
Spatial Data Structures

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

15-362/662 | Computer Graphics

• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Partitioning Structures

Lecture 09 | Spatial Structures

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Ray-Mesh Intersection
• Last lecture: closest triangle to a point

• What if we want to find the closest triangle a ray intersects?
• A ray is a point + a direction vector
• More constrained problem
• Naïve approach (brute force) still needs to check every

triangle!

time
point along ray

origin unit direction

• Spatial data structures allow us to compute ray-mesh
intersections without having to check every triangle

• Think of building these structures as a preprocessing step
• Building can take a while
• Searching must be fast!

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Ray-Plane Intersection
Given a plane defined as

𝐍!𝐱 = c

We can find the intersection point by plugging in the ray for 𝐱

𝐍!(𝐨 + 𝑡𝐝) = c

Then solve for 𝑡

𝑡 =
c − 𝐍!𝐨
𝐍!𝐝

Substitute the time into the ray equation to find the intersection point

𝐩 = 𝐨 +
c − 𝐍!𝐨
𝐍!𝑑

𝐝

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Ray-Triangle Intersection

• Not much different:
• i) Compute ray-plane intersection to find point p on plane
• ii) Perform point-in-triangle test for point p

• Barycentric coordinates

• Not a very efficient algorithm…
• Can we combine both steps into one?
• Idea: use triangle edges as bases for points on the plane

• That’s 3 equations, 3 unknowns (𝑡, 𝑢, 𝑣)
• If there’s a unique solution (𝑡,∗ 𝑢∗, 𝑣∗), and

𝑡∗ ≥ 0, 𝑢∗ ≥ 0, 𝑣∗ ≥ 0, u∗ + v∗ ≤ 1,
then there’s an intersection.
(be careful about the numerical rounding errors)

𝐨 + 𝑡𝐝 = 1 − 𝑢 − 𝑣 ∗ 𝒑𝟎 + 𝑢 ∗ 𝒑𝟏 + 𝑣 ∗ 𝒑𝟐

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Moller-Trumbore Algorithm

𝐨 + 𝑡𝐝 = 1 − 𝑢 − 𝑣 ∗ 𝒑𝟎 + 𝑢 ∗ 𝒑𝟏 + 𝑣 ∗ 𝒑𝟐

Given the below equation

Rearrange the terms until unknowns are on one side

𝐨 − 𝒑𝟎 = 𝑢 ∗ (𝒑𝟏 − 𝒑𝟎) + 𝑣 ∗ (𝒑𝟐 − 𝒑𝟎) − 𝑡𝐝

Rewrite in terms of variables**

𝒔 = 𝑢 ∗ 𝒆𝟏 + 𝑣 ∗ 𝒆𝟐 − 𝑡𝐝

Rewrite as a matrix operation

𝒔 = [𝒆𝟏 𝒆𝟐 −𝐝] =
𝑢
𝑣
𝑡

Solve using Cramer’s rule

𝑢
𝑣
𝑡
=

1
(𝒆𝟏 × 𝐝) = 𝒆𝟐

−(𝒔 × 𝒆𝟐) = 𝐝
(𝒆𝟏× 𝐝) = 𝒔

−(𝒔 × 𝒆𝟐) = 𝒆𝟏

**
𝒔 = 𝐨 − 𝒑𝟎
𝒆𝟏 = 𝒑𝟏 − 𝒑𝟎
𝒆𝟐 = 𝒑𝟐 − 𝒑𝟎

What if D=0? What does it mean?

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Moller-Trumbore Visualized

𝒔 = [𝒆𝟏 𝒆𝟐 −𝐝] =
𝑢
𝑣
𝑡

x

y
z

u

v

1

1

𝐨 − 𝒑𝟎 = [𝒑𝟏 − 𝒑𝟎 𝒑𝟐 − 𝒑𝟎 −𝐝] =
𝑢
𝑣
𝑡

• Matrix 𝐌&𝟏 transforms triangle to unit triangle at the
origin with unit-length edges spanning 𝑢 and 𝑣
• Transforms ray to be orthogonal to the triangle

• Q: What if 𝑡 is negative?
• Ray intersection happens in negative direction!

i.e.

