Introduction To Geometry

- Implicit & Explicit Geometry
- Manifold Geometry
- Local Geometric Operations

What Is Geometry?

"Earth" "measure"
g e o m • e • r y /jē'ämətrē/ n.
1. The study of shapes, sizes, patterns, and positions.
2. The study of spaces where some quantity (lengths, angles, etc.) can be *measured*.

Creating and processing geometry are key components of Computer Graphics. First of all, we need to digitally represent the geometry!

How To Represent Geometry

How To Represent Humans

How To Represent Machines

How To Represent Cloth

How To Represent Water

How To Represent This Thing

Many Ways To Encode Geometry

- Explicit:
 - point cloud
 - polygon meshes
 - subdivision surfaces
 - NURBS
- Implicit:
 - level set
 - constructive solid geometry
 - algebraic surface
 - L-systems
 - Fractals
- Not one best geometric representation!
 - Each is suited for a different task
 - Tradeoffs between:
 - Accuracy
 - Memory
 - Performance (searching/operating)

Implicit Geometry

- Points aren't known directly, but satisfy some relationship
 - Example: unit sphere is all points such that x²+y²+z²=1
- More generally, in the form f(x,y,z) = 0
- Finding example points is hard
 - Requires solving equation
- Checking if points are inside/outside is **<u>easy</u>**
 - Just evaluate the function with a given point
 - E.g. (2, 2, 2) is not on the unit sphere

Explicit Geometry

- All points are given directly
- More generally:

 $f: \mathbb{R}^2 \to \mathbb{R}^3; (u, v) \mapsto (x, y, z)$

- Given any (u, v), we can find a point on the surface
- Can limit (*u*, *v*) to some range
 - **Example:** triangle with barycentric coordinates
- Finding example points is <u>easy</u>
 - We are given them for free
- Checking if points are inside/outside is <u>hard</u>
 - We are given the output values and need to find input values that satisfy the geometry

More concrete examples on easy and hard:

Implicit Geometry [Hard]

• Given the unit sphere:

 $f(x, y, z) = x^2 + y^2 + z^2 = 1$

- Find a point that exists on it.
- Answer: (1,0,0)
 - Not so difficult, but how did you arrive at the answer?
 - We are given an equation, and need to find coordinates (*x*, *y*, *z*) that satisfy the equation
 - Keep guessing and checking

Implicit Geometry [Easy]

• Given the unit sphere:

 $f(x, y, z) = x^2 + y^2 + z^2 = 1$

- Find if the point (0.75, 0.5, 0.25) lives inside it.
- Answer: yes!
 - $f(0.75, 0.5, 0.25) = 0.75^2 + 0.5^2 + 0.25^2 = 0.875 < 1$
 - Easy to check! Just evaluate the sign of the function at the desired point

Explicit Geometry [Easy]

• Given the torus:

 $f(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u)$

- Find a point that exists on it.
- Answer: (3,0,0)
 - Just plug in any value of (u, v)!
 - We plugged in (u, v) = (0, 0)

Explicit Geometry [Hard]

• Given the torus:

 $f(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u)$

- Find if the point (1.96, -0.39, 0.9) lives inside it.
- **Answer:** no, I'm not computing that
 - Formally speaking, if any rays from the point towards infinity intersect with the surface an odd number of times, then the point is inside; otherwise, no.

Let's look at some implicit examples...

Algebraic Surfaces [Implicit]

- A surface built with algebra
 - Generally thought of as a surface where points are some radius r away from another point/line/surface
- [+] Generates smooth/symmetric surfaces
- [-] Challenging to represent complex shapes

Constructive Solid Geometry [Implicit]

- Build more complicated shapes via Boolean operations
 - Basic operations:

Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

 $\phi_p(x) := e^{-|x-p|^2} \quad ($ $f := \phi_p + \phi_q \quad ($

(Gaussian centered at p)
 (Sum of Gaussians centered at different points)

Level Set Methods [Implicit]

• Store a grid of values approximating function

- Surface is found where interpolated values equal zero
- [+] Provides much more explicit control over shape
- [-] Runs into problems of <u>aliasing!</u>
- [-] storage can be expensive! -> can alleviate this issue by only storing a narrow band of distances near the surface

Fractals [Implicit]

- Defined recursively; exhibit self-similarity, detail at all scales
- [+] New "language" for describing natural phenomena
- [-] Hard to control shape!

