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The Graphics Pipeline
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The Graphics Pipeline
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Assembling Vertices
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Vertex Shader

• Uniform data: constant read-only data provided as input to every instance of the vertex shader
• Example: object-to-clip-space vertex transform matrix

• Vertex processing operates on a stream of vertex records + read-only “uniform” inputs
• Easily amendable to parallelism 
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Vertex Shader

* (Note this is pseudocode, not GLSL syntax)

• Vertex shaders provide per-vertex operations that change 
attributes of vertices such as their positions and normal
• Example: fluid simulation
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Vertex Shader

Transform triangle vertices from world-space coordinates into camera space
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Vertex Shader

Apply perspective projection transform to transform triangle vertices to normalized coordinate space

Camera Space
also known as camera view frustrum

Normalized Space
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Geometry Shader

* “Geometry Shader” in OpenGL/Direct3D/Metal terminology

Some guy in Unity having a hard time with geometry shaders (2014)

• Recently added to OpenGL in 2007
• As such, not many people use it

• Allows user to retarget the connectivity of their 
geometry by specifying tessellation operations or 
adding in additional geometry
• Example: computing vertex shader on coarse 

geometry and then subdividing a surface in 
the geometry shader
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Geometry Shader (Clipping)

Discard triangles that lie complete outside the unit cube (culling). This may create additional triangles
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Change Of Space
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Transform To Screen Coordinates

Transform vertex (x,y) positions from normalized coordinates into screen coordinates 
(based on screen [w,h])
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Fragment Shader

• Separate triangles into fragments
• For each fragment, compute the output RGBA
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Texturing

• Textures stored as images in memory
• Most expensive part of rasterization

• Texture caching is a popular solution
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Texturing

Texture is just a buffer of values. Map (x,y) coordinates to (u,v) texture coordinates and look up
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The Texture Pipeline
• During the rasterization stage, fragment shader has 

access to a texture interface

• An I/O for textures, with its own texture cache!
• Useful since neighboring fragments will 

request neighboring texels

• Built-in texture filtering operations

• Texture operations are fixed-function
• Designed to be hardware optimized given that 

they can be called several times per fragment

Surface Maps via Adaptive Triangulations (2023) Schmidt et. al.
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Texture Atlas

• In old school 2D video games, it was expensive to load 
different images
• Different images meant different cache locations, 

which lead to more cache conflicts
• IO was expensive

• To keep important texture data readily available in the 
cache, important assets were combined into one image
• Frequently referenced → frequently in cache

• Modern video game architectures have better 
memory/caching/IO
• No need for texture atlases
• Still common to keep all assets pertaining to one 

character in same texture Minecraft (2011) Mojang
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Frame-Buffer Operations

• Alpha Test
• Allows fragments with alpha value greater/less than a 

constant specified by the user to pass

• Stencil Test
• Allows fragments that pass a user-defined per-pixel 

function to pass
• Stored in stencil buffer
• Example: mattes + masking

• Depth Test
• Allows fragments that are closest in depth to pass

• Stored in Z-buffer

• Update Target
• If pixel passes, modify stencil depth and color buffers
• Reads can be done in parallel, writes require locking

• We’ll look at techniques later to accelerate this
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Depth Test

Color Buffer Depth BufferPrimitives
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Stencil Test

Stencil Buffer ResultColor Buffer
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Depth Test

• Q: Does depth-buffer algorithm handle interpenetrating surfaces?

• A: Of course! Occlusion test is based on depth of triangles at a given sample point. 
The relative depth of triangles may be different at different sample points
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Early occlusion-culling (“early Z”)
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Early occlusion-culling (“early Z”)

• A GPU implementation detail: not reflected in the graphics pipeline abstraction
• But it’s still there

•  Key assumption: occlusion results do not depend on fragment shading
• Note: early Z only provides benefit if closer triangle is rendered by application first!
• Application developers are encouraged to submit geometry in front-to-back order
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The 3D Graphics Pipeline
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• OpenGL
• Shaders are written in GLSL
• Cross-Platform support

• Vulkan
• The cooler OpenGL
• Provides more control & performance on GPU

• DirectX
• Microsoft graphics package
• Direct3D is the suite-specific tool for 3D graphics rendering

• Metal
• Apple graphics package
• Written in Objective-C and Swift
• Dedicated Metal Shading Language

• Integrated Metal debugger in Xcode

Graphics APIs
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• WebGL
• JavaScript API for running GLSL code in browser

• Web port of OpenGL
• Still runs on GPU
• Easier means for sharing code/applications

• WebGPU
• Run GPU commands in browser
• Successor to WebGL

• Three.JS
• Higher level graphics framework
• Uses WebGL under the hood

Graphics APIs on the Web
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Programming the Graphics Pipeline

• Graphics programming is referred to as a state machine
• Every draw operation changes the active output’s state

• Efficiently managing state changes is a major challenge in 
implementations
• Not all state changes are the same cost

• Expensive state changes:
• Changing targets (texture)

• Requires texture cache flush, which severely hurts 
texture bandwidth

• Changing shaders
• Forces the pipeline to a stop and flushes contents
• Trashes any prefetching data as a result of change 

in access patterns
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Binding Vertex Shaders
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// shader code is just a string

// made to look like c++ code

const char *vertexShaderSource = "#version 330 core\n" 

   "layout (location = 0) in vec3 aPos;\n" 

   "void main()\n" 

   "{\n" 

   ”   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n" 

   "}\0";

}

// create vertex shader reference

unsigned int vertexShader; 

vertexShader = glCreateShader(GL_VERTEX_SHADER); 

