Linear Algebra & Vector Calculus

- Linear Algebra Review
- Vector Calculus Review

What Is A Vector?

- Intuitively, a vector is a little arrow
 - Encoded as direction + magnitude
- Many types of data can be represented as vectors
 - Polynomials
 - e.g. $x^3 + 2x^2 + 1$ can be represented as (1,2,0,1)
 - Images
 - Radiance
- Vectors are functions of their coordinate system
 - e.g. (2,3) = 2i + 3j, where i = (1,0) and j = (0,1)
 - Can't directly compare coordinates in different systems!
 - Example: polar and cartesian
- Why start with a vector when talking about Linear Algebra?
 - Most of linear algebra can be explained with vectors

Basic Vector Operations

Basic Vector Operations

Formal Vector Space Definition

For all vectors **u**, **v**, **w** and scalars *a*, *b*:

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- There exists a *zero vector* " $\mathbf{0}$ " such that $\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$
- For every **v** there is a vector " $-\mathbf{v}$ " such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- $1\mathbf{v} = \mathbf{v}$
- $a(b\mathbf{v}) = (ab)\mathbf{v}$
- $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

These rules did not "fall out of the sky!" Each one comes from the geometric behavior of "little arrows." (Can you draw a picture for each one?)

Any collection of objects satisfying all of these properties is a vector space.

Euclidean Vector Space

- Typically denoted by \mathbb{R}^n , meaning "n real numbers"
 - **Example:** (1.23, 4.56, $\pi/2$) is a point in \mathbb{R}^3

Functions as Vectors

- Functions also behave like vectors
- Functions are all over graphics!
 - Example: images
 - *I*(*x*, *y*) takes in coordinates and returns the pixel color in the image
 - -- discretizing the function domain and put all output values into a vector
- Representing functions as vectors allow us to apply vector operations

Functions as Vectors

Do functions exhibit the same behavior as "little arrows?" Well, we can certainly add two functions:

We can also scale a function:

Functions as Vectors

What about the rest of these properties?

For all vectors **u**, **v**, **w** and scalars *a*, *b*:

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- There exists a *zero vector* " $\mathbf{0}$ " such that $\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$
- For every **v** there is a vector " $-\mathbf{v}$ " such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- $1\mathbf{v} = \mathbf{v}$
- $a(b\mathbf{v}) = (ab)\mathbf{v}$
- $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

Try it out at home! (E.g., the "zero vector" is the function equal to zero for all x)

Short answer: yes, functions are vectors! (Even if they don't look like "little arrows")

Never blindly accept a rule given by authority.

Always ask: where does this rule come from? What does it mean geometrically? (Can you draw a picture?)

Norm of a Vector

For a given vector v, |v| is its **length / magnitude / norm**. Intuitively, this captures how "big" the vector is

Norm Properties

For one thing, it shouldn't be negative!

$$|\mathbf{u}| \ge 0$$
 $|\mathbf{u}| = 0$ \iff $\mathbf{u} = \mathbf{0}$

Also, if we scale a vector by a scalar *c*, its norm should scale by the same amount.

Finally, we know that the shortest path between two points is always along a straight line.**

**sometimes called the "triangle inequality" since the diagram looks like a triangle

Norm Definition

A **norm** is any function that assigns a number to each vector and satisfies the following properties for all vectors **u**, **v**, and all scalars *a*

- $|\mathbf{v}| \ge 0$
- $|\mathbf{v}| = 0 \quad \iff \quad \mathbf{v} = \mathbf{0}$
- $|a\mathbf{v}| = |a||\mathbf{v}|$
- $|\mathbf{u}| + |\mathbf{v}| \ge |\mathbf{u} + \mathbf{v}|$

Euclidean Norm in Cartesian Coordinates

A standard norm is the so-called Euclidean norm of n-vectors

$$|\mathbf{u}| = |(u_1, \dots, u_n)| := \sqrt{\sum_{i=1}^n u_i^2}$$

The Euclidean norm is also called the L^2 norm.

Definition of L^p norm:

$$|\boldsymbol{u}| = |u_1, \dots, u_n| \coloneqq \left(\sum_{i=1}^n u_i^p\right)^{\frac{1}{p}}$$

L² Norm Of Functions

- L2 norm measures the total magnitude of a function
- Consider real-valued functions on the unit interval [0,1] whose square has a well-defined integral. The L2 norm is defined as:

$$|f|| := \sqrt{\int_0^1 f(x)^2 \, dx}$$

- Not too different from the Euclidean norm
 - We just replaced a sum with an integral
- **Careful!** does the formula above exactly satisfy all our desired properties for a norm?