Let's look at some explicit examples...

Point Cloud [Explicit]

- A list of points (*x*, *y*, *z*)
 - Often augmented with normal, colors, etc.
- [+] Easily represent any kind of geometry
- [+] Easy to draw dense cloud (>>1 point/pixel)
- [+] Useful for simulating topology changes (e.g., fluids, fractures, etc.)
- [-] Large lookup time
- [-] Hard to interpolate under-sampled regions
- [-] Hard to do processing (need to figure out connectivity)

Triangle Mesh [Explicit]

- Store vertices as triples of coordinates (x, y, z)
- Store triangles as triples of indices (*i*,*j*,*k*)
- [+] Easy interpolation with good approximation
 - Use barycentric interpolation to define points inside triangles
- [-] irregular neighborhood
- Polygonal Mesh: shapes do not need to be triangles
 - E.g., quads

Implicit & Explicit Geometry

- Manifold Geometry
- Local Geometric Operations

Manifold Assumption

- A mesh is manifold if and only if it can exist in real life
 - Important for simulation/3D printing
- Everything in real life has volume to it
 - Likewise, every manifold surface has some volume it encases
 - Allows us to think of manifold surfaces as 'shells' to an inner volume
 - Example: M&Ms
- Everything in real life, when zoomed in close enough, should be able to have a rectangular coordinate grid
- Likewise, every manifold surface should be planar when zoomed out far enough
 - Example: Planet Earth

Manifold Properties on Polygon Meshes

- For polygonal surfaces, check for "fins" and "fans"
- Every edge is contained in only two polygons (no "fins")
 - The extra 3rd or 4th or 5th or so forth polygon is the fin of a fish
- The polygons containing each vertex make a single "fan"
 - We should be able to loop around the faces around a vertex in a clear way

Manifold Check

Manifold Check

**https://github.com/rlguy/Blender-FLIP-Fluids/wiki/Manifold-Meshes

Planes Are Not Manifold

- Each edge of a plane only touches 1 polygon
 - Breaks the "fin" constraint
- More intuitively: **no notion of thickness!**
 - Does not exist in real life
 - Paper (best approximation of plane) still has thickness, about 0.1mm
- But it is efficient to represent such thin geometry using a single layer of surface mesh
- So we relax our assumption a bit, and allow the existence of **boundary edges**, which has 1 polygon per edge
 - -- a way to represent complex manifold geometry as simpler non-manifold geometry

What are some ways to describe the connectivity of geometry?

Polygon Soup

- Most basic idea imaginable:
 - For each triangle, just store three coordinates
 - No other information about connectivity
 - Not much different from point cloud
 - A "Triangle cloud"?
- Pros:
 - [+] Really stupid simple
- Cons:
 - [-] Really stupid
 - [-] Redundant storage of vertices
 - [-] Very difficult to find neighboring polygons

Adjacency List

A little more complicated:	VERTICES	POLYGONS	
 Store triples of coordinates (x,y,z) 	x y z	i j k	
• Store tuples of indices referencing the coordinates	0: -1 -1 -1	0 2 1	
needed to build each triangle	1: 1 -1 1	0 3 2	
	2: 1 1 -1	3 0 1	
• Pros:	3: -1 1 1	3 1 2	
 [+] No duplicate coordinates 			
 [+] Lower memory footprint 		3	
 [+] Easy to keep geometry manifold 		*	
 [+] Supports nonmanifold geometry 			
 [+] Easy to change connectivity of geometry 			
Cons:			
 [-] Very difficult to find neighboring polygons 			

