
A3: PathTracing

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

• Camera Rays

• Intersections

• BVH Construction

• BVH Navigation

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Motivation

- Path tracing is everywhere!

- Many of the neat graphics renders you’ve seen, animations you’ve watched, or

games you’ve played have probably been path traced!

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

How does it work?

- At a high level, we’re trying to replicate what is happening in the real world

- We do this by simulating how light rays interact with our scene and shooting out

millions of (or more) light rays and running this complex simulation to get our final

image

- This doesn’t mean our renders need to be photo realistic though

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

TAs

Students BVH code in OH

• Camera Rays

• Intersections

• BVH Construction

• BVH Navigation

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Task 1: Camera Rays

- To path trace, we need to shoot out

rays from the camera that bounce

around the scene

- This task is responsible for actually

constructing the rays

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Task 1: Camera Rays

- “Sample a ray that starts at the origin and passes through pixel (px,py)”

- To do this, we need the width and height of the sensor plane given:

- Vertical_fov

- Aspect_ratio = W/H

- How do we calculate the

Width and height??

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

• Camera Rays

• Intersections

• BVH Construction

• BVH Navigation

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Task 2 : Intersections

- We want to answer “does this ray hit this object?”

- We have two types of objects to check ray intersections against :

Spheres (within the Shape class) and Triangles (as a part of a Tri_Mesh)

- For a given ray and shape, want to output :

- hit: a boolean representing if there is a hit or not.

- distance: the distance from the origin of the ray to the hit point

- position: the position of the hit point

- uv: The uv coordinates of the hit point on the surface

- origin: the origin of the query ray

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Step 1: Triangle::hit
Reference code uses Moller-Trombore algorithm:

- Parameterize points within the triangle with

barycentric coordinates (u, v, w) :

- Parameterize input ray with normalized direction d,

origin o, and time t (remember distance = rate x

time!)

- P = o + t*d

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Step 1: Triangle::hit
- Now we set them equal to each other!

-Cramer’s Rule reduces this to a fraction of determinants:

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Step 1: Triangle::hit

Things to think about:

-This equation gives us barycentric coordinates u and v. How do we use these

to tell if the ray intersection point is actually in the triangles?

-Look at the denominator What happens if we get 1/0. Can

such a triangle be hit by a ray?

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Step 2: Sphere::hit

-Instead of barycentric coordinates, use algebraic

equation for sphere with center c and radius r :

-Then we use the good ol’ quadratic formula

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

• Camera Rays

• Intersections

• BVH Construction

• BVH Navigation

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Task 3: BVH

Bounding Volume Hierarchy

- Spatial Hierarchy

- Bounding Boxes (bbox) + Primitives

- Functions like a tree

Motivation:

Checking all the primitives at once for every

ray hit is expensive.

BVH’s tree structure speeds it up from

O(n) -> O(nlogn)

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

High-Level Procedure:

● Step 0 - Implement BBox

Intersection

● Step 1 - Create BVH data structure

using Surface Area Heuristic (to

make Step 2 faster)

● Step 2 - Implement Path Tracing

with BVH data structure

Step 0

Step 1

Step 2

Task 3: BVH

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Step 0: Ray-BBox Intersection

Implement Ray-BBox intersection in BBox::hit

bool BBox::hit(const Ray &ray, Vec2
×);

Task 3: BVH

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

How do I partition the 3D space (and the mesh)?

Task 3: BVH

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Surface Area Heuristic
Want to optimally sort Primitives into
buckets (or partitions)

Bucket A Bucket B

Task 3: BVH

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Surface Area Heuristic
Want to optimally sort Primitives into
buckets (or partitions)

Bucket A Bucket B

Task 3: BVH

C
trav

 , C
isect

 , S
N
 are constants

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

For each partition along the XYZ axis:
1. Define buckets along the line of partition
2. Calculate the BBox for the bucket based on the

primitives in the bucket
3. Keep track of the best optimal partition

Construct the BVH based on the lowest cost partition
found, and recurse on it(or make node leaf)

Task 3: BVH

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Step 1: BVH Construction For axis x,y,z:
 Initialize buckets
 For each primitive p in node:
 B = compute_bucket(p.centroid)
 B.bbox.enclose(p.bbox)
 B.prim_count++

For each of |B| - 1 possible
partitions

Evaluate cost (SAH), keep track
of lowest cost partition

Recurse on lowest cost partition found
(or make node leaf)

Task 3: BVH

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Step 1: BVH Construction

For axis x,y,z:
 Initialize buckets
 For each primitive p in node:
 B = compute_bucket(p.centroid)
 B.bbox.enclose(p.bbox)
 B.prim_count++

For each of |B| - 1 possible
partitions

Evaluate cost (SAH), keep track
of lowest cost partition

Recurse on lowest cost partition found
(or make node leaf)

Task 3: BVH Bucket = result from a possible (but maybe not the best) partition
 In code: some variable that you will have to keep track of

 Partition along x = 1, 2, 3 …

Bucket 1 Bucket 2

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Step 1: BVH Construction

For axis x,y,z:
 Initialize buckets
 For each primitive p in node:
 B = compute_bucket(p.centroid)
 B.bbox.enclose(p.bbox)
 B.prim_count++

For each of |B| - 1 possible
partitions

Evaluate cost (SAH), keep track
of lowest cost partition

Recurse on lowest cost partition found
(or make node leaf)

Task 3: BVH Bucket = result from a possible (but maybe not the best) partition
 In code: some variable that you will have to keep track of

 Partition along x = 1, 2, 3 …

Bucket 1 Bucket 2

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

For axis x,y,z:
 Initialize buckets
 For each primitive p in node:
 B = compute_bucket(p.centroid)
 B.bbox.enclose(p.bbox)
 B.prim_count++