Inner Product

- Inner product measures the "similarity" of vectors, or how well vectors "line up"
- The inner product of two vectors is commutative:

$$\langle \mathbf{u},\mathbf{v}
angle = \langle \mathbf{v},\mathbf{u}
angle$$

Inner Product Formal Definition

An inner product is any function that assigns to any two vectors u, v a number $\langle u, v \rangle$ satisfying the following properties:

- $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$
- $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \quad \iff \quad \mathbf{u} = \mathbf{0}$

•
$$\langle a\mathbf{u},\mathbf{v}\rangle = a\langle \mathbf{u},\mathbf{v}\rangle$$

•
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

$$\langle \mathbf{u}, \mathbf{v} \rangle := |\mathbf{u}| |\mathbf{v}| \cos(\theta)$$

A standard Euclidean inner product

$$\mathbf{u}\cdot\mathbf{v}:=u_1v_1+\cdots+u_nv_n$$

Dot Product

(for unit vectors u and v)

- For unit vectors |u|=|v|= 1, the dot product measures the extent, or percent, of one vector along the direction of the other.
 - If we scale either vector, the inner product also scales:

 $\langle 2\mathbf{u}, \mathbf{v} \rangle = 2 \langle \mathbf{u}, \mathbf{v} \rangle$

- Vectors need to be normalized when computing similarity!
- Any vector will always be aligned with itself: $\langle {\bf u}, {\bf u} \rangle \geq 0$
- The dot product of any unit vector with itself is: $\langle {\bf u}, {\bf u} \rangle = 1$
- Thus for a unit vector $\hat{\mathbf{u}} \coloneqq \mathbf{u}/|\mathbf{u}|$

 $\langle \mathbf{u}, \mathbf{u} \rangle = \langle |\mathbf{u}| \hat{\mathbf{u}}, |\mathbf{u}| \hat{\mathbf{u}} \rangle = |\mathbf{u}|^2 \langle \hat{\mathbf{u}}, \hat{\mathbf{u}} \rangle = |\mathbf{u}|^2 \cdot 1 = |\mathbf{u}|^2$

Dot Product In Cartesian Coordinates

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle (u_1, \dots, u_n), (v_1, \dots, v_n) \rangle := \sum_{i=1}^n u_i v_i$$

$$\langle \mathbf{u}, \mathbf{v} \rangle = 4 \cdot 1 + 1 \cdot 3 = 7$$

L² Inner Product Of Functions

e.g., consider
$$f, g: [0, 1] \to \mathbb{R}: \langle \langle f, g \rangle \rangle := \int_0^1 f(x) g(x) dx$$

Linear Maps

linear map

nonlinear map

- Linear maps have 2 characteristics:
 - Converts lines to lines
 - Keeps the origin fixed
- Linear map benefits:
 - Easy to solve systems of linear equations.
 - Basic transformations (rotation, translation, scaling) can be expressed as linear maps
 - All maps can be approximated as linear maps over a short distance/short time. (Taylor's theorem)
 - This approximation is used all over geometry, animation, rendering, image processing

= 0

Linear Maps

A map (function) **f** is **linear** if it maps vectors to vectors, and if for all vectors **u**, **v** and scalars a we have:

$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$
$$f(a\mathbf{u}) = af(\mathbf{u})$$

It doesn't matter whether we add the vectors and then apply the map, or apply the map and then add the vectors (and likewise for scaling):

Linear Maps

For maps between \mathbb{R}^n and \mathbb{R}^m (e.g., a map from 2D to 3D), a map is linear if it can be expressed as

$$f(u_1,\ldots,u_m)=\sum_{i=1}^m u_i\mathbf{a}_i$$

In other words, if it is a linear combination of a fixed set of vectors a_i :

Is f(x) = ax + b a linear map?

Linear vs. Affine Maps

No! but it is easy to be fooled since it looks like a line. However, it does not keep the origin fixed $(f(x) \neq 0)$

Another way to see it's not linear? It doesn't preserve sums:

$$f(x_1 + x_2) = a(x_1 + x_2) + b = ax_1 + ax_2 + b$$

$$f(x_1) + f(x_2) = (ax_1 + b) + (ax_2 + b) = ax_1 + ax_2 + 2b$$

This is called an affine map.

