
Special Topics in A1:
Graphics APIs & Architecture

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

15-362/662 | Computer Graphics

• The Graphics Pipeline

• Graphics APIs

• Deferred Shading

• Graphics Architecture

Lecture S01 | APIs & Architecture

The Graphics Pipeline

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

The Graphics Pipeline

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Assembling Vertices

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Vertex Shader

• Uniform data: constant read-only data provided as input to every instance of the vertex shader
• Example: object-to-clip-space vertex transform matrix

• Vertex processing operates on a stream of vertex records + read-only “uniform” inputs
• Easily amendable to parallelism

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Vertex Shader

* (Note this is pseudocode, not GLSL syntax)

• Vertex shaders provide per-vertex operations that change
attributes of vertices such as their positions and normal
• Example: fluid simulation

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Vertex Shader

Transform triangle vertices from world-space coordinates into camera space

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Vertex Shader

Apply perspective projection transform to transform triangle vertices to normalized coordinate space

Camera Space
also known as camera view frustrum

Normalized Space

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Geometry Shader

* “Geometry Shader” in OpenGL/Direct3D/Metal terminology

Some guy in Unity having a hard time with geometry shaders (2014)

• Recently added to OpenGL in 2007
• As such, not many people use it

• Allows user to retarget the connectivity of their
geometry by specifying tessellation operations or
adding in additional geometry
• Example: computing vertex shader on coarse

geometry and then subdividing a surface in
the geometry shader

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Geometry Shader (Clipping)

Discard triangles that lie complete outside the unit cube (culling). This may create additional triangles

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Change Of Space

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Transform To Screen Coordinates

Transform vertex (x,y) positions from normalized coordinates into screen coordinates
(based on screen [w,h])

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Fragment Shader

• Separate triangles into fragments
• For each fragment, compute the output RGBA

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Texturing

• Textures stored as images in memory
• Most expensive part of rasterization

• Texture caching is a popular solution

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Texturing

Texture is just a buffer of values. Map (x,y) coordinates to (u,v) texture coordinates and look up

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

15-362/662 | Computer Graphics

The Texture Pipeline
• During the rasterization stage, fragment shader has

access to a texture interface

• An I/O for textures, with its own texture cache!
• Useful since neighboring fragments will

request neighboring texels

• Built-in texture filtering operations

• Texture operations are fixed-function
• Designed to be hardware optimized given that

they can be called several times per fragment

Surface Maps via Adaptive Triangulations (2023) Schmidt et. al.

Lecture S01 | APIs & Architecture

15-362/662 | Computer Graphics

Texture Atlas

• In old school 2D video games, it was expensive to load
different images
• Different images meant different cache locations,

which lead to more cache conflicts
• IO was expensive

• To keep important texture data readily available in the
cache, important assets were combined into one image
• Frequently referenced → frequently in cache

• Modern video game architectures have better
memory/caching/IO
• No need for texture atlases
• Still common to keep all assets pertaining to one

character in same texture Minecraft (2011) Mojang

Lecture S01 | APIs & Architecture

Frame-Buffer Operations

• Alpha Test
• Allows fragments with alpha value greater/less than a

constant specified by the user to pass

• Stencil Test
• Allows fragments that pass a user-defined per-pixel

function to pass
• Stored in stencil buffer
• Example: mattes + masking

• Depth Test
• Allows fragments that are closest in depth to pass

• Stored in Z-buffer

• Update Target
• If pixel passes, modify stencil depth and color buffers
• Reads can be done in parallel, writes require locking

• We’ll look at techniques later to accelerate this

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Depth Test

Color Buffer Depth BufferPrimitives

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Stencil Test

Stencil Buffer ResultColor Buffer

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Depth Test

• Q: Does depth-buffer algorithm handle interpenetrating surfaces?

