
A1: Rasterizer

15-362/662 | Computer Graphics Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

• Lambda Functions

• Bresenham Line Algorithm

• Triangles

• Perspective Correct Interpolation

• Mip-Maps

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Lambda Functions

void iterateThroughObjects() {
auto countSides = [&](Object obj) {

return obj.sides.size();
}

for(auto& obj : this->objects) {
std::cout << countSides(obj);

}

}

Tells function to pass
all args by reference

Behaves like a normal
function :)

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Lambda Functions

- In this class, lambda functions are your best friend
- Removes the need to modify extensive header files for quick functions

- However, don’t abuse them. Use them only for small(ish) functions that
act like “utilities” rather than actual class functions

- If you want to make a function that operates on a class, you’re better
off modifying the header file

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Adding to Header Files

To add a new function:
- Find header file for class you want to modify
- Add the function signature to the header file
- Write the function itself in the cpp file

This can be quite tedious sometimes, especially if
you’re just trying to write a quick helper function. So,
let’s take a look at a neat feature called Lambda
Functions :D

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

• Lambda Functions

• Bresenham Line Algorithm

• Triangles

• Perspective Correct Interpolation

• Mip-Maps

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Bresenham Line Algorithm

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

• Header Files and Lambda Functions

• Bresenham Line Algorithm

• Flat Triangles

• Blending

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Bresenham Line Algorithm

Step 1: Pick the Major Axis

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Bresenham Line Algorithm

Step 1: Pick the Major Axis
Why?

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Major Axis
In the loop body, we traverse the line in pixel-length increments either horizontally /
vertically based on the major axis.

To illustrate this further: Let’s say we make an incorrect implementation where we
always traverse on the horizontal (x) axis. How many pixels in these two cases will
be shaded? How many should be shaded in a correct implementation?

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Major Axis
In the loop body, we traverse the line in pixel-length increments either horizontally /
vertically based on the major axis.

To illustrate this further: Let’s say we make an incorrect implementation where we
always traverse on the horizontal (x) axis. How many pixels in these two cases will
be shaded? How many should be shaded in a correct implementation?

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Major Axis
In the loop body, we traverse the line in pixel-length increments either horizontally /
vertically based on the major axis.

To illustrate this further: Let’s say we make an incorrect implementation where we
always traverse on the horizontal (x) axis. How many pixels in these two cases will
be shaded? How many should be shaded in a correct implementation?

Δy

Δx

1 2 3 4 5 6
Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Major Axis
In the loop body, we traverse the line in pixel-length increments either horizontally /
vertically based on the major axis.

To illustrate this further: Let’s say we make an incorrect implementation where we
always traverse on the horizontal (x) axis. How many pixels in these two cases will
be shaded? How many should be shaded in a correct implementation?

Δy

Δx

1 2 3 4 5 6
Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Major Axis

1 2 3

Δy

Δx

In the loop body, we traverse the line in pixel-length increments either horizontally /
vertically based on the major axis.

To illustrate this further: Let’s say we make an incorrect implementation where we
always traverse on the horizontal (x) axis. How many pixels in these two cases will
be shaded? How many should be shaded in a correct implementation?

Δy

Δx

1 2 3 4 5 6
Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Major Axis

Δy

Δx

In the loop body, we traverse the line in pixel-length increments either horizontally /
vertically based on the major axis.

To illustrate this further: Let’s say we make an incorrect implementation where we
always traverse on the horizontal (x) axis. How many pixels in these two cases will
be shaded? How many should be shaded in a correct implementation?

Δy

Δx

1

2

3

4

5

FIX : Traverse along the major axis instead
Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Bresenham Line Algorithm

Step 1: Pick the Major Axis
-set i to the bigger axis
-set j to the smaller axis

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Bresenham Line Algorithm

Step 2: Set beginning
coordinate by swapping
a/b_i if necessary

-so we traverse line left
to right / bottom to top

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Bresenham Line Algorithm

Step 3: Traverse the line!
-Go along the major axis at pixel length
increments, get the half-pixel coordinate on
the line at that step, and then shade it!

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Bresenham Line Algorithm

But what is this part we skipped?

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Endpoints and Diamond Exit

Like in other graphics libraries (ie OpenGL), for the start and end points in the
line, we only consider pixels on the start & end points shaded if the line at
those points follows the “diamond exit rule”

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Diamond Exit

Say this is our pixel we are
trying to determine should be
shaded.

Imagine a diamond of height 1
placed at the center of the
pixel.

If the line segment passes
through and exits this diamond,
we will shade the pixel.

