Spatial Data Structures

e Ray-Triangle Intersections
* Bounding Volume Hierarchy

 Spatial-Partitioning Structures

15-362/662 | Computer Graphics

Ray-Mesh Intersection

Last lecture: closest triangle to a point
* What if we want to find the closest triangle a ray intersects?
* Avrayis a point + a direction vector
* More constrained problem

* Naive approach (brute force) still needs to check every
triangle! o
origin
point along ray \
time

unit direction

Spatial data structures allow us to compute ray-mesh
intersections without having to check every triangle

Think of building these structures as a preprocessing step
* Building can take a while

* Searching must be fast!

Ray-Plane Intersection
Given a plane defined as

NTx =¢

We can find the intersection point by plugging in the ray for x
NT(o+td) =c

Then solve for t
. c—NTo
~ NTd

Substitute the time into the ray equation to find the intersection point

c—NTo
p=o+|—grg)4

15-362/662 | Computer Graphics

Ray-Triangle Intersection

* Not much different:
* i) Compute ray-plane intersection to find point p on plane
* ii) Perform point-in-triangle test for point p
* Barycentric coordinates

* Not a very efficient algorithm...
* Can we combine both steps into one?
* |dea: use triangle edges as bases for points on the plane

o+td=(1—-u—v)*py+u*xpy; +v*p;

* That’s 3 equations, 3 unknowns (t, u, v)

* If there’s a unique solution (t,* u*, v*), and
t*>0u" =0, v"=20u"+v" <1,
then there’s an intersection.
(be careful about the numerical rounding errors)

15-362/662 | Computer Graphics

Moller-Trumbore Algorithm

Given the below equation
o+ttd=(A-u—-v)*pgtu*xp; +v*p,
Rearrange the terms until unknowns are on one side
0—pPo=ux*x(P1—Po) +V*(P2—po)—td

Rewrite in terms of variables**

S:u*el+v*ez_td a,x+b,y+c,z=d,
: : : ax+byy+cz=d,
Rewrite as a matrix operation a;x + by +c;z=d;

u
s=[e; e; —d]: [v]
t

Solve using Cramer’s rule

Fk d
— X .
S Derin u 1 (s X ez)
_ _ vl = d (elx d) °S
€1 =P1~ Po t (eidd) =e; —(sXey)-eq What if D=0? What does it mean?

€2 = P2 — Do

Moller-Trumbore Visualized

u
s=[e; e; —d]- [v]

¢ « Matrix M~1 transforms triangle to unit triangle at the

origin with unit-length edges spanning u and v
u * Transforms ray to be orthogonal to the triangle
0—pPo=[P1—Po P2—Po —d]: H
t

i.e.

ie * Q: Whatiftis negative?
E * Ray intersection happens in negative direction!
0—po=M-: [U]
t

o P2 O — Po M_l(o - pO) Vv
d

P1

Po

Spatial Data Structures

* Naive ray-mesh intersection requires checking every
triangle for ray-triangle intersection
* Meshes have millions to billions of triangles
* O(n) exectution

e Idea: sort triangles in a way where we can perform quick
intersection tests on groups of triangles at a time

15-362/662 | Computer Graphics

Bounding Box

* Precompute the smallest axis-aligned bounding box
around all primitives

* Keep track of smallest and largest (x,y,z) coordinates

for all primitives

* Check for ray-box intersection
* If misses, we are done
* If passes, check all triangles

* Saves time for rays that clearly miss the mesh, but...
 Still O(n) for rays that intersect the box

15-362/662 | Computer Graphics

More Bounding Boxes

* What if we had 2 levels of bounding boxes?
* Global bounding box
* Head bounding box Sy,
We

* Body bounding box
’77%9 "
(4
* Check for global ray-box intersection sfeco
* |f misses, we are done fs/'lze,
o If ,
* Check for head ray-box intersection

* If misses, continue

e |If , check all triangles in head
* Check for body ray-box intersection

* If misses, continue

e |If , check all triangles in body

* Better, some rays can now pass the global bbox but
neither the head/body bbox
* We have tighter checks rays need to pass in order to
search underlying triangles

A Hierarchy of...Bounding Volumes?

[Level 0] [Level 1]

Bounding Volume Hierarchy (BVH)

* Recursively partition nodes into smaller nodes
* Stop when node contains no more than several
primitives

* The resulting BVH mimics a tree
* Root node encompasses all primitives
* Each non-root node has a parent
* Each non-leaf node has two children
* Some BVHs can have more than 2 children
* Each leaf node points to a handful of primitives

Stanford Bunny BVH visualizing 10" level

RavTrianale] :
* Bounding Volume Hierarchy

 Spatial-Partitioning Structures

15-362/662 | Computer Graphics

Let’s look at an example

BVH Example

VAN

i E Bounding boxes will sometimes intersect!

