Spatial Data Structures

- Ray-Triangle Intersections
- Bounding Volume Hierarchy
- Spatial-Partitioning Structures

Ray-Mesh Intersection

- Last lecture: closest triangle to a point
- What if we want to find the closest triangle a ray intersects?
 - A ray is a point + a direction vector
 - More constrained problem
 - Naïve approach (brute force) still needs to check every triangle!

point along ray
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$

- Spatial data structures allow us to compute ray-mesh intersections without having to check every triangle
- Think of building these structures as a preprocessing step
 - Building can take a while
 - Searching must be fast!

Ray-Plane Intersection

Given a plane defined as

 $\mathbf{N}^{\mathrm{T}}\mathbf{x} = \mathbf{c}$

We can find the intersection point by plugging in the ray for ${f x}$

 $\mathbf{N}^{\mathrm{T}}(\mathbf{o} + t\mathbf{d}) = \mathbf{c}$

Substitute the time into the ray equation to find the intersection point

$$\mathbf{p} = \mathbf{o} + \left(\frac{\mathbf{c} - \mathbf{N}^{\mathrm{T}}\mathbf{o}}{\mathbf{N}^{\mathrm{T}}d}\right)\mathbf{d}$$

Ray-Triangle Intersection

- Not much different:
 - i) Compute ray-plane intersection to find point **p** on plane
 - ii) Perform point-in-triangle test for point **p**
 - Barycentric coordinates
- Not a very efficient algorithm...
 - Can we combine both steps into one?
 - Idea: use triangle edges as bases for points on the plane

 $\mathbf{o} + t\mathbf{d} = (1 - u - v) * p_0 + u * p_1 + v * p_2$

- That's 3 equations, 3 unknowns (t, u, v)
- If there's a unique solution (t, u^*, v^*) , and

 $t^* \ge 0, u^* \ge 0, v^* \ge 0, u^* + v^* \le 1,$

then there's an intersection.

(be careful about the numerical rounding errors)

Moller-Trumbore Algorithm

Given the below equation

$$\mathbf{o} + t\mathbf{d} = (1 - u - v) * p_0 + u * p_1 + v * p_2$$

Rearrange the terms until unknowns are on one side

$$\mathbf{o} - p_0 = u * (p_1 - p_0) + v * (p_2 - p_0) - t\mathbf{d}$$

Rewrite in terms of variables**

$$\boldsymbol{s} = \boldsymbol{u} \ast \boldsymbol{e_1} + \boldsymbol{v} \ast \boldsymbol{e_2} - t \mathbf{d}$$

Rewrite as a matrix operation

$$\boldsymbol{s} = [\boldsymbol{e_1} \quad \boldsymbol{e_2} \quad -\mathbf{d}] \cdot \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ t \end{bmatrix}$$

Solve using Cramer's rule

$$\begin{aligned} s &= \mathbf{o} - p_0 \\ e_1 &= p_1 - p_0 \\ e_2 &= p_2 - p_0 \end{aligned} \qquad \begin{bmatrix} u \\ v \\ t \end{bmatrix} = \frac{1}{(e_1 \times \mathbf{d}) \cdot e_2} \begin{bmatrix} -(s \times e_2) \cdot \mathbf{d} \\ (e_1 \times \mathbf{d}) \cdot s \\ -(s \times e_2) \cdot e_1 \end{bmatrix}$$

a ₁ x + b ₁ y + a ₂ x + b ₂ y + c a ₃ x + b ₃ y + c	$c_2 z = d_2$	Let D = $\begin{vmatrix} \mathbf{a}_1 & \mathbf{b}_1 & \mathbf{c}_1 \\ \mathbf{a}_2 & \mathbf{b}_2 & \mathbf{c}_2 \\ \mathbf{a}_3 & \mathbf{b}_3 & \mathbf{c}_3 \end{vmatrix}$
	lf D ≠ 0 then	
$x = \frac{\begin{vmatrix} d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3} \end{vmatrix}}{D}$	$y = \frac{\begin{vmatrix} a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3} \end{vmatrix}}{D}$	$z = \frac{\begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}}{D}$

What if D=0? What does it mean?