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Diamond Exit

We consider diamonds to
contain their left and bottom
points but not their top and
right points.

This is because vertically
aligned grids share these points
and we need a way to
determine which diamond each
point belongs to.

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Diamond Exit

Starting from the center of a
diamond counts as “entering”
the diamond.

✅ Shaded

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Diamond Exit

❌ Not shaded

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Diamond Exit

We consider diamonds to
contain their left and bottom
points but not their top and
right points

✅ Shaded

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Diamond Exit

Note: Do not need to handle
this case for full credit!

✅ Shaded

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Half-plane Check

We can characterize this

bottom left diamond's line as

y = -x + 0.5.

If the point is below this line,

y < -x + 0.5

Similar inequalities can be

formed for each quadrant. (x,y) (x+0.5,y) (x+1,y)

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Example

Let’s say we are trying to
determine if this pixel should
be shaded as this line’s starting
point…

First we recognize what
direction the line is going in
(think of your major axis).

Second, we find out what
quadrant the start point lies in.

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

• Lambda Functions

• Bresenham Line Algorithm

• Triangles

• Perspective Correct Interpolation

• Mip-Maps

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Top-Left Rule

Some samples may lay on the edge of more than
one triangle – but you should only emit one
fragment for each sample

To account for this, we use the Top-Left rule

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Top-Left Rule

For a triangle in clockwise winding order:

● TOP : a horizontal edge where both coordinates are the same between consecutive
vertices and are greater than the third vertex's coordinate

● LEFT : An edge that goes "up" between consecutive vertices

If a sample lies on one of these edges on a triangle, we emit the fragment when we rasterize
that triangle

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Top-Left Rule

Should the blue row of pixels be emitted
while rasterizing the red triangle or the
green triangle?

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Top-Left Rule

Should the blue row of pixels be emitted
while rasterizing the red triangle or the
green triangle?

Green

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Top-Left Rule

Should the blue row of pixels be emitted
while rasterizing the red triangle or the
green triangle?

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Top-Left Rule

Should the blue row of pixels be emitted
while rasterizing the red triangle or the
green triangle?

Red

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

• Lambda Functions

• Bresenham Line Algorithm

• Triangles

• Perspective Correct Interpolation

• Mip-Maps

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Perspective Correct Interpolation

● Naively shading our fragments makes us lose depth information!
● Perspective correct interpolation fixes this

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Quick Note…

● In lecture you saw perspective correct interpolation defined in terms of:
○ P = v/z = interpolated vertex positions
○ Z = 1/z = inverse depth
○ ɸ = barycentric coordinates

● But in the writeup, you’ll see it in terms of ɸ and ⍵
○ ⍵ = homogeneous coordinate presented in lecture
○ ɸ = variable for different vertex attributes (not just position)
○ Barycentric coordinates are in code

● They’re actually the same thing, but represented in different ways!

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Psuedocode

 Interpolate(Φ/w)
Final interpolated result: ————————

Interpolate(1/w)

interpolate(1/w) = Linear interpolation of each of our vertices’ inv_w with the barycentric coords

interpolate(Φ/w) = Same as above, except we also interpolate the vertex’s attribute

Divide them and you have your interpolated attributes!

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

Example

Barycentric((0, 5, 4)) = 0.7
Barycentric((0, 0, 1)) = 0.2
Barycentric((0, 3, 2)) = 0.1

ɸ = vertex positions
ɸ((0, 5, 4)) = (0, 1, 0)/4
ɸ((0, 0, 1)) = (0, 1, 0)/4
ɸ((0, 3, 2)) = (0, 1, 0)/4

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics

• Lambda Functions

• Bresenham Line Algorithm

• Triangles

• Perspective Correct Interpolation

• Mip-Maps

Recitation 03 | Rasterizer

15-462/662 | Computer Graphics Recitation 03 | Rasterizer

fdx_texcoord.x

fdx_texcoord.y

fdy_texcoord.x

fdy_texcoord.y

15-462/662 | Computer Graphics

Quick Note…

● In the lecture pseudocode, we assume that all the levels of the MipMap are stored
in the same array
○ So we make the implicit assumption that L=0 contains our original texture at

index 0 of the array
● But in Scotty3D, our original texture is stored in base

○ So L=0 would refer to the texture stored in base
○ and then L=1,2,... would refer to index L-1 in the rest of the MipMap array

● Also, our code uses fdx_texcoord and fdy_texcoord to represent the changes in
texture space (recall that uv coordinates are in [0,1]^2). Think about how you would
want to use wh to get the actual amount of change in the texture image.

Recitation 03 | Rasterizer