• [-] Difficult to add/remove mesh elements

0

Incidence Matrices

- If we want to know our neighbors, let's store them:
 - Store triples of coordinates (x,y,z)
 - Store incidence matrix between vertices + edges, and edges + faces
 - 1 means touch, 0 means no touch
 - Store as sparse matrix
- Pros:
 - [+] No duplicate coordinates
 - [+] Finding neighbors is O(1)
 - [+] Easy to keep geometry manifold
 - [+] Supports nonmanifold geometry
- Cons:
 - [-] Larger memory footprint
 - [-] Hard to change connectivity with fixed indices
 - [-] Difficult to add/remove mesh elements

|--|

۲	7 0	v1	v 2	v3
e0	1	1	0	0
e1	0	1	1	0
e2	1	0	1	0
e3	1	0	0	1
e4	0	0	1	1
e5	0	1	0	1

 $EDGE \leftrightarrow FACE$

e	€0	e1	e2	e3	e4	e 5
£0	1	0	0	1	0	1
f1	0	1	0	0	1	1
f2	1	1	1	0	0	0
£3	0	0	1	1	1	0

Halfedge Data Structure

- Let's store a little, but not a lot, about our neighbors:
 - Halfedge: edge with a direction (ordered)
 - E.g. edge formed by vertex v0 and v1 has 2 halfedges v0-v1 and v1-v0
 - Each edge gets 2 halfedges
 - Each halfedge "glues" an edge to a face

• Pros:

- [+] No duplicate coordinates
- [+] Finding neighbors is O(1)
- [+] Easy to traverse geometry
- [+] Easy to change mesh connectivity
- [+] Easy to add/remove mesh elements
- [+] Easy to keep geometry manifold

• Cons:

• [-] Does not support nonmanifold geometry

Halfedge Data Structure

Makes mesh traversal easy
Use "twin" and "next" pointers to move around the mesh
Use "vertex", "edge", and "face" pointers to grab element

Dele: visit all vertices in a face
Example: visit all
Halfedge* h = f->halfedge;
Halfedge* h =

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

Note: only makes sense if mesh is manifold!

•

Halfedge Data Structure

- Halfedge meshes are always manifold!
- Halfedge data structures have the following constraints:

```
h->twin->twin == h // my twin's twin is me
h->twin != h // I am not my own twin
h2->next = h //every h's is someone's "next"
```

- Keep following **next** and you'll traverse a face
- Keep following **twin** and you'll traverse an edge
- Keep following **next->twin** and you'll traverse a vertex
- Q: Why, therefore, is it impossible to encode the red figures?
 - Not enough variable to store the full connectivity
 - The traversal will not work either.

Connectivity vs Geometry

- Recall manifold conditions (fans not fins):
 - These conditions say nothing about vertex positions! Just connectivity
- Can have perfectly good (manifold) connectivity, even if geometry is awful
- Leads to confusion when debugging:
 - Mesh looks "bad", even though connectivity is fine

Implicit & Explicit Geometry

Manifold Geometry

• Local Geometric Operations

Edge Flip

Goal: Move edge e around faces adjacent to it:

- No elements created/destroyed, just pointer reassignment
- Flipping the same edge multiple times yields original results

Edge Vertex Split

Goal: Insert edge between vertex v and midpoint of edge e:

- Creates a new vertex, new edges, and new face
- Involves much more pointer reassignments

Edge Collapse

Goal: Replace edge (c,d) with a single vertex m:

- Deletes a vertex, (up to) 3 edges, and (up to) 2 faces
 - Depends on the degree of the original faces

Local Operations

Many other local operations you will explore in your homework...

Local Operation Tips

- Always draw out a diagram
 - We've given you some unlabeled diagrams
 - With pen + paper, label the elements you'll need to collect/create
- Stage your code in the following way:
 - Create
 - Collect
 - Disconnect
 - Connect
 - Delete

- Write asserts around your code
 - Check if elements that should be deleted were deleted
 - Make sure there are no dangling references to anything that has been deleted
 - Make sure every element that you disconnected or reconnected is still valid
 - What it means for a vertex to be valid is not the same as what it means for an edge to be valid, etc.