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• The Rasterization Pipeline

• Transformations

• Homogeneous Coordinates

• 3D Rotations
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The Goal Of Graphics

• Render very high complexity 3D scenes
• Hundreds of thousands to millions 

to billions of triangles in a scene
• Complex vertex and fragment 

shader computations
• High resolution screen outputs 

(~10Mpixel + supersampling)
• 30-120 fps

• Limited hardware resources
• Can’t always afford an RTX 4090
• Be efficient enough to run on 

commercial hardware
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Unreal Engine 5 Tech Demo (2020) Epic Games
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Processing The Graphics Pipeline

• Modern real time image generation based on rasterization 
• INPUT: 

• 3D “primitives”—essentially all triangles!
• Colors
• Textures

• OUTPUT: 
• Bitmap image (possibly w/ depth, alpha, …)
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Q: How do we write software 
to perform rasterization?
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Graphics APIs

• Graphics APIs provide a way to interface with GPUs
• More than just draw calls:

• State management
• Memory management
• Bindings
• Window/GUI/Events

• Think of a graphics API as a way for the CPU to 
communicate with the GPU
• Doesn’t necessarily need to be for graphics

• Ex: compute shaders

• Common APIs:
• OpenGL (Khronos Group)
• Vulkan (Khronos Group)
• Metal (Apple)
• DirectX (Windows)
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Hardware Vs Software Rasterization

• Written to run on the GPU
• Written using one or more Graphics APIs
• No clear method to debug shaders**
• Much faster execution
• Inherently data-parallel
• Harder to write
• Branching shaders can hurt execution

Lecture 03 | Transformations

** APIs such as Metal offer debug tools to help profile stages of the rasterization pipeline

• Written to run on the CPU
• Modify the framebuffer pixel by pixel
• Very easy to debug
• Very slow execution
• Not parallel
• Easier to write
• Branching doesn’t hurt serial execution

Hardware Software
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The Graphics Pipeline

Our rasterization pipeline doesn’t look 
much different from “real” pipelines used 
in modern APIs / graphics hardware
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Let’s simplify things a bit
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The “Simpler” Graphics Pipeline
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• The Rasterization Pipeline

• Transformations

• Homogeneous Coordinates

• 3D Rotations
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Transformations In Computer Graphics

• Common uses of linear transformations:
• Position/deform objects in space
• Camera movements
• Animate objects over time
• Project 3D objects onto 2D images 
• Map 2D textures onto 3D objects
• Project shadows of objects onto other objects

• Today we’ll focus on common transformations of 
space (rotation, scaling, etc.) encoded by linear 
maps
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Super Mario 64: Camera Guy (1996) Nintendo
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Review: Linear Maps

What does it mean for a map 𝑓: ℝ𝑛 → ℝ𝑛 to be linear?
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Geometrically it maps lines to 
lines, and preserves the origin

Algebraically it preserves vector space operations 
(addition & scaling)
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Review: Linear Maps

• Why do we care about linear transformations?
• Cheap to apply 
• Usually pretty easy to solve for (linear systems) 
• Composition of linear transformations is linear

• Product of many matrices is a single matrix
• Gives uniform representation of transformations
• Simplifies graphics algorithms, systems (e.g., GPUs & APIs)
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[ rotation ] [ scale ] [ rotation ] [ composite ]
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Types of Transformations
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[ translation ]

[ rotation ]

[ scale ]

[ shear ]
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Invariants of Transformation
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A transformation is determined by the invariants it preserves
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Rotation
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[ keeps origin fixed ] [ preserves distance ] [ preserves orientation ]

First two properties imply rotations are linear

We say that a transform preserves orientation if det 𝑇 > 0
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2D Rotations

Lecture 03 | Transformations

Rotations preserve distances and the origin—hence, a 2D rotation by an 
angle 𝜃 maps each point 𝑥 to a point 𝑓(𝑥) on the circle of radius |𝑥|:
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2D Rotations
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Rotations (like all transforms) are linear maps.
We can express the transform as a change of bases:
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3D Rotations
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𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