We will see a trick on how to turn affine maps into linear maps using homogeneous coordinates in a future lecture. Is $f(u) = \int_0^1 u(x) dx$ a linear map?

This will be on your homework?**

** hint: consider u(x) = x

15-362/662 | Computer Graphics

Span

The **span** of a set of vectors S_1 is the set of all vectors S_2 that can be written as a linear combination of the vectors in S_1

span
$$(\mathbf{u}_1,\ldots,\mathbf{u}_k) = \left\{ \mathbf{x} \in V \mid \mathbf{x} = \sum_{i=1}^k a_i \mathbf{u}_i, a_1,\ldots,a_k \in \mathbb{R} \right\}$$

Basis

If we have exactly n vectors e_1, \ldots, e_n such that:

$$\operatorname{span}(\mathbf{e}_1,\ldots,\mathbf{e}_n)=\mathbb{R}^n$$

Then we say that these vectors are a basis for \mathbb{R}^n .

Note that there are many different choices of bases for \mathbb{R}^n !

Which of the following are bases for \mathbb{R}^2 ?

Orthonormal Basis

Most often, it is convenient to have basis vectors that are:

- (i) unit length
- (ii) mutually orthogonal

These basis vectors are called orthonormal basis. In other words, if e_1, \ldots, e_n are our basis vectors, then:

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \begin{cases} 1, & i = j \\ 0, & \text{otherwise.} \end{cases}$$

*Common bug: projecting a vector onto a basis that is NOT orthonormal while continuing to use standard norm / inner product.

Gram-Schmidt

Given a collection of basis vectors a_1, \ldots, a_n , we can find an orthonormal basis e_1, \ldots, e_n using the **Gram-Schmidt** algorithm.

Gram-Schmidt algorithm:

- Normalize the 1st vector
- Subtract any component of the 1st vector from the 2nd one
- Normalize the 2nd one
- Repeat, removing components of first k vectors from vector k+1
- **Caution!** Does not work well for large sets of vectors or nearly parallel vectors numerical issues
 - Modified Gram-Schmidt algorithms exist

Gram-Schmidt Example

Common task: have a triangle in 3D, need orthonormal basis for the plane containing the triangle

Strategy: apply Gram-Schmidt to (any) pair of edge vectors

$$\mathbf{u} := p_1 - p_0$$
$$\mathbf{v} := p_2 - p_0$$
$$\mathbf{e}_1 := \mathbf{u} / |\mathbf{u}|$$
$$\tilde{\mathbf{v}} := \mathbf{v} - \langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1$$
$$\mathbf{e}_2 := \tilde{\mathbf{v}} / |\tilde{\mathbf{v}}|$$

Does the order matter? (*Ex: if we swapped u and v in the above equation, what happens?*)

Fourier Transform

[higher frequency]

- Functions are also vectors, meaning they have an orthonormal basis known as a Fourier transform
 - Example: functions that repeat at intervals of 2π
- Can project onto basis of sinusoids:

 $\cos(nx), \sin(mx), m, n \in \mathbb{N}$

- Fundamental building block for many graphics algorithms:
 - Example: JPEG Compression
- More generally, this idea of projecting a signal onto different "frequencies" is known as Fourier decomposition

System Of Linear Equations

- A system of linear equations is a bunch of equations where left-hand side is a linear function, right hand side is constant.
 - Unknown values are called degrees of freedom (DOFs)
 - Equations are called **constraints**
- We can use linear systems to solve for:
 - The point where two lines meet in 2D space
 - Given a point b, find the point x that maps to it

Existence of Solutions

Of course, not all linear systems can be solved! (And even those that can be solved may not have a unique solution.)

Matrices

- We've gone this far without talking about a matrix, oops!
 - But linear algebra is not fundamentally about matrices.
 - We can understand almost all the basic concepts without ever touching a matrix!
- Still, VERY useful!
 - Symbolic manipulation
 - Easy to store
 - Fast to compute
 - (Sometimes) hardware support for matrix ops
- Some of the (many) uses for matrices:
 - Transformations
 - Coordinate System Conversions
 - Graph algorithms, e.g. pagerank
 - Numerical optimization

What does this little block of funny numbers do?

