
Introduction

15-362/662 | Computer Graphics Lecture 01 | Introduction

15-362/662 | Computer Graphics Lecture 01 | Introduction

Lecture slides will be posted before each class.

This lecture is the exception.

Lecture 01 | Introduction

• Course Introduction

• Logistics

• History Of Graphics

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Course Staff

Oscar Dadfar
[odadfar]

15-362/662 | Computer Graphics

Minchen Li
[minchenl]

Lecture 01 | Introduction

Little About Minchen

15-362/662 | Computer Graphics

• PhD: UPenn, CIS

• Research interests: Physics-based Animation
• Deformable/rigid bodies
• Cloth
• Fluids

• Teachings:
• 15-362/662: Computer Graphics
• 15-769: Physics-based Animation of Solids and Fluids

Lecture 01 | Introduction

Course Staff

Oscar Dadfar
[odadfar]

15-362/662 | Computer Graphics

Minchen Li
[minchenl]

Lucas Hurley
[lmhurley]

Divya Kartik
[dkartik]

David Krajewski
[dkrajews]

Ria Manathkar
[rmanathk]

Lecture 01 | Introduction

Course Staff

Oscar Dadfar
[odadfar]

15-362/662 | Computer Graphics

Minchen Li
[minchenl]

Lucas Hurley
[lmhurley]

Divya Kartik
[dkartik]

David Krajewski
[dkrajews]

Ria Manathkar
[rmanathk]

Yuzu
[calico]

Matcha
[calico]

Hojicha
[tuxie]

Lecture 01 | Introduction

Little About Oscar

15-362/662 | Computer Graphics

• Undergrad: BCSA at CMU
• Masters: MSCS at CMU

• Research interests: Video
• Video understanding
• Video segmentation
• Video propagation
• Video generation
• Video HCI

• A lot of video!

• Teachings:
• 15-473/673: Visual Computing Systems
• 98-331: Animation & Video Editing
• 98-177: Building Personal Websites

• Undergrad: BCSA at CMU
• Masters: MSCS at CMU

• Research interests: Video
• Video understanding
• Video segmentation
• Video propagation
• Video generation
• Video HCI

• A lot of video!

• Teachings:
• 15-473/673: Visual Computing Systems
• 98-331: Animation & Video Editing
• 98-177: Building Personal Websites

Lecture 01 | Introduction

Little About Oscar

15-362/662 | Computer Graphics

Lecture 01 | Introduction

• Course Introduction

• Logistics

• History Of Graphics

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Important Links

• Course Web Site: http://15362.courses.cs.cmu.edu/fall2024

• Course Piazza: Check Email for link

• Course Slack: Check Piazza for link

• Course Gradescope: Check Piazza for link

• Course Autolab: Check Piazza for link

• Course OH Queue: https://ohq.eberly.cmu.edu/#/student
• Office Hours? Let’s figure that out!
• https://tinyurl.com/362-officehours

If you are having trouble accessing any of the links,
please speak to a TA

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Grading

• 5% A0: Math/Code Review

• 15%: A1: Rasterization

• 15%: A2: MeshEdit

• 15%: A3: PathTracing

• 15%: A4: Animation

• 10% Writtens

• 20% Exams

• 5% Participation

• +2.5% Recitation

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Why does this course exist?

15-362/662 | Computer Graphics

Lecture 01 | Introduction

4 Components Of Graphics

A1: Rasterization

A4: AnimationA3: PathTracing

A2: MeshEdit

15-362/662 | Computer Graphics

Lecture 01 | Introduction

4 Components Of Graphics

Batman (1956) DC Comics

God of War: Ragnarok (2022) Santa Monica StudioFloor Planning (2020) IKEA

Toy Story 3 (2010) Pixar

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Graphics In Movies

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Graphics In Video Games

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Graphics In Technology

15-362/662 | Computer Graphics

Lecture 01 | Introduction

that’s a lot of graphics…

and we’re here to learn how to draw them all

15-362/662 | Computer Graphics

Lecture 01 | Introduction15-362/662 | Computer Graphics

Lecture 01 | Introduction15-362/662 | Computer Graphics

Lecture 01 | Introduction15-362/662 | Computer Graphics

Lecture 01 | Introduction

Why Math?

The New Yorker Collection (2001) Jack Ziegler

• Lot of graphics concepts use math:
• Coordinate systems
• Transforms
• Ray-casting
• Color conversions
• Intersection tests
• Geometric queries
• Physical simulations

• And much more!