[ rotate around 𝒙𝟏 ] [ rotate around 𝒙𝟐 ] [ rotate around 𝒙𝟑 ]

In 3D, keep one axis fixed and rotate the other two:
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3D Inverse Rotations
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𝑹𝑻𝑹 = 𝑰 ⇒ 𝑹𝑻= 𝑹−𝟏



• Does every matrix 𝑄𝖳𝑄 = 𝐼 represent a rotation?
• Must preserve:

• Origin
• Distance
• Orientation

• Consider:

• Just like rotations, 𝑄 has nice inverse properties:

• But the determinant is negative!
• Not orientation preserving 
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Reflections
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Scaling
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• Each vector 𝑢 gets scaled by some scalar 𝑎

• Scaling is a linear transformation
• Multiplication:

• Addition:

𝑓(𝐮) = 𝑎𝐮, 𝑎 ∈ ℝ

𝑓(𝐮 + 𝐯) =
𝑎(𝐮 + 𝐯) =
𝑎𝐮 + 𝑎𝐯 =

𝑓(𝐮) + 𝑓(𝐯)

𝑓(𝑏𝐮) = 𝑎𝑏𝐮 = 𝑏𝑎𝐮 = 𝑏𝑓(𝐮)
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Negative Scaling
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Can think of negative scaling as a series of reflections

Also works in 3D:

[ flip x ] [ flip y ] [ flip z ]

In 2D, reflection reverses orientation twice (det 𝑇 > 0) 
In 3D, reflection reverses orientation thrice (det 𝑇 < 0)
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Non-Uniform Scaling

Lecture 03 | Transformations

• To scale a vector 𝑢 by a non-uniform amount (𝑎, 𝑏, 𝑐):

• The above works only if scaling is axis-aligned. What if it isn’t?
• Idea:

• Rotate to a new axis 𝑅
• Perform axis-aligned scaling 𝐷
• Rotate back to original axis 𝑅𝑇

• Resulting transform 𝐴 is a symmetric matrix

• Q: Do all symmetric matrices represent non-uniform scaling?

𝐴 ≔ 𝑅𝑇𝐷𝑅
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Spectral Theorem
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• Spectral theorem says a symmetric matrix 𝐴 = 𝐴𝑇 has:
• Orthonormal eigenvectors 𝑒1, … , 𝑒𝑛 ∈ ℝ𝑛

• Real eigenvalues 𝜆1, … , 𝜆𝑛 ∈ ℝ

• Eigenvalues represent the diagonals of the scalar transform
• Eigenvectors are axis which we are scaling about

• Can be represented as a rotation transform

• Can write the relationship as 𝐴𝑅 = 𝑅𝐷
• Equivalently, 𝐴 = 𝑅𝐷𝑅𝖳

• Hence, every symmetric matrix performs a non-uniform scaling 
along some set of orthogonal axes
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Shear
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• A shear displaces each point 𝑥 in a direction 𝑢 according to its 
distance along a fixed vector 𝑣:

• Still a linear transformation—can be rewritten as:

• Example:

𝑓𝐮,𝐯(𝐱) = 𝐱 + ⟨𝐯, 𝐱⟩𝐮

𝐴𝐮,𝐯 = 𝐼 + 𝐮𝐯𝖳

𝐮 = (cos(𝑡), 0,0)

𝐯 = (0,1,0)
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Composing Transforms

Lecture 03 | Transformations

𝑅𝑥(𝑡) 𝑅𝑦(𝑡) 𝑆(𝑡) 𝐴(𝑡) = 𝑅𝑥(𝑡)𝑅𝑦(𝑡)𝑆(𝑡)

We can now build up composite transformations via matrix multiplication
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Composing Transforms
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3

1

1.5

0.5

[ scale by 1/2, then translate by (3,1) ]

[ translate by (3,1), then scale by 1/2 ]

• Order matters when compositing transforms!