15-362/662 | Computer Graphics

BVH Example

V-8,

iif
4

A\

15-362/662 | Computer Graphics

sssss

BVH Example

Ve

fail X pass v/

15-362/662 | Computer Graphics

BVH Example

A

Ve

fail X pass v/

/

Are we done?

15-362/662 | Computer Graphics

BVH Example

VAN

N

pass v/ fail X pass v

N\

<
U
D

7 A We can find a closer triangle if we check here
Remember: bounding boxes will intersect!
A ——

BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)

struct BVHNode { {
bool leaf; HitInfo hit = intersect(ray, node->bbox);
if (hit.prim == NULL || hit.t > best.t))
Bbox bbox; return;
BVHNode *childl; if (node->leaf) {
for (each primitive p in node->primList) {
BVHNode *child2; hit = intersect(ray, p);
if (hit.prim != NULL && hit.t < best.t) {
Primitive *primList; best.prim = p;
} best.t = t;
}
struct HitInfo { }
} else {

Primitive *prim;
hit(ray, node->childl, best);
float t; hit(ray, node->child2, best);

BVH Traversal

We don’t ALWAYS need to check both children.
Recall the first example where we terminated
after searching only the closer bbox.

pass v/
} else {
// traverse BOTH children
hit(ray, node->childl, best);
hit(ray, node->child2, best);

Better BVH Traversal

/N

void hit(Ray* ray, BVHNode* node, HitInfo* best)

{
if (node->leaf) {

} else {
BVHNode* childl = node->childl;
BVHNode* child2 node->child2;

HitInfo hitl = intersect(ray, childl->bbox);
HitInfo hit2 intersect(ray, child2->bbox);

BVHNode* first = (hitl.t <= hit2.t) ?
childl : child2;

BVHNode* second = (hit2.t <= hitl.t) ?
child2 : childl;

hit(ray, first, best);
if (hit2.t < best.t)
hit(ray, second, best);

Better BVH Traversal

/N

Zap

Only check far bbox if closest primitive in
the near bbox is farther than the closest point
intersected in the far bbox.

This means there’s a potential
to find a better primitive :)

hit(ray, first, best);
if (hit2.t < closest.t)
hit(ray, second, best);

So we know how to traverse a BVH,
But how do we build one?

15-362/662 | Computer Graphics

BVH Partitioning

. 4
A

>

What is the best way to partition these primitives?

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Partitioning

v

-

We can split them into equal # of primitives...
...but bboxes take up large area

15-362/662 | Computer Graphics

BVH Partitioning

. 4
A

-

We can split them into the smallest possible bboxes...
...but some bboxes will have many more primitives

15-362/662 | Computer Graphics

Surface Area Heuristic

* The cost of intersecting a node is:
C = Ctrav + PaCs + ppCp

* Where:
Ctrqy Measures the cost of intersecting the current node’s bbox
* p4 measures the probability of a ray intersecting child node A given it intersects the parent node of A
* (4 measures the cost of intersecting a primitive in child node A’s subtree

Surface Area Heuristic gives us a quantitative way of telling us if a partition is good
A better partition will have a lower cost

Surface Area Heuristic

The cost of intersecting a node is:
C = Ctrav + PaCs + ppCp
Where:

Ctrqy Measures the cost of intersecting the current node’s bbox

* p4 measures the probability of a ray intersecting child node A given it intersects the parent node of A
* (4 measures the cost of intersecting a primitive in child node A’s subtree

Fixed cost associated with bbox intersection
Having too large a BVH depth means we have to

check too many bboxes before finding a primitive \

T*

Surface Area Heuristic

The cost of intersecting a node is:
C = Ctrav + PaCs + ppCp

Where:
Ctrqy Measures the cost of intersecting the current node’s bbox

* p4 measures the probability of a ray intersecting child node A given it intersects the parent node of A
* (4 measures the cost of intersecting a primitive in child node A’s subtree

For a convex object A inside a parent convex object
B, the probability that a random ray that hits B also
hits A is given by the ratio of the surface areas Sy
and Sp of these objects:

Sa

P(hitAfhitB) = &~
B

Surface Area Heuristic

The cost of intersecting a node is:
C = Ctrav + PaCs + ppCp

Where:
Ctrqy Measures the cost of intersecting the current node’s bbox

* p4 measures the probability of a ray intersecting child node A given it intersects the parent node of A
* (4 measures the cost of intersecting a primitive in child node A’s subtree

