
Coordinate Spaces
& Transformations

15-362/662 | Computer Graphics Lecture 03 | Transformations

15-362/662 | Computer Graphics Lecture 03 | Transformations

• The Rasterization Pipeline

• Transformations

• Homogeneous Coordinates

• 3D Rotations

15-362/662 | Computer Graphics

The Goal Of Graphics

• Render very high complexity 3D scenes
• Hundreds of thousands to millions

to billions of triangles in a scene
• Complex vertex and fragment

shader computations
• High resolution screen outputs

(~10Mpixel + supersampling)
• 30-120 fps

• Limited hardware resources
• Can’t always afford an RTX 4090
• Be efficient enough to run on

commercial hardware

Lecture 03 | Transformations

Unreal Engine 5 Tech Demo (2020) Epic Games

15-362/662 | Computer Graphics

Processing The Graphics Pipeline

• Modern real time image generation based on rasterization
• INPUT:

• 3D “primitives”—essentially all triangles!
• Colors
• Textures

• OUTPUT:
• Bitmap image (possibly w/ depth, alpha, …)

Lecture 03 | Transformations

Q: How do we write software
to perform rasterization?

15-362/662 | Computer Graphics

Graphics APIs

• Graphics APIs provide a way to interface with GPUs
• More than just draw calls:

• State management
• Memory management
• Bindings
• Window/GUI/Events

• Think of a graphics API as a way for the CPU to
communicate with the GPU
• Doesn’t necessarily need to be for graphics

• Ex: compute shaders

• Common APIs:
• OpenGL (Khronos Group)
• Vulkan (Khronos Group)
• Metal (Apple)
• DirectX (Windows)

Lecture 03 | Transformations

15-362/662 | Computer Graphics

Hardware Vs Software Rasterization

• Written to run on the GPU
• Written using one or more Graphics APIs
• No clear method to debug shaders**
• Much faster execution
• Inherently data-parallel
• Harder to write
• Branching shaders can hurt execution

Lecture 03 | Transformations

** APIs such as Metal offer debug tools to help profile stages of the rasterization pipeline

• Written to run on the CPU
• Modify the framebuffer pixel by pixel
• Very easy to debug
• Very slow execution
• Not parallel
• Easier to write
• Branching doesn’t hurt serial execution

Hardware Software

15-362/662 | Computer Graphics

The Graphics Pipeline

Our rasterization pipeline doesn’t look
much different from “real” pipelines used
in modern APIs / graphics hardware

Lecture 03 | Transformations

15-362/662 | Computer Graphics Lecture 03 | Transformations

Let’s simplify things a bit

15-362/662 | Computer Graphics

The “Simpler” Graphics Pipeline

Lecture 03 | Transformations

15-362/662 | Computer Graphics Lecture 03 | Transformations

• The Rasterization Pipeline

• Transformations

• Homogeneous Coordinates

• 3D Rotations

15-362/662 | Computer Graphics

Transformations In Computer Graphics

• Common uses of linear transformations:
• Position/deform objects in space
• Camera movements
• Animate objects over time
• Project 3D objects onto 2D images
• Map 2D textures onto 3D objects
• Project shadows of objects onto other objects

• Today we’ll focus on common transformations of
space (rotation, scaling, etc.) encoded by linear
maps

Lecture 03 | Transformations

Super Mario 64: Camera Guy (1996) Nintendo

15-362/662 | Computer Graphics

Review: Linear Maps

What does it mean for a map 𝑓: ℝ𝑛 → ℝ𝑛 to be linear?

