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What Is A Vector?

• Intuitively, a vector is a little arrow
• Encoded as direction + magnitude

• Many types of data can be represented as vectors 
• Polynomials

• e.g. 𝑥3 + 2𝑥2 + 1 can be represented as (1,2,0,1)
• Images
• Radiance

• Vectors are functions of their coordinate system
• e.g. 2,3 = 2𝒊 + 3𝒋, where 𝒊 = (1,0) and 𝒋 = (0,1)
• Can’t directly compare coordinates in different systems!

• Example: polar and cartesian

• Why start with a vector when talking about Linear Algebra?
• Most of linear algebra can be explained with vectors
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Basic Vector Operations

Vector multiplication: a(bu) = (ab)u

Lecture 02.0 | Math Review

Vector addition: u + v = v + u“
“commutative” or “abelian”

Notation:
Bold letters: vectors
Regular letters: scalars
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Basic Vector Operations

Order of operations for adding and scaling do not matter (distributive)
a( u + v ) = au + av
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Formal Vector Space Definition

These rules did not “fall out of the sky!” Each one comes from the geometric 
behavior of “little arrows.” (Can you draw a picture for each one?) 

Any collection of objects satisfying all of these properties is a vector space.
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Euclidean Vector Space

• Typically denoted by ℝ𝑛, meaning “n real numbers”
• Example: (1.23, 4.56, π/2) is a point in ℝ3 
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Functions as Vectors

• Functions also behave like vectors

• Functions are all over graphics!
• Example: images
• 𝐼(𝑥, 𝑦) takes in coordinates and 

returns the pixel color in the image
• -- discretizing the function domain and 

put all output values into a vector

• Representing functions as vectors allow us 
to apply vector operations
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Functions as Vectors

Do functions exhibit the same behavior as “little arrows?” 
Well, we can certainly add two functions:

We can also scale a function:
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Functions as Vectors

What about the rest of these properties?

Try it out at home! (E.g., the “zero vector” is the function equal to zero for all x)
 

Short answer: yes, functions are vectors! (Even if they don’t look like “little arrows”)
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Never blindly accept a rule given by authority. 

Always ask: where does this rule come from? 
What does it mean geometrically? (Can you draw a picture?)
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Norm of a Vector

For a given vector 𝑣, |𝑣| is its length / magnitude / norm.
Intuitively, this captures how “big” the vector is
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Norm Properties

For one thing, it shouldn’t be negative!

Also, if we scale a vector by a scalar 𝑐, its norm should scale 
by the same amount.

Finally, we know that the shortest path between two points 
is always along a straight line.**

**sometimes called the “triangle inequality” 
since the diagram looks like a triangle
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Norm Definition

A norm is any function that assigns a number to 
each vector and satisfies the following properties 

for all vectors u, v, and all scalars a
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Euclidean Norm in Cartesian Coordinates

A standard norm is the so-called Euclidean norm of n-vectors
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The Euclidean norm is also called the 𝑳𝟐 norm.

Definition of 𝑳𝒑 norm:

𝒖 = 𝑢1, … , 𝑢𝑛 ≔ ෍

𝑖=1

𝑛

𝑢𝑖
𝑝

1
𝑝
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L  Norm Of Functions

• L2 norm measures the total magnitude of a function

• Consider real-valued functions on the unit interval [0,1] 
whose square has a well-defined integral.  The L2 norm is 
defined as:

2

• Not too different from the Euclidean norm
• We just replaced a sum with an integral

• Careful! does the formula above exactly satisfy all our 
desired properties for a norm?
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Inner Product

• Inner product measures the “similarity” of 
vectors, or how well vectors “line up”

• The inner product of two vectors is 
commutative:

[ similar ]

[ different ]
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Inner Product Formal Definition

An inner product is any function that assigns to any two vectors 
𝒖, 𝒗 a number < 𝒖, 𝒗 > satisfying the following properties:

A standard Euclidean inner product 
-- dot product:
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Dot Product

• For unit vectors |u|=|v|= 1, the dot product measures the 
extent, or percent, of one vector along the direction of the 
other. 
• If we scale either vector, the inner product also scales:

• Vectors need to be normalized when computing similarity!