For a node Cy4 , this is the cost of checking all
primitives held by this box

* All triangles have the same cost C;,;

* For N, triangles, cost is N4Ct,

Surface Area Heuristic

The cost of intersecting a node is:
C = Cirav + PaCs + ppCs
Where:
Ctrqy Measures the cost of intersecting the current node’s bbox

* p4 measures the probability of a ray intersecting child node A given it intersects the parent node of A
* (4 measures the cost of intersecting a primitive in child node A’s subtree

New equation:

Sa Sp
C = Cirav + S_NACtri + S_NBCtri
¢ ¢ * Minimizes surface area deviation
Ctrav» Ceri @and S¢ are constants, so we can * Minimizes primitive deviation
remove them when computing the minimum

cost:

C’ — SANA + SBNB

We know what a good partition is,
but how do we actually build a partition

15-362/662 | Computer Graphics

S EEEEEEEEEEEEEEEEEEEN

Building Partition

(%, ¥, 2]1) {

sort (primitives,

n

for (axis

axis);

primitives.length()
for(int i = 0; i < n; it++) {

.
I

bbox (primitves[0,1])
b = bbox(primitves[i,n]);

.
I

a=

a.area * i + b.area * (n — i);

if (cost < best cost) { best cost

cost

}

L = axis;

best axis

= cost; best partition = i;

partition(best axis, best partition);

Building Partitions

for(int i = 0; i < n; i++) {

Checking every partition in a scene with millions of primitives
is incredibly expensive!

Building Partitions

for(axis : [x, y, 2z]) {
sort(primitives, axis);
n = primitives.length();
for(int i = 0; i < n; i+=32) {
a = bbox(primitves[0,i]);
b = bbox(primitves[i,n]);

cost = a.area * i + b.area * (n — i);
if (cost < best cost) { best cost = cost; best partition = i; best axis = axis; }

}

partition(best axis, best partition);

Building Partitions

for(int i = 0; i < n; i+=32) {
a = bbox(primitves[0,1]);

b bbox (primitves[i,n]);

Still a lot of iterating over primitives each loop!

Building Partitions

for(axis : [x, y, 2z]) {
sort(primitives, axis);
n = primitives.length();
bin n = bin.length();
for(int i = 0; i < n; it++) {
bin = compute bucket(primitves[i].centroid)
bin.bbox.add(primitves[i]); }
for(int = 0; j < bin n; j++) {
a = bbox(bin[0,3j]);
b = bbox(bin[j, bin n]);

.

Building Partitions Example

y { € A A

V»A .

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

[x-axis binning]

Building Partitions Example

Cost = 3 prims * (0.15) + 8 prims * (0.87)

15-362/662 | Computer Graphics

Building Partitions Example

Cost = 6 prims * (0.38) + 5 prims * (0.43)

15-362/662 | Computer Graphics

Building Partitions Example

Cost =9 prims * (0.81) + 2 prims * (0.18)

15-362/662 | Computer Graphics

Building Partitions Example

[y-axis binning]

15-362/662 | Computer Graphics

Building Partitions Example

Cost = 3 prims * (0.19) + 8 prims * (0.91)

15-362/662 | Computer Graphics

Building Partitions Example

Cost = 6 prims * (0.32) + 5 prims * (0.36)

15-362/662 | Computer Graphics

Building Partitions Example

Cost =9 prims * (0.94) + 2 prims * (0.13)

15-362/662 | Computer Graphics

Building Partitions Example

Best Partition

15-362/662 | Computer Graphics

Building Partitions Example

Recurse with each child node

15-362/662 | Computer Graphics

What About Ordering?

11
2
8
5
4
7
10
9
1
primitives 1 2 3 4 5 6 7 8 9 10 | 11

15-362/662 | Computer Graphics

What About Ordering?

D A

V»A p '

primitives 1 9 10| 7 6 4 5 3 8 2 11

15-362/662 | Computer Graphics

What About Ordering?

y § <

4P

primitives 9 4 10| 7 1 6 5 111]| 2 8 3

15-362/662 | Computer Graphics

After re-indexing (sorting) based on leaf nodes

10

primitives 1 2 3 4 5 6 7 8 9 10 | 11

15-362/662 | Computer Graphics

After re-indexing (sorting) based on leaf nodes

10

11

primitives 1 3 4 6 7 9

10

11

15-362/662 | Computer Graphics

Only need to store 2 integers per
leaf node!