Lecture 03 | Transformations

Geometrically it maps lines to
lines, and preserves the origin

Algebraically it preserves vector space operations
(addition & scaling)

15-362/662 | Computer Graphics

Review: Linear Maps

• Why do we care about linear transformations?
• Cheap to apply
• Usually pretty easy to solve for (linear systems)
• Composition of linear transformations is linear

• Product of many matrices is a single matrix
• Gives uniform representation of transformations
• Simplifies graphics algorithms, systems (e.g., GPUs & APIs)

Lecture 03 | Transformations

[rotation] [scale] [rotation] [composite]

15-362/662 | Computer Graphics

Types of Transformations

Lecture 03 | Transformations

[translation]

[rotation]

[scale]

[shear]

15-362/662 | Computer Graphics

Invariants of Transformation

Lecture 03 | Transformations

A transformation is determined by the invariants it preserves

15-362/662 | Computer Graphics

Rotation

Lecture 03 | Transformations

[keeps origin fixed] [preserves distance] [preserves orientation]

First two properties imply rotations are linear

We say that a transform preserves orientation if det 𝑇 > 0

15-362/662 | Computer Graphics

2D Rotations

Lecture 03 | Transformations

Rotations preserve distances and the origin—hence, a 2D rotation by an
angle 𝜃 maps each point 𝑥 to a point 𝑓(𝑥) on the circle of radius |𝑥|:

15-362/662 | Computer Graphics

2D Rotations

Lecture 03 | Transformations

Rotations (like all transforms) are linear maps.
We can express the transform as a change of bases:

15-362/662 | Computer Graphics

3D Rotations

Lecture 03 | Transformations

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

[rotate around 𝒙𝟏] [rotate around 𝒙𝟐] [rotate around 𝒙𝟑]

In 3D, keep one axis fixed and rotate the other two:

15-362/662 | Computer Graphics

3D Inverse Rotations

Lecture 03 | Transformations

𝑹𝑻𝑹 = 𝑰 ⇒ 𝑹𝑻= 𝑹−𝟏

• Does every matrix 𝑄𝖳𝑄 = 𝐼 represent a rotation?
• Must preserve:

• Origin
• Distance
• Orientation

• Consider:

• Just like rotations, 𝑄 has nice inverse properties:

• But the determinant is negative!
• Not orientation preserving

15-362/662 | Computer Graphics

Reflections

Lecture 03 | Transformations

15-362/662 | Computer Graphics

Scaling

Lecture 03 | Transformations

• Each vector 𝑢 gets scaled by some scalar 𝑎

• Scaling is a linear transformation
• Multiplication:

• Addition:

𝑓(𝐮) = 𝑎𝐮, 𝑎 ∈ ℝ

𝑓(𝐮 + 𝐯) =
𝑎(𝐮 + 𝐯) =
𝑎𝐮 + 𝑎𝐯 =

𝑓(𝐮) + 𝑓(𝐯)

𝑓(𝑏𝐮) = 𝑎𝑏𝐮 = 𝑏𝑎𝐮 = 𝑏𝑓(𝐮)

15-362/662 | Computer Graphics

Negative Scaling

Lecture 03 | Transformations

Can think of negative scaling as a series of reflections

Also works in 3D:

[flip x] [flip y] [flip z]

In 2D, reflection reverses orientation twice (det 𝑇 > 0)
In 3D, reflection reverses orientation thrice (det 𝑇 < 0)

15-362/662 | Computer Graphics

Non-Uniform Scaling

Lecture 03 | Transformations

• To scale a vector 𝑢 by a non-uniform amount (𝑎, 𝑏, 𝑐):

• The above works only if scaling is axis-aligned. What if it isn’t?
• Idea:

• Rotate to a new axis 𝑅
• Perform axis-aligned scaling 𝐷
• Rotate back to original axis 𝑅𝑇

• Resulting transform 𝐴 is a symmetric matrix

• Q: Do all symmetric matrices represent non-uniform scaling?