• Any vector will always be aligned with itself:

• The dot product of any unit vector with itself is:

• Thus for a unit vector 

(for unit vectors 𝒖 and 𝒗)
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Dot Product In Cartesian Coordinates
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L  Inner Product Of Functions2

small number

functions don’t 
line up much

Example:
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e.g., consider 𝑓, 𝑔: [0, 1] → ℝ:
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Linear Maps

• Linear algebra is study of vector spaces and linear maps 
between them

• Linear maps have 2 characteristics:
• Converts lines to lines
• Keeps the origin fixed

• Linear map benefits:
• Easy to solve systems of linear equations.
• Basic transformations (rotation, translation, scaling) 

can be expressed as linear maps
• All maps can be approximated as linear maps over a 

short distance/short time.  (Taylor’s theorem) 
• This approximation is used all over geometry, 

animation, rendering, image processing
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Linear Maps

A map (function) f is linear if it maps vectors to vectors, and if 
for all vectors u,v and scalars a we have:

It doesn’t matter whether we add the vectors and then apply 
the map, or apply the map and then add the vectors (and 
likewise for scaling):
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Linear Maps

For maps between ℝ𝑛 and ℝ𝑚 (e.g., a map from 2D to 3D),  
a map is linear if it can be expressed as

In other words, if it is a linear combination of a 
fixed set of vectors 𝑎𝑖:
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Is 𝒇 𝒙 = 𝒂𝒙 + 𝒃 a linear map?

Lecture 02.0 | Math Review
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Linear vs. Affine Maps

No! but it is easy to be fooled since it looks like a line.
However, it does not keep the origin fixed (𝑓 𝑥 ≠ 0)

Another way to see it’s not linear? It doesn’t preserve sums:

This is called an affine map.

We will see a trick on how to turn affine maps into linear 
maps using homogeneous coordinates in a future lecture.
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Is 𝒇 𝒖 = 𝟎׬

𝟏
𝒖 𝒙 𝒅𝒙 a linear map?

This will be on your homework?**

** hint: consider 𝑢(𝑥) = 𝑥
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Span

The span of a set of vectors 𝑆1is the set of all vectors 𝑆2 that 
can be written as a linear combination of the vectors in 𝑆1 
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Basis

If we have exactly 𝑛 vectors 𝑒1, … , 𝑒𝑛 such that:

Then we say that these vectors are a basis for ℝ𝑛.

Note that there are many different choices of bases for ℝ𝑛!

Which of the following are bases for ℝ2?
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Orthonormal Basis

Most often, it is convenient to have basis vectors that are:
• (i) unit length 
• (ii) mutually orthogonal
These basis vectors are called orthonormal basis.
In other words, if 𝑒1, … , 𝑒𝑛 are our basis vectors, then:

*Common bug: projecting 
a vector onto a basis that 
is NOT orthonormal while 
continuing to use standard 
norm / inner product.
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Gram-Schmidt

Given a collection of basis vectors 𝑎1, … , 𝑎𝑛, we can find 
an orthonormal basis 𝑒1, … , 𝑒𝑛 using the Gram-Schmidt 
algorithm.

Gram-Schmidt algorithm:
• Normalize the 1st vector
• Subtract any component of the 1st vector from the 

2nd one
• Normalize the 2nd one
• Repeat, removing components of first k vectors from 

vector k+1

• Caution! Does not work well for large sets of vectors 
or nearly parallel vectors – numerical issues
• Modified Gram-Schmidt algorithms exist
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Gram-Schmidt Example

Common task: have a triangle in 3D, need orthonormal 
basis for the plane containing the triangle

Strategy: apply Gram-Schmidt to (any) pair of edge vectors

Does the order matter? (Ex: if we swapped u and v in 
the above equation, what happens?)