Edge Cases

[primitives with same centroid] [overlapping bboxes]

In these cases, pick a random partition

15-362/662 | Computer Graphics

BVH Review

Building the BVH: A

1) Pick axis [x,y,z] B
1) Sort primitives on axis by centroid @ C%
2) Bin primitives (B = 32) @
3) Partition primitives by bin along axis O % A

4) Compute cost, saving best result
2) Construct 2 child nodes from best cost result
3) Recurse until few primitives (< 4) left in node

Traversing the BVH:

1) Check if ray hits current node bbox

) If hit, find which child node is closer to ray

) Recurse down closer child

) If the farther child node is closer to the ray than
the hit discovered, recurse down the farther child

> wWN

Traversal cost is O(log(N)), same as tree-search

Axis-Aligned BVH

* What is an axis-aligned BVH?
* By searching for partitions along the axes [x,y,z], we
are constraining ourselves to build partitions with
bounding boxes that are axis-aligned

* How do we make a non-axis-aligned BVH?
* Simple! Just search for partitions that are not
constrained to [x,y,z]
* Easy in theory, difficult in practice

* What are the pros/cons of non-axis-aligned BVH?
* [+] Better cost
* [+] Nodes have less likelihood of having empty space
* [-] More work to compute partitions
* [-] Larger intersection cost for non-aligned bboxes
* [-] More memory overhead

Axis-Aligned BVH

* Are non-axis-aligned BVHs actually faster?
* Yes, and no.

Sa SB
c NA Ctri +—

C = Cirgp + S S

NB Ctri

* Surface area ratio ‘;—A decreases with better-fitting bboxes
C

* Bounding box intersection cost C;,-,,, increases with more
compute required to check unaligned bbox

* How to check for intersection with non-axis-aligned bbox?
* Bbox now has an extra transform matrix T taking it from
the parent’s coordinate space to its own coordinate space
* Apply the inverse transform to the bbox and ray and
compute axis-aligned intersections
* Larger memory overhead, now need to store the
transform with each node

Ry Trianale] :
- line /o) u; |
 Spatial-Partitioning Structures

15-362/662 | Computer Graphics

Primitive vs. Spatial

Primitive Partitioning
* Bounding Volume Hierarchy
* [+] More flexible to geometry
* [+] Easier to update (animation)
* [-] Volumes can overlap
* [-] Unable to terminate on first hit

Spatial Partitioning

* K-D Trees

* Uniform Grid

* Quad/Octree
* [+] No volume overlap
* [+] Can terminate on first hit
* [-] Higher potential for empty space
* [-] May intersect primitive multiple times

* Recursively partition space via axis-aligned
partitioning planes

D * Interior nodes correspond to spatial splits
V A * Node traversal proceeds in front-to-back order
* Unlike BVH, can terminate search after first hit
A is found
A X\ e Still O(log(N)) performance

K-D Trees

v A

Consider: Triangle 1 overlaps multiple zones
* Triangle 1 is checked for intersection when
checking red zone first
* Ray intersects triangle 1
e But triangle 2 is closer
Requirement: intersection point must lie within zone

Uniform Grid

Partition space into equal sized volumes (volume-
elements or “voxels”)
Each voxel contains primitives that overlap
Walk ray through volume in order
* \Very efficient implementation possible (think:
3D line rasterization)
* Only consider intersection with primitives in
voxels the ray intersects

What is a good number of voxels?
* Should be proportional to total number of
primitives N
* Number of cells traversed is proportional to
0(VN)
* Aline going through a cube is a cubed root
« Still not as good as O (log(N))

Uniform Grid

Too few cells Too many cells
Requires checking every Walking through a lot of empty space
primitive

Uniform Grid

A * Uniform grid cannot adapt to non-uniform
distribution of geometry in scene
* Unlike K-D tree, location of spatial partitions is
not dependent on scene geometry

Monsters University (2013) Pixar

Where Uniform Grids Work

:,? o ! ‘ N
, i {4 7) 4 4 XN
4 4 Vi

Legend of Zelda: Tears of the Kingdom (2023) Nintendo

15-362/662 | Computer Graphics

Quad-Tree/Octree

AN

Like uniform grid, easy to build
Has greater ability to adapt to location of scene
geometry than uniform grid

 Still not as good adaptability as K-D tree

Quad-tree: nodes have 4 children
* Partitions 2D space

Octree: nodes have 8 children
* Partitions 3D space

BVH

K-D Tree

Uniform Grid

Quad/Octree

Spatial Data Structures Review

[Spatial]

X

[Primitive]

[Build Speed]

[Search Speed]