For each of |B| - 1 possible
partitions

Evaluate cost (SAH), keep track
of lowest cost partition

Recurse on lowest cost partition found
(or make node leaf)

Step 1: BVH Construction

Big box

Bucket 1 Bucket 2 << nodes

Task 3: BVH

Bucket 1 Bucket 2

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

For axis x,y,z:
 Initialize buckets
 For each primitive p in node:
 B = compute_bucket(p.centroid)
 B.bbox.enclose(p.bbox)
 B.prim_count++

For each of |B| - 1 possible
partitions

Evaluate cost (SAH), keep track
of lowest cost partition

Recurse on lowest cost partition found
(or make node leaf)

Bucket 1 Bucket 2

Step 1: BVH Construction

Task 3: BVH
Bucket 1 Count: 1

Bucket 2 Count: 0

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

For axis x,y,z:
 Initialize buckets
 For each primitive p in node:
 B = compute_bucket(p.centroid)
 B.bbox.enclose(p.bbox)
 B.prim_count++

For each of |B| - 1 possible
partitions

Evaluate cost (SAH), keep track
of lowest cost partition

Recurse on lowest cost partition found
(or make node leaf)

Step 1: BVH Construction

Task 3: BVH
Bucket 1 Count: 2

Bucket 2 Count: 0

Partition 1

Bucket 1 Bucket 2

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

For axis x,y,z:
 Initialize buckets
 For each primitive p in node:
 B = compute_bucket(p.centroid)
 B.bbox.enclose(p.bbox)
 B.prim_count++

For each of |B| - 1 possible
partitions

Evaluate cost (SAH), keep track
of lowest cost partition

Recurse on lowest cost partition found
(or make node leaf)

Step 1: BVH Construction

Task 3: BVH
Bucket 1 Count: 2

Bucket 2 Count: 0

Partition 2

Bucket 1 Count: 1

Bucket 2 Count: 1

Partition 1

Bucket 1 Bucket 2

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

For axis x,y,z:
 Initialize buckets
 For each primitive p in node:
 B = compute_bucket(p.centroid)
 B.bbox.enclose(p.bbox)
 B.prim_count++

For each of |B| - 1 possible
partitions

Evaluate cost (SAH), keep track
of lowest cost partition

Recurse on lowest cost partition found
(or make node leaf)

Step 1: BVH Construction

Task 3: BVH
Bucket 1 Count: 2

Bucket 2 Count: 0

SAH: small

Partition 2

Bucket 1 Count: 1

Bucket 2 Count: 1

SAH: big

Partition 1

Bucket 1 Bucket 2

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

For axis x,y,z:
 Initialize buckets
 For each primitive p in node:
 B = compute_bucket(p.centroid)
 B.bbox.enclose(p.bbox)
 B.prim_count++

For each of |B| - 1 possible
partitions

Evaluate cost (SAH), keep track
of lowest cost partition

Recurse on lowest cost partition found
(or make node leaf)

Step 1: BVH Construction

Task 3: BVH

Bucket 1

Bucket 2

Stop if primitives <= max_leaf_size

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Another way to think about it

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

Helpful functions!

auto it = std::partition(primitives.begin() + bdata.start,
 primitives.begin() + bdata.start + bdata.range,
 [split_dim, split_val](const Primitive& p) {

return p.bbox().center()[split_dim] < split_val;
});

std::partition(v.begin(), v.end(), [](int i){return i % 2 == 0;});

Note that the elements are not sorted within the subgroups themselves. You may want to use std::sort to sort

them.

* is where auto it is at

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

https://en.cppreference.com/w/cpp/algorithm/partition
https://en.cppreference.com/w/cpp/algorithm/sort

Helpful functions!

Bbox.enclose - lets one box enclose another

Bbox.center - center of the box

primitives(in build) - vector/array of primitives

Node - used to construct the tree

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

• Camera Rays

• Intersections

• BVH Construction

• BVH Navigation

15-362/662 | Computer Graphics Recitation 07 | PathTracer 1

BVH Navigation

Recitation 07 | PathTracer 1

So how do we actually find out which primitive a light ray is hitting?

15-362/662 | Computer Graphics

15-362/662 | Computer Graphics

BVH Traversal

void hit(Ray* ray, BVHNode* node, HitInfo* best)
{
 if (node->leaf) {
 // check all primitives in leaf for closest
 } else {
 BVHNode* child1 = node->child1;
 BVHNode* child2 = node->child2;

 HitInfo hit1 = intersect(ray, child1->bbox);
 HitInfo hit2 = intersect(ray, child2->bbox);
 // pick node with better time
 BVHNode* first = (hit1.t <= hit2.t) ?
 child1 : child2;
 BVHNode* second = (hit1.t <= hit2.t) ?
 child2 : child1;

 hit(ray, first, best);
 if (hit2.t < best.t)
 hit(ray, second, best);
 }
}

struct BVHNode {
 // is the node a leaf
 bool leaf;
 // min/max coordinates enclosing primitives
 Bbox bbox;
 // left child (can be NULL)
 BVHNode *child1;
 // right child (can be NULL)
 BVHNode *child2;
 // for leaves, stores primitives
 Primitive *primList;
}

struct HitInfo {
 // the primitive the ray hit
 Primitive *prim;
 // the time along the ray the hit occured
 float t;
}

Recitation 07 | PathTracer 1

Implement Trace BVH<Primitive>::hit(const Ray& ray);

Why do we need to check the other child as well?

Recitation 07 | PathTracer 115-362/662 | Computer Graphics

OK

Why do we need to check the other child as well?

Recitation 07 | PathTracer 115-362/662 | Computer Graphics

NOT OK