𝐨 − 𝒑𝟎 = 𝐌 =
𝑢
𝑣
𝑡

i.e.

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Spatial Data Structures

• Naïve ray-mesh intersection requires checking every
triangle for ray-triangle intersection
• Meshes have millions to billions of triangles
• O(n) exectution

• Idea: sort triangles in a way where we can perform quick
intersection tests on groups of triangles at a time

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Bounding Box

• Precompute the smallest axis-aligned bounding box
around all primitives
• Keep track of smallest and largest (x,y,z) coordinates

for all primitives

• Check for ray-box intersection
• If misses, we are done
• If passes, check all triangles

• Saves time for rays that clearly miss the mesh, but…
• Still O(n) for rays that intersect the box

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

More Bounding Boxes
• What if we had 2 levels of bounding boxes?

• Global bounding box
• Head bounding box
• Body bounding box

• Check for global ray-box intersection
• If misses, we are done
• If passes,

• Check for head ray-box intersection
• If misses, continue
• If passes, check all triangles in head

• Check for body ray-box intersection
• If misses, continue
• If passes, check all triangles in body

• Better, some rays can now pass the global bbox but
neither the head/body bbox
• We have tighter checks rays need to pass in order to

search underlying triangles

can we make this recursive?

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

A Hierarchy of…Bounding Volumes?

[Level 0] [Level 1] [Level 2]

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Bounding Volume Hierarchy (BVH)

• Recursively partition nodes into smaller nodes
• Stop when node contains no more than several

primitives

• The resulting BVH mimics a tree
• Root node encompasses all primitives
• Each non-root node has a parent
• Each non-leaf node has two children

• Some BVHs can have more than 2 children
• Each leaf node points to a handful of primitives

Stanford Bunny BVH visualizing 10th level

15-362/662 | Computer Graphics

• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Partitioning Structures

Lecture 09 | Spatial Structures

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Let’s look at an example

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Example

Bounding boxes will sometimes intersect!

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Example

pass ✓

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Example

pass ✓fail ✗

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Example

pass ✓fail ✗

Are we done?

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Example

pass ✓fail ✗pass ✓

We can find a closer triangle if we check here
Remember: bounding boxes will intersect!

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)
{

// test if ray hits node’s bbox
HitInfo hit = intersect(ray, node->bbox);
if (hit.prim == NULL || hit.t > best.t))

return;
// for leaves, check each primitive
if (node->leaf) {

for (each primitive p in node->primList) {
hit = intersect(ray, p);
if (hit.prim != NULL && hit.t < best.t) {

best.prim = p;
best.t = t;

}
}

} else {
// traverse BOTH children
hit(ray, node->child1, best);
hit(ray, node->child2, best);

}
}

struct BVHNode {
// is the node a leaf
bool leaf;
// min/max coordinates enclosing primitives
Bbox bbox;
// left child (can be NULL)
BVHNode *child1;
// right child (can be NULL)
BVHNode *child2;
// for leaves, stores primitives
Primitive *primList;

}

struct HitInfo {
// the primitive the ray hit
Primitive *prim;
// the time along the ray the hit occured
float t;

}

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)
{

// test if ray hits node’s bbox
HitInfo hit = intersect(ray, node->bbox);
if (hit.prim == NULL || hit.t > best.t))

return;
// for leaves, check each primitive
if (node->leaf) {

for (each primitive p in node->primList) {
hit = intersect(ray, p);
if (hit.prim != NULL && hit.t < best.t) {

best.prim = p;
best.t = t;

}
}

} else {
// traverse BOTH children
hit(ray, node->child1, best);
hit(ray, node->child2, best);