• Graphics is about converting data into simulations &
experiences
• Math helps us get there

• It is okay if you are not good at math!
• But by the end of this course you will be :)

15-362/662 | Computer Graphics

Lecture 01 | Introduction

The Math Behind Graphics

< Vector, Calculus >[Linear … Algebra]

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Assignments

• 65% Assignments
• [05%] A0: Math Review
• [15%] A1: Rasterization
• [15%] A2: MeshEdit
• [15%] A3: PathTracing
• [15%] A4: Animation

• Solutions must be your own (you may not collaborate)

• A1 – A4 will have checkpoints! (Ex: A1.0, A1.5) Please submit on time

• Total of 5 late days for all assignments. Cannot use late days on A4.5!
• After late days, 10% deduction in grade per day

• Submit to Autolab
• Build checks run to make sure correct files submitted

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Assignment 0.0: Math Review

• [2.5%] A0.0:
• Linear Algebra

• Linear Maps
• Span
• Orthonormal Bases
• Matrices

• Vector Calculus
• Functions as Vectors
• Inner/Cross Product
• Determinant
• Gradient

• Everyone has a unique assignment
• Numbers (and solutions) are different for each student

• Submissions autograded by Autolab
• Unlimited submissions
• You do not need to answer all problems

• Extra credit for anything extra answered

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Assignment 0.5: Code Review

• [2.5%] A0.5:
• Setting Up Scotty3D

• Cloning Repo
• Setting Up Environment
• Building Code

• C++ Tests
• Running Test Cases
• Learning C++ Syntax

• Goal is to get you familiar with coding
practices and syntax needed to
complete coding assignment

• What is Scotty3D?

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Assignments 1-4: Scotty3D

• We will give you a fully-working 3D graphics
application with a working GUI that can rasterize, edit
geometry, render scenes, and create animations
• The catch: we removed all the core graphics

operations from the application

• Goal: take what you’ve learned during lectures to
build back the application
• Note: there is not one correct solution! There

are many ways to solve these graphics problems.
We call them “algorithms” :)

• You will use the same codebase for all 4 assignments
• Assignments are designed to be independent:

bugs in A2 should not impact your A4
submission

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Assignments 1-4: Scotty3D

[A1: Rasterization] [A2: MeshEdit]

[A3: PathTracer] [A4: Animation]

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Assignment 1: Rasterization

• A1.0: Rasterization Checkpoint
• Transformations
• Lines
• Triangles
• Depth + Blending

• A1.5: Rasterization Final
• Interpolation
• Mip-Maps
• Supersampling

• Goal: write a rasterizer that converts geometry into
rasterized images
• If you do not know the difference between a

raster and render, you will learn :)

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Assignment 2: MeshEdit

• A2.0: MeshEdit Checkpoint
• Local Geometry Ops

• Flip Edge
• Split Edge
• Collapse Edge
• Extrude Face

• A2.5: MeshEdit Final
• Global Geometry Ops

• Triangulation
• Linear Subdivision
• Catmull-Clark Subdivision

• Goal: be able to create and manipulate geometry to
model new 3D characters and scenes

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Assignment 3: PathTracer

• A3.0: PathTracer Checkpoint
• Camera Rays
• Intersection Tests
• BVH

• A3.5: PathTracer Final
• Path Tracing
• Materials
• Direct Lighting
• Environment Lighting

• Goal: create a render engine that can take any scene
and create a photorealistic rendering out of it
• We will learn ‘non-photorealistic’ styles in this

class too

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Assignment 4: Animation

• A4.0: Animation Checkpoint
• Spline Interpolation
• Skeleton Kinematics

• A4.5: Animation Final
• Linear Blend Skinning
• Particle Simulation

• Goal: make a platform for users to create animations
out of geometry and scene files

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Eating Your Own Dogfood

• At the end of each assignment, you will use your
working Scotty3D implementation to create a:
• A1: Rasterized Artwork
• A2: Character/Object model
• A3: Rendered Environment
• A4: Animation

• A guest panel of judges will vote on the results of
each assignment creation
• Votes will be added across assignments
• Top 3 students with the most votes win a prize

15-362/662 | Computer Graphics

Lecture 01 | Introduction

A1 Past Creations

15-362/662 | Computer Graphics

Lecture 01 | Introduction

A2 Past Creations

15-362/662 | Computer Graphics

Lecture 01 | Introduction

A3 Past Creations

15-362/662 | Computer Graphics

Lecture 01 | Introduction

A4 Past Creations

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Is this entire class programming?
Hint: no

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Writtens

• 10% Writtens
• Each class has an associated written assignment worth 100pts

• Posted on the course website
• Due the week after

• Can work in groups of up to 3

• No late days, but you may skip up to 2 writtens

• Submit to Gradescope

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Exams

• 20% Exams
• [10%] Midterm
• [10%] Final

• Exam content will come from lectures, not just assignments.
• Please attend class :)

• Final is cumulative.

• Standard 3”x 3” handwritten sticky note is allowed (front and back)

• We will provide practice exams closer to the exam date

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Participation

• 5% Participations
• Asking/Answering questions on piazza

• Asking/Answering question on course slides

• Attending lecture

• We will have a quick poll sometime
during the lecture to track attendance

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Recitations

• +2.5% Recitation Attendance
• Extra credit, just for showing up!
• TAs will take attendance
• Linearly scales

• Attend half of recitations, get +1.25%

• 4 Recitation Slots [Fridays]:
• A (362) (9am) SH 234
• A (662) (9am) SH 234

• B (362) (10am) GHC 4102 GHC 4301
• B (662) (10am) GHC 4301

• C (362) (11am) PH 226C
• C (662) (11am) WEH 6403

15-362/662 | Computer Graphics

Lecture 01 | Introduction

What We Really Want From You

• We want you to be good programmers + have programming maturity
• At the level of 15-122 is the bare minimum.