Lecture 02.0 | Math Review



15-362/662 | Computer Graphics

Fourier Transform

• Functions are also vectors, meaning they have an orthonormal 
basis known as a Fourier transform
• Example: functions that repeat at intervals of 2π

• Can project onto basis of sinusoids:

• Fundamental building block for many graphics algorithms:
• Example: JPEG Compression

[ lower frequency ]

[ higher frequency ] • More generally, this idea of projecting a 
signal onto different “frequencies” is 
known as Fourier decomposition
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System Of Linear Equations

• A system of linear equations is a bunch of equations where 
left-hand side is a linear function, right hand side is constant.
• Unknown values are called degrees of freedom (DOFs)
• Equations are called constraints

• We can use linear systems to solve for:
• The point where two lines meet in 2D space
• Given a point b, find the point x that maps to it
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Existence of Solutions

[ no solution ]

[ no solution ]

[ many solution ]

Of course, not all linear systems can be solved!
(And even those that can be solved may not have a unique solution.)

Lecture 02.0 | Math Review
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Matrices

• We’ve gone this far without talking about a matrix, oops!
• But linear algebra is not fundamentally about matrices.
• We can understand almost all the basic concepts 

without ever touching a matrix!

• Still, VERY useful!
• Symbolic manipulation
• Easy to store
• Fast to compute

• (Sometimes) hardware support for matrix ops

• Some of the (many) uses for matrices:
• Transformations
• Coordinate System Conversions
• Graph algorithms, e.g. pagerank
• Numerical optimization

What does this little block of funny numbers do?
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Linear Maps As Matrices

Example: consider the linear map:

𝒂 vectors become columns in the matrix:

Multiplying the original vector 𝒖 maps it to 𝒇(𝒖): 

How to map 𝒇(𝒖) back to 𝒖? Take the inverse of the matrix! 
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Cross Product

• Inner product takes two vectors and produces a scalar
• Cross product takes two vectors and produces a vector

• Geometrically:
• Magnitude equal to parallelogram area
• Direction orthogonal to both vectors
• …but which way?

• Use “right hand rule” (Only works in 3D)

• In 3D:

Lecture 02.0 | Math Review

• We can abuse notation in 2D and write it as:

(a scalar)
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Cross Product As A Quarter Rotation

• In 3D, if a unit vector 𝒖 is orthogonal to a unit vector 𝒏, 
𝒏 × 𝒖 is equivalent to a quarter-rotation in the plane 
with normal n.
• Use the right hand rule : )

• What is 𝑛 ×  (𝑛 ×  𝑢)?
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Dot And Cross Products

Dot product as a matrix multiplication: (vectors are by default column vectors, or 𝑛 × 1 matrices)

Cross product as a matrix multiplication:
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Dot And Cross Products

Useful to notice 𝒖 ×  𝒗 = −𝒗 ×  𝒖

This means:
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Determinant

The determinant of A is:

Great, but what does that mean?
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Determinant

det(u,v,w) encodes signed volume of 
parallelepiped with edge vectors u, v, w.

What happens if we reverse the order of the 
vectors in the cross product?
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Determinant of a Linear Map

• Recall that a linear map is a transformation 
from one coordinate space to another and is 
defined by a set of vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 …

• The 𝒅𝒆𝒕(𝑨) here measures the change in 
volume between spaces.
• The sign tells us whether the orientation 

was reversed.
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• Linear Algebra Review

• Vector Calculus Review
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Differential Operators

• Many uses for computer graphics:
• Expressing physical/geometric problems in 

terms of related rates of change (ODEs, PDEs)
• Numerical optimization – minimizing the cost 

relative to some objective
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Derivative of a Slope

Measures the amount of change for an infinitesimal step:

What if the slopes do not match if we change directions?