• A: Of course! Occlusion test is based on depth of triangles at a given sample point.
The relative depth of triangles may be different at different sample points

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Early occlusion-culling (“early Z”)

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Early occlusion-culling (“early Z”)

• A GPU implementation detail: not reflected in the graphics pipeline abstraction
• But it’s still there

• Key assumption: occlusion results do not depend on fragment shading
• Note: early Z only provides benefit if closer triangle is rendered by application first!
• Application developers are encouraged to submit geometry in front-to-back order

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

The 3D Graphics Pipeline

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

15-362/662 | Computer Graphics

• The Graphics Pipeline

• Graphics APIs

• Deferred Shading

• Graphics Architecture

Lecture S01 | APIs & Architecture

• OpenGL
• Shaders are written in GLSL
• Cross-Platform support

• Vulkan
• The cooler OpenGL
• Provides more control & performance on GPU

• DirectX
• Microsoft graphics package
• Direct3D is the suite-specific tool for 3D graphics rendering

• Metal
• Apple graphics package
• Written in Objective-C and Swift
• Dedicated Metal Shading Language

• Integrated Metal debugger in Xcode

Graphics APIs

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

• WebGL
• JavaScript API for running GLSL code in browser

• Web port of OpenGL
• Still runs on GPU
• Easier means for sharing code/applications

• WebGPU
• Run GPU commands in browser
• Successor to WebGL

• Three.JS
• Higher level graphics framework
• Uses WebGL under the hood

Graphics APIs on the Web

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Three.JS

Programming the Graphics Pipeline

• Graphics programming is referred to as a state machine
• Every draw operation changes the active output’s state

• Efficiently managing state changes is a major challenge in
implementations
• Not all state changes are the same cost

• Expensive state changes:
• Changing targets (texture)

• Requires texture cache flush, which severely hurts
texture bandwidth

• Changing shaders
• Forces the pipeline to a stop and flushes contents
• Trashes any prefetching data as a result of change

in access patterns

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Binding Vertex Shaders

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

// shader code is just a string

// made to look like c++ code

const char *vertexShaderSource = "#version 330 core\n"

 "layout (location = 0) in vec3 aPos;\n"

 "void main()\n"

 "{\n"

 ” gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n"

 "}\0";

}

// create vertex shader reference

unsigned int vertexShader;

vertexShader = glCreateShader(GL_VERTEX_SHADER);

// bind vertex shader to reference

glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);

// compile shader

glCompileShader(vertexShader);

Binding Fragment Shaders

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

// shader code is just a string

// made to look like c++ code

const char *fragmentShaderSource = "#version 330 core\n"

 ” out vec4 FragColor; \n"

 "void main()\n"

 "{\n"

 ” FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n"

 "}\0";

}

// create fragment shader reference

unsigned int fragmentShader;

fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);

// bind fragment shader to reference

glShaderSource(fragmentShader, 1, & fragmentShaderSource, NULL);

// compile shader

glCompileShader(fragmentShader);

Creating A Graphics Program

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

// create shader program reference

unsigned int shaderProgram;

shaderProgram = glCreateProgram();

// bind vertex and fragment shaders

glAttachShader(shaderProgram, vertexShader);

glAttachShader(shaderProgram, fragmentShader);

glLinkProgram(shaderProgram);

// create a Vertex Array Object VAO for multiple VBOs

glBindVertexArray(VAO);

// create a Vertex Buffer Object VBO

// bind vertices array to VBO

glBindBuffer(GL_ARRAY_BUFFER, VBO);

glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

// specify how vertices will be parsed

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);

glEnableVertexAttribArray(0);

// enable shader program and vertex buffer

glUseProgram(shaderProgram);

glBindVertexArray(VAO);

// specify draw method

glDrawArrays(GL_TRIANGLES, 0, 3);

Binding Shaders

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

• Instead of printing, we want to draw
• Easiest thing to draw: a triangle!

• Hardest part of Graphics APIs: getting the
bindings correct

• If you can draw a triangle, you have your
pipeline in order
• Simply swap out shaders and data, and

go from there!