[ original ]
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Composing Transforms

Lecture 03 | Transformations

2

3

4
2

How would you perform these transformations?**

**remember there’s always more than one way to do so
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Rotating About A Point

Lecture 03 | Transformations

[ Step 1 ] translate by -x

[ Step 3 ] translate by x[ Step 2 ] rotate

[ Step 0 ] compute x (dist. from origin)
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Decomposing Transforms
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• In general, no unique way to write a given linear 
transformation as a composition of basic transformations!
• However, there are many useful decompositions:

• Singular value decomposition 
• Good for signal processing

• LU factorization 
• Good for solving linear systems

• Polar decomposition 
• Good for spatial transformations

𝐴
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Polar & Single Value Decomposition
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Polar decomposition decomposes any matrix 𝐴 into orthogonal 
matrix 𝑄 and symmetric positive-semidefinite matrix 𝑃

rotation/reflection nonnegative
nonuniform scaling

rotation

axis-aligned
scaling

rotation

Since 𝑃 is symmetric, can take this further via the spectral 
decomposition 𝑃 = 𝑉𝐷𝑉𝑇 (𝑉 orthogonal, 𝐷 diagonal):

Result U𝐷𝑉𝑇 is called the singular value decomposition
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Interpolating Transformations [Linear]

Lecture 03 | Transformations

Consider interpolating between two linear transformations 

𝐴0, 𝐴1 of some initial model

𝐴(𝑡) = (1 − 𝑡)𝐴0 + 𝑡𝐴1

Idea: take a linear combination of the two matrices

𝑡 ∈ [0,1]

Hits the right start/endpoints… but looks awful in between!
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Interpolating Transformations [Polar]

Lecture 03 | Transformations

Better idea: separately interpolate components of polar decomposition

𝐴0 = 𝑄0𝑃0

𝐴1 = 𝑄1𝑃1

𝑃(𝑡) = (1 − 𝑡)𝑃0 + 𝑡𝑃1 𝐴(𝑡) = 𝑄(𝑡)𝑃(𝑡)𝑄(𝑡) = (1 − 𝑡)𝑄0 + 𝑡𝑄1

[ scaling ] [ rotation ] [ composite ]
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Translation

Lecture 03 | Transformations

• So far we’ve ignored a basic transformation—translations
• A translation simply adds an offset 𝐮 to the given point 𝐱

• Is this translation linear?
• (certainly seems to move across a line…)

𝑓𝐮(𝐱) = 𝐱 + 𝐮

𝑓𝐮 𝐱 + 𝐲 = 𝐱 + 𝐲 + 𝐮

𝑓𝐮(𝐱) + 𝑓𝐮(𝐲) = 𝐱 + 𝐲 + 2𝐮
𝑓𝐮(𝑎𝐱) = 𝑎𝐱 + 𝐮

𝑎𝑓𝐮(𝐱) = 𝑎𝐱 + 𝑎𝐮

[ additivity ] [ homogeneity ]

Translations are not linear!
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Maybe translations turn linear when we go into the 
4th dimension…
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• The Rasterization Pipeline

• Transformations

• Homogeneous Coordinates

• 3D Rotations
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Homogeneous Coordinates

Lecture 03 | Transformations

• Came from efforts to study perspective

• Introduced by Möbius as a natural way of assigning 
coordinates to lines

• Show up naturally in a surprising large number of places in 
computer graphics:
• 3D transformations
• Perspective projection
• Quadric error simplification
• Premultiplied alpha
• Shadow mapping
• Projective texture mapping
• Discrete conformal geometry
• Hyperbolic geometry
• Clipping
• Directional lights
• …

Church of Santo Spirito (1428) Filippo Brunelleschi
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Homogeneous Coordinates in 2D

• Consider any 2D plane that does not pass through the origin 𝑜 in 3D
• Every line through the origin in 3D corresponds to a point in the 

2D plane
• Just find the point 𝑝 where the line 𝐿 pierces the plane

• Consider a point 𝑝′ = (𝑥, 𝑦), and the plane 𝑧 = 1 in 3D

• Any three numbers 𝑝 = (𝑎, 𝑏, 𝑐) such that 
𝑎

𝑐
,

𝑏

𝑐
= (𝑥, 𝑦) are 

homogeneous coordinates for 𝑝
• Example: (𝑥, 𝑦, 1) 
• In general:  (𝑐𝑥, 𝑐𝑦, 𝑐) for  𝑐 ≠ 0

• The 𝑐 is commonly referred to as the homogeneous 
coordinate

• Great, but how does this help us with transforms?