Differentiable** only if 𝑓+ = −𝑓−

**Many functions in graphics are not differentiable!
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Derivative as Best Linear Approximation

Any smooth function can be expressed as a Taylor series:

[ constant ] [ linear ] [ quadratic ]

Lecture 02.0 | Math Review
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Derivative as Best Linear Approximation

Can be applied for multi-variable functions too.
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Directional Derivative

For multi-variable functions, we can take 
a slice of the function in the direction of 

vector 𝒖 and compute the derivative 
from the resulting 2D function.
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Gradient

Given a multivariable function, we 
compute a vector at each location.

[ nabla ]
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Gradient in Coordinates

Example:
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Gradient as Best Linear Approximation

• Gradient tells us the direction of steepest ascent.
• Steepest descent if negative direction
• No change if orthogonal direction

• We can take multiple 
small steps to arrive 
at the maximum
• How we make 

that step is its 
own field of 
research known 
as ‘optimization’
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Gradient & Directional Derivative

The gradient             is a unique vector 

such that taking the inner product of the gradient 
along any direction gives the directional derivative. 

Only works if function is differentiable!
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Gradient of Dot Product

(equals zero unless i = k)

Gradient:

Not so different from

Lecture 02.0 | Math Review
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Gradients of Multivariate Functions**

**Excellent resource: Petersen & Pedersen, “The Matrix Cookbook”
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• How do we compute the gradient in general? 
• Look for a function ∇𝐹 such that:

• Where the directional derivative is:
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L  Gradient

• Consider a function 𝐹 𝑓  that has an input function 𝑓
• Same idea: the gradient of 𝐹 with respect to 𝑓 measures 

how changing the function 𝑓 best increases 𝐹
• Example:

• I claim the gradient is:

• This means adding more of 𝑔 to 𝑓 increases ∇𝐹
• This is true for inner products!

2
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L  Gradient Example2

Consider:

Apply the directional derivative formula for a given direction 𝑢:

Substitute 𝐹 and expand the numerator 𝐹(𝑓0 + 𝜀𝑢):

Subtract the remaining 𝐹 𝑓0  and divide by 𝜀: 

Set equal to the gradient term:

Solution: kinda looks like
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Laplacian
• Measures the curvature of a function

• Several ways to calculate:
• Divergence of gradient (outside course scope):

• Sum of 2nd partial derivative:

• Gradient of Dirichlet energy (outside course scope):

• Variation of Surface Area:

concave

convex

Lecture 02.0 | Math Review



15-362/662 | Computer Graphics

Laplacian Example

Consider:

Using the following equation:

Compute the first partial:

Does this always happen?

And the second:

Add together:
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Hessian

• A matrix representing a gradient to the gradient
• Matrix is symmetric for most smooth functions

• Order of partial derivatives does not 
matter given 𝑓 is smooth 

• A gradient was a vector that gives us partial 
derivatives of the function
• A hessian is an operator that gives us partial 

derivatives of the gradient:
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Taylor Series For Multivariate Functions

[ constant ] [ linear ] [ quadratic ]

In matrix form:

Using the Hessian, we can now write 2nd-order approximation of 
any smooth, multivariable function 𝑓(𝑥) around some point 𝑥0:
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Recap

• That was a lot of math
• But now you should have the proper mathematical background to 

complete this course

• We will use Linear Algebra…
• As an effective bridge between geometry, physics, computation, etc.
• As a way to formulate a problem. Write the problem as Ax=b and ask 

the computer to solve

• We will use Vector Calculus…
• As a basic language for talking about spatial relationships, 

transformations, etc.
• For much of modern graphics (physics-based animation, geometry 

processing, etc.) formulated in terms of partial differential equations 
(PDEs) that use div, curl, Laplacian, and so on

• A0.0 will reinforce the content taught in this lecture
• Be sure to refer back to the slides for help
• Feel free to find helps from any course staff!

Charlie Brown (1984) Charles Schulz

Lecture 02.0 | Math Review


	Slide 1: Linear Algebra  & Vector Calculus
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