𝐴 ≔ 𝑅𝑇𝐷𝑅

15-362/662 | Computer Graphics

Spectral Theorem

Lecture 03 | Transformations

• Spectral theorem says a symmetric matrix 𝐴 = 𝐴𝑇 has:
• Orthonormal eigenvectors 𝑒1, … , 𝑒𝑛 ∈ ℝ𝑛

• Real eigenvalues 𝜆1, … , 𝜆𝑛 ∈ ℝ

• Eigenvalues represent the diagonals of the scalar transform
• Eigenvectors are axis which we are scaling about

• Can be represented as a rotation transform

• Can write the relationship as 𝐴𝑅 = 𝑅𝐷
• Equivalently, 𝐴 = 𝑅𝐷𝑅𝖳

• Hence, every symmetric matrix performs a non-uniform scaling
along some set of orthogonal axes

15-362/662 | Computer Graphics

Shear

Lecture 03 | Transformations

• A shear displaces each point 𝑥 in a direction 𝑢 according to its
distance along a fixed vector 𝑣:

• Still a linear transformation—can be rewritten as:

• Example:

𝑓𝐮,𝐯(𝐱) = 𝐱 + ⟨𝐯, 𝐱⟩𝐮

𝐴𝐮,𝐯 = 𝐼 + 𝐮𝐯𝖳

𝐮 = (cos(𝑡), 0,0)

𝐯 = (0,1,0)

15-362/662 | Computer Graphics

Composing Transforms

Lecture 03 | Transformations

𝑅𝑥(𝑡) 𝑅𝑦(𝑡) 𝑆(𝑡) 𝐴(𝑡) = 𝑅𝑥(𝑡)𝑅𝑦(𝑡)𝑆(𝑡)

We can now build up composite transformations via matrix multiplication

15-362/662 | Computer Graphics

Composing Transforms

Lecture 03 | Transformations

3

1

1.5

0.5

[scale by 1/2, then translate by (3,1)]

[translate by (3,1), then scale by 1/2]

• Order matters when compositing transforms!

[original]

15-362/662 | Computer Graphics

Composing Transforms

Lecture 03 | Transformations

2

3

4
2

How would you perform these transformations?**

**remember there’s always more than one way to do so

15-362/662 | Computer Graphics

Rotating About A Point

Lecture 03 | Transformations

[Step 1] translate by -x

[Step 3] translate by x[Step 2] rotate

[Step 0] compute x (dist. from origin)

15-362/662 | Computer Graphics

Decomposing Transforms

Lecture 03 | Transformations

• In general, no unique way to write a given linear
transformation as a composition of basic transformations!
• However, there are many useful decompositions:

• Singular value decomposition
• Good for signal processing

• LU factorization
• Good for solving linear systems

• Polar decomposition
• Good for spatial transformations

𝐴

15-362/662 | Computer Graphics

Polar & Single Value Decomposition

Lecture 03 | Transformations

Polar decomposition decomposes any matrix 𝐴 into orthogonal
matrix 𝑄 and symmetric positive-semidefinite matrix 𝑃

rotation/reflection nonnegative
nonuniform scaling

rotation

axis-aligned
scaling

rotation

Since 𝑃 is symmetric, can take this further via the spectral
decomposition 𝑃 = 𝑉𝐷𝑉𝑇 (𝑉 orthogonal, 𝐷 diagonal):

Result U𝐷𝑉𝑇 is called the singular value decomposition

15-362/662 | Computer Graphics

Interpolating Transformations [Linear]

Lecture 03 | Transformations

Consider interpolating between two linear transformations

𝐴0, 𝐴1 of some initial model

𝐴(𝑡) = (1 − 𝑡)𝐴0 + 𝑡𝐴1

Idea: take a linear combination of the two matrices

𝑡 ∈ [0,1]

Hits the right start/endpoints… but looks awful in between!