𝐿

𝐨
𝐩

𝐩
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Translation in Homogeneous Coordinates

• A 2D translation is similar to a 3D shear
• Moving a slice up/down the shear 

moves the shape

• Recall shear is written as:

• In our case, 𝑣 = (0, 0,1), so**

𝑓𝐮,𝐯 𝐱 = 𝐱 + 𝐯, 𝐱 𝐮

𝑓𝐮,𝐯(𝐱) = 𝐼 + 𝐮𝐯𝖳 𝐱

**most often in this class we will also use c = 1
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2D Transforms in Homogeneous Coordinate

[ original ] [ 2D rotation ] [ 2D translate ] [ 2D scale ]

Original shape in 2D can be 
viewed as many copies 

along the z-axis

Rotate around the z-axis Shear in direction of 
translation

Scale x-axis and y-axis,
preserve z-axis

Q: What about 3D homogeneous coordinates?
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3D Transforms in Homogeneous Coordinate

[ point in 3D ]

[ rotate around 𝑦 by 𝜃 ] [shear by 𝑧 in (𝑠,𝑡) direction ] [ scale by 𝑎,𝑏,𝑐 ] [ translate by (𝑢,𝑣,𝑤) ]

Matrix representations of 3D linear transformations just get 
an additional identity row/column: 
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Points vs. Vectors

• Homogeneous coordinates should be used differently for points and vectors:
• Triangle vertices are “points” and should be translated and rotated

• But if we do the same for the normal, it no longer becomes a 
normal

• Idea: normal is a “vector” and should just rotate!**
• Set homogeneous coordinate to 0

**translating or scaling a triangle should never change the normal
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Points vs. Vectors in Homogeneous Coordinates

• In general:
• A point has a nonzero homogeneous coordinate (c = 1)
• A vector has a zero homogeneous coordinate  (c = 0)

• But wait… what division by c mean when it’s equal to zero?
• Well consider what happens as 𝑐 approaches 0…

(𝑥, 𝑦)/1 (𝑥, 𝑦)/0.5 (𝑥, 𝑦)/0.25 (𝑥, 𝑦)/0.001

• Can think of vectors as “points at infinity” (sometimes called “ideal points”)
• But don’t actually go dividing by zero…
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Where can we use transforms?
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Scene Graph

• Suppose we want to build a skeleton out of cubes
• Idea: transform cubes in world space

• Store transform of each cube

• Problem: If we rotate the left upper leg, the lower left 
leg won’t track with it
• Better Idea: store a hierarchy of transforms

• Known as a scene graph
• Each edge (+root) stores a linear 

transformation
• Composition of transformations gets applied 

to nodes
• Keep transformations on a stack to 

reduce redundant multiplication

• Lower left leg transform: 𝐴2𝐴1𝐴0

𝐴0

𝐴1

𝐴2
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Instancing

• What if we want many copies of the same object in a scene?
• Rather than have many copies of the geometry, scene 

graph, we can just put a “pointer” node in our scene graph
• Saves a reference to a shared geometry
• Specify a transform for each reference

• Careful! Modifying the geometry will modify all 
references to it

Realistic modeling and rendering of plant ecosystems 
(1998) Deussen et al
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• The Rasterization Pipeline

• Transformations

• Homogeneous Coordinates

• 3D Rotations
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3D Rotations

• Rotating in 2D is the same as rotating around the z-axis
• Idea: independently rotate around each (x,y,z)-axis for 

3D rotations

• Problem: order of rotation matters! 
• Rotate a Rubik’s cube 90deg around the y-axis and 

90deg around the z-axis
• Rotate a Rubik’s cube 90deg around the z-axis and 

90deg around the y-axis
• They will not be the same!