// bind vertex shader to reference

glShaderSource(vertexShader, 1, &vertexShaderSource, NULL); 

// compile shader

glCompileShader(vertexShader);



Binding Fragment Shaders
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// shader code is just a string

// made to look like c++ code

const char *fragmentShaderSource = "#version 330 core\n" 

   ” out vec4 FragColor; \n" 

   "void main()\n" 

   "{\n" 

   ” FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n" 

   "}\0";

}

// create fragment shader reference

unsigned int fragmentShader; 

fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); 

// bind fragment shader to reference

glShaderSource(fragmentShader, 1, & fragmentShaderSource, NULL); 

// compile shader

glCompileShader(fragmentShader);



Creating A Graphics Program
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// create shader program reference

unsigned int shaderProgram; 

shaderProgram = glCreateProgram();

// bind vertex and fragment shaders

glAttachShader(shaderProgram, vertexShader); 

glAttachShader(shaderProgram, fragmentShader); 

glLinkProgram(shaderProgram);



// create a Vertex Array Object VAO for multiple VBOs

glBindVertexArray(VAO);

// create a Vertex Buffer Object VBO

// bind vertices array to VBO

glBindBuffer(GL_ARRAY_BUFFER, VBO); 

glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); 

// specify how vertices will be parsed

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0); 

glEnableVertexAttribArray(0); 

// enable shader program and vertex buffer

glUseProgram(shaderProgram);

glBindVertexArray(VAO); 

// specify draw method

glDrawArrays(GL_TRIANGLES, 0, 3);

Binding Shaders
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• Instead of printing, we want to draw
• Easiest thing to draw: a triangle!

• Hardest part of Graphics APIs: getting the 
bindings correct

• If you can draw a triangle, you have your 
pipeline in order
• Simply swap out shaders and data, and 

go from there!

The ‘Hello World’ Of Graphics APIs
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Hello Triangle, OpenGL

Tutorial: https://learnopengl.com/Getting-started/Hello-Triangle
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• Popular algorithm for rendering in modern games

• Idea: restructure the rendering pipeline to perform 
shading after all occlusions have been resolved

• Not a new idea. Implemented in several classic 
graphics systems, but not directly supported in most 
high-end GPUs
• But modern graphics pipeline provides 

mechanism to allow applications to implement 
deferred shading efficiently

Deferred Shading

Assassin’s Creed III (2012) Ubisoft
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What was the first video game to use deferred shading?
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Shrek (2001) Digital Illusions Canada



Feed Forward Rendering

• Occlusion testing done after fragments have been 
generated

• Best-case: fragments provided near-to-far
• Worst case: fragments provided far-to-near

• Even Early-Z cannot keep every fragment from 
being rasterized
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Deferred Shading

• Two-pass approach: 
• Fragment shader outputs surface properties of 

nearest surface (G-Buffer)
• Surface properties used to render final image
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Geometry Buffer
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Deferred Shading

• Two-pass approach: 
• Fragment shader outputs surface properties of 

nearest surface (G-Buffer)
• Surface properties used to render final image

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture



Two-Pass Algorithm

• Pass 1: Geometry Pass
• Render scene geometry using traditional pipeline
• Write visible geometry information to G-Buffer

• Pass 2: Shading Pass
• For each G-Buffer sample, compute shading
• Read G-Buffer data for current sample
• Accumulate contribution of all lights
• Output final surface color for sample

Leadwerks Engine
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Deferred Rendering on Apple Chips

• Threads work to compute G-Buffer together
• Contents too large to remain in cache, spill to 

memory
• Go to shading once G-Buffer fully computed

• Requires reads back into cache

Metal Developer Guide (2020) Apple
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Graphics Processing Unit

• Developed to efficiently scale the 3D Graphics Pipeline
• Every step was fixed function

• General Purpose Graphics Processing Unit (GPGPU)
• Allowed for customizable nodes known as shaders
• What shaders do we have?

• Vertex shader
• Geometry shader
• Fragment shader

• Other shaders
• Compute shader
• Ray tracing shaders

• Are frame-buffer operations not considered shaders?
• These are toggle-able stages of the pipeline
• You don’t write code for them

• Many applications outside graphics
• Data scientists used GPUs to write their calculations to intermediate 

buffers and threw out the resulting render

Nvidia Geforce 256 (1999)

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture



Unified GPUs

M1 Pro (2021) Apple

• Example: Apple M1 Pro
• 8 high performance cores
• 2 high efficiency (low power) cores
• 16 core GPU
• Fixed-function media engine for video encoding/decoding

• Frees up CPU + GPU during rendering
• Allows for more expensive video formats

• Neural engine for more efficient machine learning tasks
• Supports most deep learning layers 
• Push for CoreML on Mac applications

• Design Philosophy: run important workloads on the most 
efficient hardware for the job
• Fixed-function provides efficiency and speed while freeing 

up general purpose resources high in demand
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GPU Architecture
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GPU Architecture
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GPU Production
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“In 2009, Intel, Nvidia, and AMD/ATI were the market 
share leaders, with 49.4%, 27.8%, and 20.6% market share 
respectively. However, those numbers include Intel's 
integrated graphics solutions as GPUs. 

Not counting those, Nvidia and AMD control nearly 100% 
of the market as of 2018. Their respective market shares 
are 66% and 33%”
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Course Roadmap

[ A1: Rasterization ] [ A2: MeshEdit ]

[ A3: PathTracer ] [ A4: Animation ]

Next Time
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