15-362/662 | Computer Graphics

Interpolating Transformations [Polar]

Lecture 03 | Transformations

Better idea: separately interpolate components of polar decomposition

𝐴0 = 𝑄0𝑃0

𝐴1 = 𝑄1𝑃1

𝑃(𝑡) = (1 − 𝑡)𝑃0 + 𝑡𝑃1 𝐴(𝑡) = 𝑄(𝑡)𝑃(𝑡)𝑄(𝑡) = (1 − 𝑡)𝑄0 + 𝑡𝑄1

[scaling] [rotation] [composite]

15-362/662 | Computer Graphics

Translation

Lecture 03 | Transformations

• So far we’ve ignored a basic transformation—translations
• A translation simply adds an offset 𝐮 to the given point 𝐱

• Is this translation linear?
• (certainly seems to move across a line…)

𝑓𝐮(𝐱) = 𝐱 + 𝐮

𝑓𝐮 𝐱 + 𝐲 = 𝐱 + 𝐲 + 𝐮

𝑓𝐮(𝐱) + 𝑓𝐮(𝐲) = 𝐱 + 𝐲 + 2𝐮
𝑓𝐮(𝑎𝐱) = 𝑎𝐱 + 𝐮

𝑎𝑓𝐮(𝐱) = 𝑎𝐱 + 𝑎𝐮

[additivity] [homogeneity]

Translations are not linear!

15-362/662 | Computer Graphics Lecture 03 | Transformations

Maybe translations turn linear when we go into the
4th dimension…

15-362/662 | Computer Graphics Lecture 03 | Transformations

• The Rasterization Pipeline

• Transformations

• Homogeneous Coordinates

• 3D Rotations

15-362/662 | Computer Graphics

Homogeneous Coordinates

Lecture 03 | Transformations

• Came from efforts to study perspective

• Introduced by Möbius as a natural way of assigning
coordinates to lines

• Show up naturally in a surprising large number of places in
computer graphics:
• 3D transformations
• Perspective projection
• Quadric error simplification
• Premultiplied alpha
• Shadow mapping
• Projective texture mapping
• Discrete conformal geometry
• Hyperbolic geometry
• Clipping
• Directional lights
• …

Church of Santo Spirito (1428) Filippo Brunelleschi

15-362/662 | Computer Graphics Lecture 03 | Transformations

Homogeneous Coordinates in 2D

• Consider any 2D plane that does not pass through the origin 𝑜 in 3D
• Every line through the origin in 3D corresponds to a point in the

2D plane
• Just find the point 𝑝 where the line 𝐿 pierces the plane

• Consider a point 𝑝′ = (𝑥, 𝑦), and the plane 𝑧 = 1 in 3D

• Any three numbers 𝑝 = (𝑎, 𝑏, 𝑐) such that
𝑎

𝑐
,

𝑏

𝑐
= (𝑥, 𝑦) are

homogeneous coordinates for 𝑝
• Example: (𝑥, 𝑦, 1)
• In general: (𝑐𝑥, 𝑐𝑦, 𝑐) for 𝑐 ≠ 0

• The 𝑐 is commonly referred to as the homogeneous
coordinate

• Great, but how does this help us with transforms?

𝐿

𝐨
𝐩

𝐩

15-362/662 | Computer Graphics Lecture 03 | Transformations

Translation in Homogeneous Coordinates

• A 2D translation is similar to a 3D shear
• Moving a slice up/down the shear

moves the shape

• Recall shear is written as:

• In our case, 𝑣 = (0, 0,1), so**

𝑓𝐮,𝐯 𝐱 = 𝐱 + 𝐯, 𝐱 𝐮

𝑓𝐮,𝐯(𝐱) = 𝐼 + 𝐮𝐯𝖳 𝐱

**most often in this class we will also use c = 1

15-362/662 | Computer Graphics Lecture 03 | Transformations

2D Transforms in Homogeneous Coordinate

[original] [2D rotation] [2D translate] [2D scale]

Original shape in 2D can be
viewed as many copies

along the z-axis

Rotate around the z-axis Shear in direction of
translation

Scale x-axis and y-axis,
preserve z-axis

Q: What about 3D homogeneous coordinates?