}
}

struct BVHNode {
// is the node a leaf
bool leaf;
// min/max coordinates enclosing primitives
Bbox bbox;
// left child (can be NULL)
BVHNode *child1;
// right child (can be NULL)
BVHNode *child2;
// for leaves, stores primitives
Primitive *primList;

}

struct HitInfo {
// the primitive the ray hit
Primitive *prim;
// the time along the ray the hit occured
float t;

}

We don’t ALWAYS need to check both children.
Recall the first example where we terminated

after searching only the closer bbox.

pass ✓

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Better BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)
{

if (node->leaf) {
// same as previous slide

} else {
BVHNode* child1 = node->child1;
BVHNode* child2 = node->child2;

HitInfo hit1 = intersect(ray, child1->bbox);
HitInfo hit2 = intersect(ray, child2->bbox);
// pick node with better time
BVHNode* first = (hit1.t <= hit2.t) ?

child1 : child2;
BVHNode* second = (hit2.t <= hit1.t) ?

child2 : child1;

hit(ray, first, best);
if (hit2.t < best.t)

hit(ray, second, best);
}

}

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Better BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)
{

if (node->leaf) {
// same as previous slide

} else {
BVHNode* child1 = node->child1;
BVHNode* child2 = node->child2;

HitInfo hit1 = intersect(ray, child1->bbox);
HitInfo hit2 = intersect(ray, child2->bbox);
// pick node with better time
BVHNode* first = (hit1.t <= hit2.t) ?

child1 : child2;
BVHNode* second = (hit2.t <= hit1.t) ?

child2 : child1;

hit(ray, first, best);
if (hit2.t < closest.t)

hit(ray, second, best);
}

}

Only check far bbox if closest primitive in
the near bbox is farther than the closest point

intersected in the far bbox.

This means there’s a potential
to find a better primitive :)

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

So we know how to traverse a BVH,
But how do we build one?

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Partitioning

What is the best way to partition these primitives?

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Partitioning

We can split them into equal # of primitives…
…but bboxes take up large area

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Partitioning

We can split them into the smallest possible bboxes…
…but some bboxes will have many more primitives

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

Surface Area Heuristic gives us a quantitative way of telling us if a partition is good
A better partition will have a lower cost

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

• Fixed cost associated with bbox intersection
• Having too large a BVH depth means we have to

check too many bboxes before finding a primitive

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

• For a convex object A inside a parent convex object
B, the probability that a random ray that hits B also
hits A is given by the ratio of the surface areas 𝑆+
and 𝑆, of these objects:

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

• For a node 𝐶+ , this is the cost of checking all
primitives held by this box
• All triangles have the same cost 𝐶'(-
• For 𝑁+ triangles, cost is 𝑁+𝐶'(-

• Minimizes surface area deviation
• Minimizes primitive deviation

• New equation:

• 𝐶'()*, 𝐶'(- and 𝑆. are constants, so we can
remove them when computing the minimum
cost:

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Surface Area Heuristic

• The cost of intersecting a node is:

• Where:
• 𝐶'()* measures the cost of intersecting the current node’s bbox
• 𝑝+ measures the probability of a ray intersecting child node 𝐴 given it intersects the parent node of 𝐴
• 𝐶+ measures the cost of intersecting a primitive in child node 𝐴’s subtree

𝐶 = 𝐶!"#$ + 𝑝%𝐶% + 𝑝&𝐶&

𝐶 = 𝐶!"#$ +
𝑆%
𝑆'
𝑁%𝐶!"(+

𝑆&
𝑆'
𝑁&𝐶!"(

𝐶) = 𝑆%𝑁% + 𝑆&𝑁&

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

We know what a good partition is,
but how do we actually build a partition

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) { // check all axis-aligned partitions
sort(primitives, axis); // sort primitives by centroid
n = primitives.length();
for(int i = 0; i < n; i++) {

a = bbox(primitves[0,i]);
b = bbox(primitves[i,n]);
// surface area heuristic
cost = a.area * i + b.area * (n – i);
if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

}
}
// create children bounding boxes based on best axis and partition location
partition(best_axis, best_partition);

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) { // check all axis-aligned partitions
sort(primitives, axis); // sort primitives by centroid
n = primitives.length();
for(int i = 0; i < n; i++) {

a = bbox(primitves[0,i]);
b = bbox(primitves[i,n]);
// surface area heuristic
cost = a.area * i + b.area * (n – i);
if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

}
}
// create children bounding boxes based on best axis and partition location
partition(best_axis, best_partition);

Checking every partition in a scene with millions of primitives
is incredibly expensive!