The ‘Hello World’ Of Graphics APIs

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Hello Triangle, OpenGL

Tutorial: https://learnopengl.com/Getting-started/Hello-Triangle

15-362/662 | Computer Graphics

• The Graphics Pipeline

• Graphics APIs

• Deferred Shading

• Graphics Architecture

Lecture S01 | APIs & Architecture

• Popular algorithm for rendering in modern games

• Idea: restructure the rendering pipeline to perform
shading after all occlusions have been resolved

• Not a new idea. Implemented in several classic
graphics systems, but not directly supported in most
high-end GPUs
• But modern graphics pipeline provides

mechanism to allow applications to implement
deferred shading efficiently

Deferred Shading

Assassin’s Creed III (2012) Ubisoft

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

What was the first video game to use deferred shading?

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Shrek (2001) Digital Illusions Canada

Feed Forward Rendering

• Occlusion testing done after fragments have been
generated

• Best-case: fragments provided near-to-far
• Worst case: fragments provided far-to-near

• Even Early-Z cannot keep every fragment from
being rasterized

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Deferred Shading

• Two-pass approach:
• Fragment shader outputs surface properties of

nearest surface (G-Buffer)
• Surface properties used to render final image

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Geometry Buffer

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Deferred Shading

• Two-pass approach:
• Fragment shader outputs surface properties of

nearest surface (G-Buffer)
• Surface properties used to render final image

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Two-Pass Algorithm

• Pass 1: Geometry Pass
• Render scene geometry using traditional pipeline
• Write visible geometry information to G-Buffer

• Pass 2: Shading Pass
• For each G-Buffer sample, compute shading
• Read G-Buffer data for current sample
• Accumulate contribution of all lights
• Output final surface color for sample

Leadwerks Engine

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Deferred Rendering on Apple Chips

• Threads work to compute G-Buffer together
• Contents too large to remain in cache, spill to

memory
• Go to shading once G-Buffer fully computed

• Requires reads back into cache

Metal Developer Guide (2020) Apple

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

15-362/662 | Computer Graphics

• The Graphics Pipeline

• Graphics APIs

• Deferred Shading

• Graphics Architecture

Lecture S01 | APIs & Architecture

Graphics Processing Unit

• Developed to efficiently scale the 3D Graphics Pipeline
• Every step was fixed function

• General Purpose Graphics Processing Unit (GPGPU)
• Allowed for customizable nodes known as shaders
• What shaders do we have?

• Vertex shader
• Geometry shader
• Fragment shader

• Other shaders
• Compute shader
• Ray tracing shaders

• Are frame-buffer operations not considered shaders?
• These are toggle-able stages of the pipeline
• You don’t write code for them

• Many applications outside graphics
• Data scientists used GPUs to write their calculations to intermediate

buffers and threw out the resulting render

Nvidia Geforce 256 (1999)

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

Unified GPUs

M1 Pro (2021) Apple

• Example: Apple M1 Pro
• 8 high performance cores
• 2 high efficiency (low power) cores
• 16 core GPU
• Fixed-function media engine for video encoding/decoding

• Frees up CPU + GPU during rendering
• Allows for more expensive video formats

• Neural engine for more efficient machine learning tasks
• Supports most deep learning layers
• Push for CoreML on Mac applications

• Design Philosophy: run important workloads on the most
efficient hardware for the job
• Fixed-function provides efficiency and speed while freeing

up general purpose resources high in demand

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

GPU Architecture

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

GPU Architecture

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

GPU Production

15-362/662 | Computer Graphics Lecture S01 | APIs & Architecture

“In 2009, Intel, Nvidia, and AMD/ATI were the market
share leaders, with 49.4%, 27.8%, and 20.6% market share
respectively. However, those numbers include Intel's
integrated graphics solutions as GPUs.

Not counting those, Nvidia and AMD control nearly 100%
of the market as of 2018. Their respective market shares
are 66% and 33%”

15-362/662 | Computer Graphics

Course Roadmap

[A1: Rasterization] [A2: MeshEdit]

[A3: PathTracer] [A4: Animation]

Next Time

Lecture S01 | APIs & Architecture

	Slide 1: Special Topics in A1: Graphics APIs & Architecture
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

