j, bin_n]);  // add bins to partitions instead of triangles
// same as before 

}
}
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Building Partitions Example
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Building Partitions Example

[ x-axis binning ]
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Building Partitions Example

Cost = 3 prims * (0.15) + 8 prims * (0.87)  
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Building Partitions Example

Cost = 6 prims * (0.38) + 5 prims * (0.43)  
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Building Partitions Example

Cost = 9 prims * (0.81) + 2 prims * (0.18)  
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Building Partitions Example

[ y-axis binning ]
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Building Partitions Example

Cost = 3 prims * (0.19) + 8 prims * (0.91)  
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Building Partitions Example

Cost = 6 prims * (0.32) + 5 prims * (0.36)  
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Building Partitions Example

Cost = 9 prims * (0.94) + 2 prims * (0.13)  
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Building Partitions Example

Best Partition
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Building Partitions Example

Recurse with each child node



15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

What About Ordering?
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What About Ordering?
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What About Ordering?

7
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9
1
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9 4 10 7 1 6 5 11 2 8 3primitives
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After re-indexing (sorting) based on leaf nodes
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After re-indexing (sorting) based on leaf nodes

4
3

2

1
5

6

1110

9

8

7

1 3 4 6 7 9 10 11primitives Only need to store 2 integers per 
leaf node!
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Edge Cases

[ primitives with same centroid ] [ overlapping bboxes ]

In these cases, pick a random partition
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BVH Review

Building the BVH:
1) Pick axis [x,y,z] 

1) Sort primitives on axis by centroid
2) Bin primitives (B = 32)
3) Partition primitives by bin along axis
4) Compute cost, saving best result

2) Construct 2 child nodes from best cost result
3) Recurse until few primitives (< 4) left in node

Traversing the BVH:
1) Check if ray hits current node bbox
2) If hit, find which child node is closer to ray
3) Recurse down closer child
4) If the farther child node is closer to the ray than 

the hit discovered, recurse down the farther child

Traversal cost is 𝑂(log(𝑁)), same as tree-search
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Axis-Aligned BVH

• What is an axis-aligned BVH?
• By searching for partitions along the axes [x,y,z], we 

are constraining ourselves to build partitions with 
bounding boxes that are axis-aligned

• How do we make a non-axis-aligned BVH?
• Simple! Just search for partitions that are not 

constrained to [x,y,z]
• Easy in theory, difficult in practice

• What are the pros/cons of non-axis-aligned BVH?
• [+] Better cost
• [+] Nodes have less likelihood of having empty space
• [-] More work to compute partitions
• [-] Larger intersection cost for non-aligned bboxes
• [-] More memory overhead
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Axis-Aligned BVH

• Are non-axis-aligned BVHs actually faster?
• Yes, and no.

• Surface area ratio /!
/"

decreases with better-fitting bboxes
• Bounding box intersection cost 𝐶'()* increases with more 

compute required to check unaligned bbox

• How to check for intersection with non-axis-aligned bbox?
• Bbox now has an extra transform matrix 𝑇 taking it from 

the parent’s coordinate space to its own coordinate space
• Apply the inverse transform to the bbox and ray and 

compute axis-aligned intersections
• Larger memory overhead, now need to store the 

transform with each node

𝐶 = 𝐶!"#$ +
𝑆%
𝑆'
𝑁%𝐶!"( +

𝑆&
𝑆'
𝑁&𝐶!"(
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• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Partitioning Structures
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Primitive vs. Spatial

• Spatial Partitioning
• K-D Trees
• Uniform Grid
• Quad/Octree

• [+] No volume overlap
• [+] Can terminate on first hit
• [-] Higher potential for empty space
• [-] May intersect primitive multiple times

• Primitive Partitioning
• Bounding Volume Hierarchy

• [+] More flexible to geometry
• [+] Easier to update (animation)
• [-] Volumes can overlap
• [-] Unable to terminate on first hit
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K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Recursively partition space via axis-aligned 
partitioning planes
• Interior nodes correspond to spatial splits
• Node traversal proceeds in front-to-back order
• Unlike BVH, can terminate search after first hit 

is found 
• Still 𝑂(log(𝑁)) performance
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K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Consider: Triangle 1 overlaps multiple zones
• Triangle 1 is checked for intersection when 

checking red zone first
• Ray intersects triangle 1
• But triangle 2 is closer

• Requirement: intersection point must lie within zone
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Uniform Grid

• Partition space into equal sized volumes (volume-
elements or “voxels”)

• Each voxel contains primitives that overlap
• Walk ray through volume in order

• Very efficient implementation possible (think: 
3D line rasterization)

• Only consider intersection with primitives in 
voxels the ray intersects

• What is a good number of voxels?
• Should be proportional to total number of 

primitives 𝑁
• Number of cells traversed is proportional to 
𝑂(# 𝑁)
• A line going through a cube is a cubed root
• Still not as good as 𝑂(log(𝑁))
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Uniform Grid

Too few cells
Requires checking every 

primitive

Too many cells
Walking through a lot of empty space



15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Uniform Grid

• Uniform grid cannot adapt to non-uniform 
distribution of geometry in scene
• Unlike K-D tree, location of spatial partitions is 

not dependent on scene geometry

Monsters University (2013) Pixar
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Where Uniform Grids Work

Legend of Zelda: Tears of the Kingdom (2023) Nintendo
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Quad-Tree/Octree

• Like uniform grid, easy to build
• Has greater ability to adapt to location of scene 

geometry than uniform grid
• Still not as good adaptability as K-D tree

• Quad-tree: nodes have 4 children
• Partitions 2D space

• Octree: nodes have 8 children 
• Partitions 3D space
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Spatial Data Structures Review

[ Spatial ] [ Primitive ] [ Build Speed ]

BVH

K-D Tree

Uniform Grid

Quad/Octree

✓

✗

✗

✗

[ Search Speed ]

✓

✓

✗

✗

✗

✓

✓

✓

✗

✗

✓

✓