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) {
sort(primitives, axis);
n = primitives.length();
for(int i = 0; i < n; i+=32) { // check every B primitives (B = 32)

a = bbox(primitves[0,i]);
b = bbox(primitves[i,n]);

cost = a.area * i + b.area * (n – i);
if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

}
}

partition(best_axis, best_partition);

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) {
sort(primitives, axis);
n = primitives.length();
for(int i = 0; i < n; i+=32) { // check every B primitives (B = 32)

a = bbox(primitves[0,i]);
b = bbox(primitves[i,n]);

cost = a.area * i + b.area * (n – i);
if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }

}
}

partition(best_axis, best_partition);

Still a lot of iterating over primitives each loop!

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions

for(axis : [x, y, z]) {
sort(primitives, axis);
n = primitives.length();
bin_n = bin.length();
for(int i = 0; i < n; i++) {

bin = compute_bucket(primitves[i].centroid) // find bin that triangle lies in
bin.bbox.add(primitves[i]); } // add triangle to bin

for(int j = 0; j < bin_n; j++) {
a = bbox(bin[0,j]); // add bins to partitions instead of triangles
b = bbox(bin[j, bin_n]); // add bins to partitions instead of triangles
// same as before

}
}

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

[x-axis binning]

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

Cost = 3 prims * (0.15) + 8 prims * (0.87)

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

Cost = 6 prims * (0.38) + 5 prims * (0.43)

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

Cost = 9 prims * (0.81) + 2 prims * (0.18)

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

[y-axis binning]

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

Cost = 3 prims * (0.19) + 8 prims * (0.91)

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

Cost = 6 prims * (0.32) + 5 prims * (0.36)

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

Cost = 9 prims * (0.94) + 2 prims * (0.13)

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

Best Partition

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Building Partitions Example

Recurse with each child node

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

What About Ordering?

7
10

4

9
1

6

38

2

11

5

1 2 3 4 5 6 7 8 9 10 11primitives

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

What About Ordering?

7
10

4

9
1

6

38

2

11

5

1 9 10 7 6 4 5 3 8 2 11primitives

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

What About Ordering?

7
10

4

9
1

6

38

2

11

5

9 4 10 7 1 6 5 11 2 8 3primitives

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

After re-indexing (sorting) based on leaf nodes

4
3

2

1
5

6

1110

9

8

7

1 2 3 4 5 6 7 8 9 10 11primitives

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

After re-indexing (sorting) based on leaf nodes

4
3

2

1
5

6

1110

9

8

7

1 3 4 6 7 9 10 11primitives Only need to store 2 integers per
leaf node!

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Edge Cases

[primitives with same centroid] [overlapping bboxes]

In these cases, pick a random partition

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

BVH Review

Building the BVH:
1) Pick axis [x,y,z]

1) Sort primitives on axis by centroid
2) Bin primitives (B = 32)
3) Partition primitives by bin along axis
4) Compute cost, saving best result

2) Construct 2 child nodes from best cost result
3) Recurse until few primitives (< 4) left in node

Traversing the BVH:
1) Check if ray hits current node bbox
2) If hit, find which child node is closer to ray
3) Recurse down closer child
4) If the farther child node is closer to the ray than

the hit discovered, recurse down the farther child

Traversal cost is 𝑂(log(𝑁)), same as tree-search

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Axis-Aligned BVH

• What is an axis-aligned BVH?
• By searching for partitions along the axes [x,y,z], we

are constraining ourselves to build partitions with
bounding boxes that are axis-aligned

• How do we make a non-axis-aligned BVH?
• Simple! Just search for partitions that are not

constrained to [x,y,z]
• Easy in theory, difficult in practice

• What are the pros/cons of non-axis-aligned BVH?
• [+] Better cost
• [+] Nodes have less likelihood of having empty space
• [-] More work to compute partitions
• [-] Larger intersection cost for non-aligned bboxes
• [-] More memory overhead

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Axis-Aligned BVH

• Are non-axis-aligned BVHs actually faster?
• Yes, and no.