**

 $s = o - p_0$

Moller-Trumbore Visualized

Spatial Data Structures

- Naïve ray-mesh intersection requires checking every triangle for ray-triangle intersection
 - Meshes have millions to billions of triangles
 - O(n) exectution
- Idea: sort triangles in a way where we can perform quick intersection tests on groups of triangles at a time

Bounding Box

- Precompute the smallest axis-aligned bounding box around all primitives
 - Keep track of smallest and largest (x,y,z) coordinates for all primitives
- Check for ray-box intersection
 - If misses, we are done
 - If passes, check all triangles
- Saves time for rays that clearly miss the mesh, but...
 - Still O(n) for rays that intersect the box

More Bounding Boxes

- What if we had 2 levels of bounding boxes? ٠
 - Global bounding box
 - Head bounding box •
 - Body bounding box
- can we make this recursive? Check for global ray-box intersection ٠ If **misses**, we are done
 - If passes,
 - Check for head ray-box intersection
 - If **misses**, continue •
 - If passes, check all triangles in head
 - Check for body ray-box intersection
 - If **misses**, continue
 - If passes, check all triangles in body
- Better, some rays can now pass the global bbox but . neither the head/body bbox
 - We have tighter checks rays need to pass in order to search underlying triangles

A Hierarchy of...Bounding Volumes?

Bounding Volume Hierarchy (BVH)

- Recursively partition nodes into smaller nodes
 - Stop when node contains no more than several primitives
- The resulting **BVH** mimics a tree
 - Root node encompasses all primitives
 - Each non-root node has a parent
 - Each non-leaf node has two children
 - Some BVHs can have more than 2 children
 - Each leaf node points to a handful of primitives

Stanford Bunny BVH visualizing 10th level

Ray-Triangle Intersections

- Bounding Volume Hierarchy
- Spatial-Partitioning Structures

Let's look at an example

Bounding boxes will sometimes intersect!

BVH Traversal

```
struct BVHNode {
  // is the node a leaf
 bool leaf;
  // min/max coordinates enclosing primitives
  Bbox bbox;
  // left child (can be NULL)
  BVHNode *child1;
 // right child (can be NULL)
  BVHNode *child2;
  // for leaves, stores primitives
 Primitive *primList;
}
struct HitInfo {
  // the primitive the ray hit
 Primitive *prim;
  // the time along the ray the hit occured
 float t;
}
```

```
void hit(Ray* ray, BVHNode* node, HitInfo* best)
{
  // test if ray hits node's bbox
  HitInfo hit = intersect(ray, node->bbox);
  if (hit.prim == NULL || hit.t > best.t))
    return;
  // for leaves, check each primitive
  if (node->leaf) {
    for (each primitive p in node->primList) {
      hit = intersect(ray, p);
      if (hit.prim != NULL && hit.t < best.t) {
        best.prim = p;
        best.t = t;
      }
  } else {
    // traverse BOTH children
    hit(ray, node->child1, best);
    hit(ray, node->child2, best);
```

BVH Traversal


```
void hit(Ray* ray, BVHNode* node, HitInfo* best)
  We don't ALWAYS need to check both children.
      Recall the first example where we terminated
       hitafter searching only the closer bbox.
if (hit.prim != NULL && hit.t < best.t) {</pre>
  } else {
     // traverse BOTH children
     hit(ray, node->child1, best);
    hit(ray, node->child2, best);
```

Better BVH Traversal

Better BVH Traversal

So we know how to traverse a BVH, But how do we build one?

BVH Partitioning

What is the best way to partition these primitives?