15-362/662 | Computer Graphics Lecture 03 | Transformations

3D Transforms in Homogeneous Coordinate

[point in 3D]

[rotate around 𝑦 by 𝜃] [shear by 𝑧 in (𝑠,𝑡) direction] [scale by 𝑎,𝑏,𝑐] [translate by (𝑢,𝑣,𝑤)]

Matrix representations of 3D linear transformations just get
an additional identity row/column:

15-362/662 | Computer Graphics Lecture 03 | Transformations

Points vs. Vectors

• Homogeneous coordinates should be used differently for points and vectors:
• Triangle vertices are “points” and should be translated and rotated

• But if we do the same for the normal, it no longer becomes a
normal

• Idea: normal is a “vector” and should just rotate!**
• Set homogeneous coordinate to 0

**translating or scaling a triangle should never change the normal

15-362/662 | Computer Graphics Lecture 03 | Transformations

Points vs. Vectors in Homogeneous Coordinates

• In general:
• A point has a nonzero homogeneous coordinate (c = 1)
• A vector has a zero homogeneous coordinate (c = 0)

• But wait… what division by c mean when it’s equal to zero?
• Well consider what happens as 𝑐 approaches 0…

(𝑥, 𝑦)/1 (𝑥, 𝑦)/0.5 (𝑥, 𝑦)/0.25 (𝑥, 𝑦)/0.001

• Can think of vectors as “points at infinity” (sometimes called “ideal points”)
• But don’t actually go dividing by zero…

15-362/662 | Computer Graphics Lecture 03 | Transformations

Where can we use transforms?

15-362/662 | Computer Graphics Lecture 03 | Transformations

Scene Graph

• Suppose we want to build a skeleton out of cubes
• Idea: transform cubes in world space

• Store transform of each cube

• Problem: If we rotate the left upper leg, the lower left
leg won’t track with it
• Better Idea: store a hierarchy of transforms

• Known as a scene graph
• Each edge (+root) stores a linear

transformation
• Composition of transformations gets applied

to nodes
• Keep transformations on a stack to

reduce redundant multiplication

• Lower left leg transform: 𝐴2𝐴1𝐴0

𝐴0

𝐴1

𝐴2

15-362/662 | Computer Graphics Lecture 03 | Transformations

Instancing

• What if we want many copies of the same object in a scene?
• Rather than have many copies of the geometry, scene

graph, we can just put a “pointer” node in our scene graph
• Saves a reference to a shared geometry
• Specify a transform for each reference

• Careful! Modifying the geometry will modify all
references to it

Realistic modeling and rendering of plant ecosystems
(1998) Deussen et al

15-362/662 | Computer Graphics Lecture 03 | Transformations

• The Rasterization Pipeline

• Transformations

• Homogeneous Coordinates

• 3D Rotations

15-362/662 | Computer Graphics Lecture 03 | Transformations

3D Rotations

• Rotating in 2D is the same as rotating around the z-axis
• Idea: independently rotate around each (x,y,z)-axis for

3D rotations

• Problem: order of rotation matters!
• Rotate a Rubik’s cube 90deg around the y-axis and

90deg around the z-axis
• Rotate a Rubik’s cube 90deg around the z-axis and

90deg around the y-axis
• They will not be the same!

• Order of rotation must be specified

xy

z

15-362/662 | Computer Graphics Lecture 03 | Transformations

3D Rotations in Matrix Form

Idea: independently rotate around each (x,y,z)-axis for 3D rotations:

Combining the matrices:

Consider the special case θy = π/2 (so, cos θy = 0, sin θy = 1):

15-362/662 | Computer Graphics Lecture 03 | Transformations

Gimbal Lock

• No matter how we adjust θx, θz, can only rotate in one plane!
• We are now “locked” into a single axis of rotation

• Not a great design for airplane controls!

15-362/662 | Computer Graphics Lecture 03 | Transformations

Rotation From Axis/Angle

Alternatively, there is a general expression for a matrix that
performs a rotation around a given axis u by a given angle θ:

Just memorize this matrix! :)

15-362/662 | Computer Graphics Lecture 03 | Transformations

Is there a better way to perform 3D rotations?