Linear Maps As Matrices

Example: consider the linear map:

$$f(\mathbf{u}) = u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2$$

a vectors become columns in the matrix:

$$A := \begin{bmatrix} a_{1,x} & a_{2,x} \\ a_{1,y} & a_{2,y} \\ a_{1,z} & a_{2,z} \end{bmatrix}$$

Multiplying the original vector \boldsymbol{u} maps it to $\boldsymbol{f}(\boldsymbol{u})$:

$$\begin{bmatrix} a_{1,x} & a_{2,x} \\ a_{1,y} & a_{2,y} \\ a_{1,z} & a_{2,z} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} a_{1,x}u_1 + a_{2,x}u_2 \\ a_{1,y}u_1 + a_{2,y}u_2 \\ a_{1,z}u_1 + a_{2,x}u_2 \end{bmatrix} = u_1\mathbf{a}_1 + u_2\mathbf{a}_2$$

How to map f(u) back to u? Take the inverse of the matrix!

Cross Product

- Inner product takes two vectors and produces a scalar
 - Cross product takes two vectors and produces a vector
- Geometrically:
 - Magnitude equal to parallelogram area
 - Direction orthogonal to both vectors
 - ...but which way?
 - Use "right hand rule" (Only works in 3D)

$$\mathbf{u} \times \mathbf{v} := \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

• We can abuse notation in 2D and write it as:

$$\mathbf{u} imes \mathbf{v} := u_1 v_2 - u_2 v_1$$
 (a scalar)

Cross Product As A Quarter Rotation

- In 3D, if a unit vector u is orthogonal to a unit vector n,
 n × u is equivalent to a quarter-rotation in the plane with normal n.
 - Use the right hand rule :)
 - What is $n \times (n \times u)$?

Dot And Cross Products

Dot product as a matrix multiplication: (vectors are by default column vectors, or $n \times 1$ matrices)

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{\mathsf{T}} \mathbf{v} = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \sum_{i=1}^n u_i v_i$$

Cross product as a matrix multiplication:

$$\mathbf{u} := (u_1, u_2, u_3) \Rightarrow \widehat{\mathbf{u}} := \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix}$$
$$\mathbf{u} \times \mathbf{v} = \widehat{\mathbf{u}}\mathbf{v} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Dot And Cross Products

Useful to notice $\boldsymbol{u} \, imes \, \boldsymbol{v} = - \boldsymbol{v} \, imes \, \boldsymbol{u}$

This means:

$$\mathbf{v} imes \mathbf{u} = -\widehat{\mathbf{u}}\mathbf{v} = \widehat{\mathbf{u}}^{\mathsf{T}}\mathbf{v}$$

$$\mathbf{u} := (u_1, u_2, u_3) \Rightarrow \widehat{\mathbf{u}} := \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix}$$
$$\mathbf{u} \times \mathbf{v} = \widehat{\mathbf{u}}\mathbf{v} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Determinant

$$\mathbf{A} := \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

The determinant of A is:

Great, but what does that mean?

Determinant

det(u,v,w) encodes **signed volume** of parallelepiped with edge vectors u, v, w.

What happens if we reverse the order of the vectors in the cross product?

Determinant of a Linear Map

 Recall that a linear map is a transformation from one coordinate space to another and is defined by a set of vectors a₁, a₂, a₃...

$$f(\mathbf{u}) = u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2 + u_3 \mathbf{a}_3$$
$$:= \begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ | & | & | \end{bmatrix} = \begin{bmatrix} a_{1,x} & a_{2,x} & a_{3,x} \\ a_{1,y} & a_{2,y} & a_{3,y} \\ a_{1,z} & a_{2,z} & a_{3,z} \end{bmatrix}$$

- The *det*(*A*) here measures the change in volume between spaces.
 - The sign tells us whether the orientation was reversed.

A

Linear Algebra Review

• Vector Calculus Review

Differential Operators

- Many uses for computer graphics:
 - Expressing physical/geometric problems in terms of related rates of change (ODEs, PDEs)
 - Numerical optimization minimizing the cost relative to some objective

Derivative of a Slope

Measures the amount of change for an infinitesimal step:

$$f'(x_0) := \lim_{\varepsilon \to 0} \frac{f(x_0 + \varepsilon) - f(x_0)}{\varepsilon}$$

What if the slopes do not match if we change directions?

$$f^{+}(x_{0}) := \lim_{\varepsilon \to 0} \frac{f(x_{0} + \varepsilon) - f(x_{0})}{\varepsilon}$$
$$f^{-}(x_{0}) := \lim_{\varepsilon \to 0} \frac{f(x_{0}) - f(x_{0} - \varepsilon)}{\varepsilon}$$
Differentiable** only if $f^{+} = -f^{-}$

** Many functions in graphics are not differentiable!

Derivative as Best Linear Approximation

Any smooth function can be expressed as a **Taylor series**:

[constant] [linear] [quadratic]
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \cdots$$

Derivative as Best Linear Approximation

Can be applied for multi-variable functions too.