BVH Partitioning

We can split them into equal # of primitives... ...but bboxes take up large area

BVH Partitioning

We can split them into the smallest possible bboxes... ...but some bboxes will have many more primitives

• The cost of intersecting a node is:

$$C = C_{trav} + p_A C_A + p_B C_B$$

- Where:
 - *C_{trav}* measures the cost of intersecting the current node's bbox
 - p_A measures the probability of a ray intersecting child node A given it intersects the parent node of A
 - C_A measures the cost of intersecting a primitive in child node A's subtree

Surface Area Heuristic gives us a quantitative way of telling us if a partition is good A better partition will have a lower cost

• The cost of intersecting a node is:

$$C = C_{trav} + p_A C_A + p_B C_B$$

- Where:
 - C_{trav} measures the cost of intersecting the current node's bbox
 - p_A measures the probability of a ray intersecting child node A given it intersects the parent node of A
 - C_A measures the cost of intersecting a primitive in child node A's subtree

- Fixed cost associated with bbox intersection
- Having too large a BVH depth means we have to check too many bboxes before finding a primitive

• The cost of intersecting a node is:

$$C = C_{trav} + p_A C_A + p_B C_B$$

- Where:
 - *C_{trav}* measures the cost of intersecting the current node's bbox
 - p_A measures the probability of a ray intersecting child node A given it intersects the parent node of A
 - C_A measures the cost of intersecting a primitive in child node A's subtree

For a convex object A inside a parent convex object
 B, the probability that a random ray that hits B also
 hits A is given by the ratio of the surface areas S_A
 and S_B of these objects:

$$P(\text{hit}A|\text{hit}B) = \frac{S_A}{S_B}$$

• The cost of intersecting a node is:

$$C = C_{trav} + p_A C_A + p_B C_B$$

- Where:
 - *C*_{trav} measures the cost of intersecting the current node's bbox
 - p_A measures the probability of a ray intersecting child node A given it intersects the parent node of A
 - C_A measures the cost of intersecting a primitive in child node A's subtree

- For a node C_A , this is the cost of checking all primitives held by this box
 - All triangles have the same cost C_{tri}
 - For N_A triangles, cost is N_AC_{tri}

• The cost of intersecting a node is:

$$C = C_{trav} + p_A C_A + p_B C_B$$

- Where:
 - *C_{trav}* measures the cost of intersecting the current node's bbox
 - p_A measures the probability of a ray intersecting child node A given it intersects the parent node of A
 - C_A measures the cost of intersecting a primitive in child node A's subtree
- New equation:

$$C = C_{trav} + \frac{S_A}{S_C} N_A C_{tri} + \frac{S_B}{S_C} N_B C_{tri}$$

• *C*_{trav}, *C*_{tri} and *S*_C are constants, so we can remove them when computing the minimum cost:

$$C' = \frac{S_A N_A}{S_B N_B} + \frac{S_B N_B}{S_B N_B}$$

- Minimizes surface area deviation
- Minimizes primitive deviation

We know what a good partition is, but how do we actually build a partition


```
for(axis : [x, y, z]) {
    sort(primitives, axis);
    n = primitives.length();
    for(int i = 0; i < n; i+=32) { // check every B primitives (B = 32)
        a = bbox(primitves[0,i]);
        b = bbox(primitves[i,n]);
        cost = a.area * i + b.area * (n - i);
        if(cost < best_cost) { best_cost = cost; best_partition = i; best_axis = axis; }
    }
    partition(best_axis, best_partition);</pre>
```


[x-axis binning]

Cost = 3 prims * (0.15) + 8 prims * (0.87)

Cost = 6 prims * (0.38) + 5 prims * (0.43)

Cost = 9 prims * (0.81) + 2 prims * (0.18)

Cost = 3 prims * (0.19) + 8 prims * (0.91)

Cost = 6 prims * (0.32) + 5 prims * (0.36)

Cost = 9 prims * (0.94) + 2 prims * (0.13)

Recurse with each child node

What About Ordering?

What About Ordering?

What About Ordering?

After re-indexing (sorting) based on leaf nodes

After re-indexing (sorting) based on leaf nodes

Edge Cases

In these cases, pick a random partition

BVH Review

Building the BVH:

- 1) Pick axis [x,y,z]
 - 1) Sort primitives on axis by centroid
 - 2) Bin primitives (B = 32)
 - 3) Partition primitives by bin along axis
 - 4) Compute cost, saving best result
- 2) Construct 2 child nodes from best cost result
- 3) Recurse until few primitives (< 4) left in node

Traversing the BVH:

- 1) Check if ray hits current node bbox
- 2) If hit, find which child node is closer to ray
- 3) Recurse down closer child
- 4) If the farther child node is closer to the ray than the hit discovered, recurse down the farther child

Traversal cost is $O(\log(N))$, same as tree-search

Axis-Aligned BVH

• What is an axis-aligned BVH?