• Order of rotation must be specified

xy

z
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3D Rotations in Matrix Form

Idea: independently rotate around each (x,y,z)-axis for 3D rotations:

Combining the matrices:

Consider the special case θy = π/2 (so, cos θy  = 0, sin θy  = 1):
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Gimbal Lock

• No matter how we adjust θx, θz, can only rotate in one plane!
• We are now “locked” into a single axis of rotation

• Not a great design for airplane controls!
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Rotation From Axis/Angle

Alternatively, there is a general expression for a matrix that 
performs a rotation around a given axis u by a given angle θ:

Just memorize this matrix! : )
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Is there a better way to perform 3D rotations?
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Bridging The Rotation Gap 

• Hamilton wanted to make a 3D equivalent for complex numbers
• One day, when crossing a bridge, he realized he needed 4 

(not 3) coordinates to describe 3D complex number space
• 1 real and 3 complex components

• He carved his findings onto a bridge (still there in Dublin)
• Later known as quaternions

William Rowan Hamilton
[1805 – 1865]
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Quaternions For Math People 

• 4 coordinates (1 real, 3 complex) comprise coordinates.
• Η is known as the ‘Hamilton Space’

• Quaternion product determined by:

• Warning: product no longer commutes!

• With 3D rotations, order matters.



15-362/662 | Computer Graphics Lecture 03 | Transformations

Quaternions For Non-Math People 

• Recall axis-angle rotations
• Represent an axis with 3 coordinates (𝑖, 𝑗, 𝑘)
• Represent an angle by some scalar 𝑎

• Just like how we multiply rotation matrices together, we can 
also multiply complex components. If we represent:
•  𝑖 as a 90deg rotation about 𝑥-axis
•  𝑗 as a 90deg rotation about 𝑦-axis
•  𝑘 as a 90deg rotation about 𝑧-axis

• Then two 90deg rotations about the same axis will 
produce the inverted image, the same as scaling by -1

• This can also be rewritten as:
𝑖𝑗 = 𝑘

• A 90deg x-axis rotation and a 90deg y-axis rotation is 
the same as a 90deg z-axis rotation

• Can be rewritten in any other way
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Multiplying Quaternions

Given two quaternions:

Can express their product as:

The result still looks like a quaternion
But there’s a better way to multiply…

recall
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Multiplying Quaternions

Recall quaternions can be thought of as an axis and angle:

Can express their product as:

If the scalar components are 0, we get:
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Rotating With Quaternions

•  𝑞 now looks like:

• Goal: rotate 𝑥 by angle 𝜃 around axis 𝑢 =  (𝑥, 𝑦, 𝑧) :
• Make 𝑥 imaginary, and build 𝑞 based on 𝑢 and 𝜃

• Note: components of 𝑞 must be normalized!

• ത𝑞 is 𝑞 with every complex component negative
• Now just compute ത𝑞𝑥𝑞 to get final rotation 
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Interpolating With Quaternions

• Interpolating Euler angles can yield strange-looking 
paths, non-uniform rotation speed, etc.
• Simple solution w/ quaternions: “SLERP” 

(spherical linear interpolation):

Fifa ‘15 (2014) Electronic Arts

Animating Rotation with Quaternion Curves (1985) Shoemake
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Texture Mapping With Quaternions

• Quaternions can be used to generate texture maps 
coordinates
• Complex numbers are natural language for 

angle-preserving (“conformal”) maps
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Spatial Transformation Summary

• scaling
• rotation
• reflection
• shear

• translation
• perspective 

projection

[ linear transformations ] [ nonlinear transformations ]

• Compose basic transformations to get more interesting ones
• Always reduces to a single 4x4 matrix (in homogeneous 

coordinates) 
• Order of composition matters!

• Homogeneous coordinates can turn nonlinear transformations linear
• Many ways to decompose a given transformation (polar, SVD, …)
• Use scene graph to organize transformations
• Use instancing to eliminate redundancy
• Quaternions help avoid troubles with Euler rotations in 3D (Gimbal 

Lock, Interpolation inconsistencies)

next lecture

Maxwell the cat (2022) Gary’s Mod
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