Directional Derivative

For multi-variable functions, we can take a slice of the function in the direction of vector **u** and compute the derivative from the resulting 2D function.

$$D_{\mathbf{u}}f(\mathbf{x}_0) := \lim_{\varepsilon \to 0} \frac{f(\mathbf{x}_0 + \varepsilon \mathbf{u}) - f(\mathbf{x}_0)}{\varepsilon}$$

Gradient

Given a multivariable function, we compute a vector at each location.

Gradient in Coordinates

$$\nabla f = \left[\begin{array}{c} \partial f / \partial x_1 \\ \vdots \\ \partial f / \partial x_n \end{array} \right]$$

Example:

$$f(\mathbf{x}) := x_1^2 + x_2^2$$
$$\frac{\partial f}{\partial x_1} = \frac{\partial}{\partial x_1} x_1^2 + \frac{\partial}{\partial x_1} x_2^2 = 2x_1 + 0$$
$$\frac{\partial f}{\partial x_2} = \frac{\partial}{\partial x_2} x_1^2 + \frac{\partial}{\partial x_2} x_2^2 = 0 + 2x_2$$
$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1\\2x_2 \end{bmatrix} = 2\mathbf{x}$$

Gradient as Best Linear Approximation

- Gradient tells us the direction of steepest ascent.
 - Steepest descent if negative direction
 - No change if orthogonal direction

 $f(\mathbf{x}) \approx f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$

- We can take multiple small steps to arrive at the maximum
 - How we make that step is its own field of research known as 'optimization'

Gradient & Directional Derivative

The gradient $\nabla f(\mathbf{x})$ is a unique vector $\langle \nabla f(\mathbf{x}), \mathbf{u} \rangle = D_{\mathbf{u}} f(\mathbf{x})$

such that taking the inner product of the gradient along any direction gives the directional derivative.

Only works if function is differentiable!

Gradient of Dot Product

Gradients of Multivariate Functions**

For any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and **symmetric** matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$:

MATRIX DERIVATIVE	LOOKS LIKE
$ abla_{\mathbf{x}}(\mathbf{x}^T\mathbf{y}) = \mathbf{y}$	$\frac{d}{dx}xy = y$
$ abla_{\mathbf{x}}(\mathbf{x}^T\mathbf{x}) = 2\mathbf{x}$	$\frac{dx}{dx}x^2 = 2x$
$ abla_{\mathbf{x}}(\mathbf{x}^T A \mathbf{y}) = A \mathbf{y}$	$\frac{d}{dx}axy = ay$
$\nabla_{\mathbf{x}}(\mathbf{x}^{T}A\mathbf{x}) = 2A\mathbf{x}$	$\frac{d}{dx}ax^2 = 2ax$
• • •	•••

** Excellent resource: Petersen & Pedersen, "The Matrix Cookbook"

L² Gradient

- Consider a function F(f) that has an input function f
 - Same idea: the gradient of *F* with respect to *f* measures how changing the function *f* best increases *F*
 - Example:

$$F(f) := \langle\!\langle f, g \rangle\!\rangle$$

• I claim the gradient is:

$$\nabla F = g$$

- This means adding more of g to f increases ∇F
 - This is true for inner products!
- How do we compute the gradient in general?
 - Look for a function ∇F such that:

 $\langle\!\langle \nabla F, u \rangle\!\rangle = D_u F$

• Where the directional derivative is:

$$D_{u}F(f) = \lim_{\varepsilon \to 0} \frac{F(f + \varepsilon u) - F(f)}{\varepsilon}$$

L² Gradient Example

Consider: $F(f) := ||f||^2$

Apply the directional derivative formula for a given direction u:

$$\langle\!\langle \nabla F(f_0), u \rangle\!\rangle = \lim_{\varepsilon \to 0} \frac{F(f_0 + \varepsilon u) - F(f_0)}{\varepsilon}$$