15-362/662 | Computer Graphics Lecture 03 | Transformations

Bridging The Rotation Gap

• Hamilton wanted to make a 3D equivalent for complex numbers
• One day, when crossing a bridge, he realized he needed 4

(not 3) coordinates to describe 3D complex number space
• 1 real and 3 complex components

• He carved his findings onto a bridge (still there in Dublin)
• Later known as quaternions

William Rowan Hamilton
[1805 – 1865]

15-362/662 | Computer Graphics Lecture 03 | Transformations

Quaternions For Math People

• 4 coordinates (1 real, 3 complex) comprise coordinates.
• Η is known as the ‘Hamilton Space’

• Quaternion product determined by:

• Warning: product no longer commutes!

• With 3D rotations, order matters.

15-362/662 | Computer Graphics Lecture 03 | Transformations

Quaternions For Non-Math People

• Recall axis-angle rotations
• Represent an axis with 3 coordinates (𝑖, 𝑗, 𝑘)
• Represent an angle by some scalar 𝑎

• Just like how we multiply rotation matrices together, we can
also multiply complex components. If we represent:
• 𝑖 as a 90deg rotation about 𝑥-axis
• 𝑗 as a 90deg rotation about 𝑦-axis
• 𝑘 as a 90deg rotation about 𝑧-axis

• Then two 90deg rotations about the same axis will
produce the inverted image, the same as scaling by -1

• This can also be rewritten as:
𝑖𝑗 = 𝑘

• A 90deg x-axis rotation and a 90deg y-axis rotation is
the same as a 90deg z-axis rotation

• Can be rewritten in any other way

15-362/662 | Computer Graphics Lecture 03 | Transformations

Multiplying Quaternions

Given two quaternions:

Can express their product as:

The result still looks like a quaternion
But there’s a better way to multiply…

recall

15-362/662 | Computer Graphics Lecture 03 | Transformations

Multiplying Quaternions

Recall quaternions can be thought of as an axis and angle:

Can express their product as:

If the scalar components are 0, we get:

15-362/662 | Computer Graphics Lecture 03 | Transformations

Rotating With Quaternions

• 𝑞 now looks like:

• Goal: rotate 𝑥 by angle 𝜃 around axis 𝑢 = (𝑥, 𝑦, 𝑧) :
• Make 𝑥 imaginary, and build 𝑞 based on 𝑢 and 𝜃

• Note: components of 𝑞 must be normalized!

• ത𝑞 is 𝑞 with every complex component negative
• Now just compute ത𝑞𝑥𝑞 to get final rotation

15-362/662 | Computer Graphics Lecture 03 | Transformations

Interpolating With Quaternions

• Interpolating Euler angles can yield strange-looking
paths, non-uniform rotation speed, etc.
• Simple solution w/ quaternions: “SLERP”

(spherical linear interpolation):

Fifa ‘15 (2014) Electronic Arts

Animating Rotation with Quaternion Curves (1985) Shoemake

15-362/662 | Computer Graphics Lecture 03 | Transformations

Texture Mapping With Quaternions

• Quaternions can be used to generate texture maps
coordinates
• Complex numbers are natural language for

angle-preserving (“conformal”) maps

15-362/662 | Computer Graphics Lecture 03 | Transformations

Spatial Transformation Summary

• scaling
• rotation
• reflection
• shear

• translation
• perspective

projection

[linear transformations] [nonlinear transformations]

• Compose basic transformations to get more interesting ones
• Always reduces to a single 4x4 matrix (in homogeneous

coordinates)
• Order of composition matters!

• Homogeneous coordinates can turn nonlinear transformations linear
• Many ways to decompose a given transformation (polar, SVD, …)
• Use scene graph to organize transformations
• Use instancing to eliminate redundancy
• Quaternions help avoid troubles with Euler rotations in 3D (Gimbal

Lock, Interpolation inconsistencies)

next lecture

Maxwell the cat (2022) Gary’s Mod

	Slide 1: Coordinate Spaces & Transformations
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