• Surface area ratio /!
/"

decreases with better-fitting bboxes
• Bounding box intersection cost 𝐶'()* increases with more

compute required to check unaligned bbox

• How to check for intersection with non-axis-aligned bbox?
• Bbox now has an extra transform matrix 𝑇 taking it from

the parent’s coordinate space to its own coordinate space
• Apply the inverse transform to the bbox and ray and

compute axis-aligned intersections
• Larger memory overhead, now need to store the

transform with each node

𝐶 = 𝐶!"#$ +
𝑆%
𝑆'
𝑁%𝐶!"(+

𝑆&
𝑆'
𝑁&𝐶!"(

15-362/662 | Computer Graphics

• Ray-Triangle Intersections

• Bounding Volume Hierarchy

• Spatial-Partitioning Structures

Lecture 09 | Spatial Structures

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Primitive vs. Spatial

• Spatial Partitioning
• K-D Trees
• Uniform Grid
• Quad/Octree

• [+] No volume overlap
• [+] Can terminate on first hit
• [-] Higher potential for empty space
• [-] May intersect primitive multiple times

• Primitive Partitioning
• Bounding Volume Hierarchy

• [+] More flexible to geometry
• [+] Easier to update (animation)
• [-] Volumes can overlap
• [-] Unable to terminate on first hit

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Recursively partition space via axis-aligned
partitioning planes
• Interior nodes correspond to spatial splits
• Node traversal proceeds in front-to-back order
• Unlike BVH, can terminate search after first hit

is found
• Still 𝑂(log(𝑁)) performance

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Consider: Triangle 1 overlaps multiple zones
• Triangle 1 is checked for intersection when

checking red zone first
• Ray intersects triangle 1
• But triangle 2 is closer

• Requirement: intersection point must lie within zone

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Uniform Grid

• Partition space into equal sized volumes (volume-
elements or “voxels”)

• Each voxel contains primitives that overlap
• Walk ray through volume in order

• Very efficient implementation possible (think:
3D line rasterization)

• Only consider intersection with primitives in
voxels the ray intersects

• What is a good number of voxels?
• Should be proportional to total number of

primitives 𝑁
• Number of cells traversed is proportional to
𝑂(# 𝑁)
• A line going through a cube is a cubed root
• Still not as good as 𝑂(log(𝑁))

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Uniform Grid

Too few cells
Requires checking every

primitive

Too many cells
Walking through a lot of empty space

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Uniform Grid

• Uniform grid cannot adapt to non-uniform
distribution of geometry in scene
• Unlike K-D tree, location of spatial partitions is

not dependent on scene geometry

Monsters University (2013) Pixar

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Where Uniform Grids Work

Legend of Zelda: Tears of the Kingdom (2023) Nintendo

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Quad-Tree/Octree

• Like uniform grid, easy to build
• Has greater ability to adapt to location of scene

geometry than uniform grid
• Still not as good adaptability as K-D tree

• Quad-tree: nodes have 4 children
• Partitions 2D space

• Octree: nodes have 8 children
• Partitions 3D space

15-362/662 | Computer Graphics Lecture 09 | Spatial Structures

Spatial Data Structures Review

[Spatial] [Primitive] [Build Speed]

BVH

K-D Tree

Uniform Grid

Quad/Octree

✓

✗

✗

✗

[Search Speed]

✓

✓

✗

✗

✗

✓

✓

✓

✗

✗

✓

✓