Substitute *F* and expand the numerator $F(f_0 + \varepsilon u)$:

$$||f_0 + \varepsilon u||^2 = ||f_0||^2 + \varepsilon^2 ||u||^2 + 2\varepsilon \langle \langle f_0, u \rangle \rangle$$

Subtract the remaining $F(f_0)$ and divide by ε :

 $\lim_{\varepsilon \to 0} (\varepsilon ||u||^2 + 2\langle\langle f_0, u \rangle\rangle) = 2\langle\langle f_0, u \rangle\rangle$

Set equal to the gradient term:

$$\langle\!\langle \nabla F(f_0), u \rangle\!\rangle = 2 \langle\!\langle f_0, u \rangle\!\rangle$$

Solution:

 $\nabla F(f_0) = 2f_0$

kinda looks like
$$rac{d}{dx}x^2=2x$$

Laplacian

- Measures the **curvature** of a function
- Several ways to calculate:
 - Divergence of gradient (outside course scope):

 $\Delta f := \nabla \cdot \nabla f = \operatorname{div}(\operatorname{grad} f)$

• Sum of 2nd partial derivative:

 $\Delta f := \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$

• Gradient of Dirichlet energy (outside course scope):

$$\Delta f := -\nabla_f(\frac{1}{2}||\nabla f||^2)$$

• Variation of Surface Area:

Laplacian Example

Consider:

 $f(x_1, x_2) := \cos(3x_1) + \sin(3x_2)$

Using the following equation:

 $\Delta f := \sum_i \partial^2 f / \partial x_i^2$

Compute the first partial:

 $\frac{\partial^2}{\partial x_1^2} f = \frac{\partial^2}{\partial x_1^2} \cos(3x_1) + \frac{\partial^2}{\partial x_1^2} \sin(3x_2)^0 =$ $-3 \frac{\partial}{\partial x_1} \sin(3x_1) = -9 \cos(3x_1).$ And the second: $\frac{\partial^2}{\partial x_2^2} f = -9 \sin(3x_2).$ Add together: $\Delta f = -9(\cos(3x_1) + \sin(3x_2)) = -9f$ Does this always happen?

Hessian

- A matrix representing a gradient to the gradient
 - Matrix is **symmetric** for most smooth functions
 - Order of partial derivatives does not matter given *f* is smooth
- A gradient was a vector that gives us partial derivatives of the function
 - A hessian is an operator that gives us partial derivatives of the gradient:

 $(\nabla^2 f)\mathbf{u} := D_{\mathbf{u}}(\nabla f)$

$${}^{2}f := \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}\partial x_{1}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{n}} \end{bmatrix}$$

Taylor Series For Multivariate Functions

Using the **Hessian**, we can now write 2nd-order approximation of any smooth, multivariable function f(x) around some point x_0 :

[constant] [linear] [quadratic] $f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \cdots$

$$f(\mathbf{x}) \approx \underbrace{f(\mathbf{x}_0)}_{c \in \mathbb{R}} + \underbrace{\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle}_{\mathbf{b} \in \mathbb{R}^n} + \underbrace{\langle \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle}_{\mathbf{A} \in \mathbb{R}^{n \times n}} + \underbrace{\langle \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle}_{\mathbf{A} \in \mathbb{R}^{n \times n}}$$

In matrix form:

$$f(\mathbf{u}) \approx \frac{1}{2}\mathbf{u}^{\mathsf{T}}\mathbf{A}\mathbf{u} + \mathbf{b}^{\mathsf{T}}\mathbf{u} + c, \quad \mathbf{u} := \mathbf{x} - \mathbf{x}_0$$

Charlie Brown (1984) Charles Schulz

Recap

- That was a lot of math
 - But now you should have the proper mathematical background to complete this course
- We will use Linear Algebra...
 - As an effective bridge between geometry, physics, computation, etc.
 - As a way to formulate a problem. Write the problem as Ax=b and ask the computer to solve
- We will use Vector Calculus...
 - As a basic language for talking about spatial relationships, transformations, etc.
 - For much of modern graphics (physics-based animation, geometry processing, etc.) formulated in terms of partial differential equations (PDEs) that use div, curl, Laplacian, and so on
- A0.0 will reinforce the content taught in this lecture
 - Be sure to refer back to the slides for help
 - Feel free to find helps from any course staff!