- By searching for partitions along the axes [x,y,z], we are constraining ourselves to build partitions with bounding boxes that are axis-aligned
- How do we make a non-axis-aligned BVH?
 - Simple! Just search for partitions that are not constrained to [x,y,z]
 - Easy in theory, difficult in practice
- What are the pros/cons of non-axis-aligned BVH?
 - [+] Better cost
 - [+] Nodes have less likelihood of having empty space
 - [-] More work to compute partitions
 - [-] Larger intersection cost for non-aligned bboxes
 - [-] More memory overhead

Axis-Aligned BVH

- Are non-axis-aligned BVHs actually faster?
 - Yes, and no.

$$C = C_{trav} + \frac{S_A}{S_C} N_A C_{tri} + \frac{S_B}{S_C} N_B C_{tri}$$

- Surface area ratio $\frac{S_A}{S_C}$ decreases with better-fitting bboxes
- Bounding box intersection cost C_{trav} increases with more compute required to check unaligned bbox
- How to check for intersection with non-axis-aligned bbox?
 - Bbox now has an extra transform matrix *T* taking it from the parent's coordinate space to its own coordinate space
 - Apply the inverse transform to the bbox and ray and compute axis-aligned intersections
 - Larger memory overhead, now need to store the transform with each node

Ray-Triangle Intersections

Bounding Volume Hierarchy

• Spatial-Partitioning Structures

Primitive vs. Spatial

• Primitive Partitioning

- Bounding Volume Hierarchy
 - [+] More flexible to geometry
 - [+] Easier to update (animation)
 - [-] Volumes can overlap
 - [-] Unable to terminate on first hit

• Spatial Partitioning

- K-D Trees
- Uniform Grid
- Quad/Octree
 - [+] No volume overlap
 - [+] Can terminate on first hit
 - [-] Higher potential for empty space
 - [-] May intersect primitive multiple times

K-D Trees

- Recursively partition space via axis-aligned partitioning planes
 - Interior nodes correspond to spatial splits
 - Node traversal proceeds in front-to-back order
 - Unlike BVH, can terminate search after first hit is found
 - Still $O(\log(N))$ performance

K-D Trees

- **Consider:** Triangle 1 overlaps multiple zones
 - Triangle 1 is checked for intersection when checking red zone first
 - Ray intersects triangle 1
 - But triangle 2 is closer
- **Requirement:** intersection point must lie within zone

Uniform Grid

- Partition space into equal sized volumes (volumeelements or "voxels")
- Each voxel contains primitives that overlap
- Walk ray through volume in order
 - Very efficient implementation possible (think: 3D line rasterization)
 - Only consider intersection with primitives in voxels the ray intersects
- What is a good number of voxels?
 - Should be proportional to total number of primitives N
 - Number of cells traversed is proportional to $O(\sqrt[3]{N})$
 - A line going through a cube is a cubed root
 - Still not as good as $O(\log(N))$

Uniform Grid

Too few cells Requires checking every primitive Too many cells Walking through a lot of empty space

Uniform Grid

- Uniform grid cannot adapt to non-uniform distribution of geometry in scene
 - Unlike K-D tree, location of spatial partitions is not dependent on scene geometry

Monsters University (2013) Pixar

Where Uniform Grids Work

Legend of Zelda: Tears of the Kingdom (2023) Nintendo

Quad-Tree/Octree

- Like uniform grid, easy to build
- Has greater ability to adapt to location of scene geometry than uniform grid
 - Still not as good adaptability as K-D tree
- Quad-tree: nodes have 4 children
 - Partitions 2D space
- Octree: nodes have 8 children
 - Partitions 3D space

Spatial Data Structures Review