• We want you to not be afraid of large codebases
• The essence of Computer Graphics is large codebases and how to work with them.

• We want you to be able to read docs and language specs
• There are large ReadMe docs for every assignment. Make sure you understand them before coding.

• We do NOT want you to have the relevant skills from day one.
• We instead ask that you take the time to develop these skills while in this course, as they are

common in industry and research.

• We want you to have fun
• This is a creative class, make sure to learn, and you’ll be proud of what you learn to make.

15-362/662 | Computer Graphics

Lecture 01 | Introduction

• Course Introduction

• Logistics

• History Of Graphics

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Before that,

15-362/662 | Computer Graphics

Lecture 01 | Introduction

What is Computer Graphics

computer vision computer graphics

15-362/662 | Computer Graphics

Lecture 01 | Introduction

What is Computer Graphics

Drawing an image requires doing millions of the same operations
across millions of triangles, lights, pixels, etc.

15-362/662 | Computer Graphics

Lecture 01 | Introduction

The CPU
• Generic hardware

• Can do many things
• Schedule/synchronize threads
• Run dynamic loops
• Compile code
• Execute web scripts
• Order a package off Amazon

• A few cores
• Tens of cores, each with several threads
• Can do parallel processing, but not much
• Heterogeneous cores, not every core has the same

performance
• High performance cores
• Energy-efficient cores

• Small data
• Few proprietary registers
• Small (if any) caches
• Needs to spill into larger shared caches/DRAM

Core i7 (2008) Intel

15-362/662 | Computer Graphics

Lecture 01 | Introduction

The CPU
• Generic hardware

• Can do many things
• Schedule/synchronize threads
• Run dynamic loops
• Compile code
• Execute web scripts
• Order a package off Amazon

• A few cores
• Tens of cores, each with several threads
• Can do parallel processing, but not much
• Heterogeneous cores, not every core has the same

performance
• High performance cores
• Energy-efficient cores

• Small data
• Few proprietary registers
• Small (if any) caches
• Needs to spill into larger shared caches/DRAM

Core i7 (2008) Intel

15-362/662 | Computer Graphics

Lecture 01 | Introduction

The GPU
• Specialized hardware

• Really good at doing a few operations
• Catalogue of operations kept small

• Easy to fetch smaller list of ops

• Thousands of cores
• Can run the same operation on hundreds of thousands

of data points at once
• Good when the same code runs on data
• Bad when divergence occurs

• Large data
• Many registers for each core
• Large GPU memory
• Modern systems have shared memory with CPU

• Easy for scheduling/data transfer

• “why buy a fireplace when you can buy a gpu” – nvidia ceo,
probably

Geforce 256 (1999) Nvidia

15-362/662 | Computer Graphics

Lecture 01 | Introduction

The GPGPU

• ‘General Purpose’ Graphics Processing Unit
• Also known as the ‘modern GPU’
• Sacrifices specialized hardware components for more

general operations

• GPUs originally used for rendering
• Data scientists ‘hacked’ GPUs by using the vertex

shader to perform compute on large data systems
• Led to the creation of compute shaders

• GPUs now contain many more programmable stages
and can be used in data science and machine learning

• Paradigm shift: sacrifice fixed function for more
programmability

Data Centers (2020) Nvidia

15-362/662 | Computer Graphics

Lecture 01 | Introduction

The GPU

15-362/662 | Computer Graphics

Lecture 01 | Introduction

The Graphics Pipeline

• Sometimes called the:
• 3D Graphics Pipeline
• Rasterization Pipeline
• GPU Pipeline

• GPU was designed specifically to run this pipeline fast

• Entire pipeline was fixed-function
• You provide the data, a vertex shader, and a

fragment shader, and the GPU does the rest
• Fixed-function == fast!

• By limiting what an architecture can do, that
makes the architecture really good at what it
can do
• In graphics, we need to run the same

operations over millions of datapoints

Graphics Pipeline Tutorial (2019) Vulkan

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Change Of Space

• Half the pipeline is in 3D, half is in 2D
• Remember: we start with a 3D scene

descriptor and end with a 2D image

• Moving from 3D to 2D scene provides many
benefits:
• Higher precision operations
• Faster computations
• Easier parallelism
• Less data to manage
• Less operations overall

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Side Note: What Is A Shader?

• Shaders are any string of code run on the GPU
• Not specific to graphics, any GPU code is shader code

• Ex: Compute shaders

• Most shader code looks like it was written in C
• Perfect for C++ graphics developers

• The term was originally created to refer to the user-defined
portion of the Graphics Pipeline

• Every system’s GPU is different, therefore the CPU needs to
compile (translate) the code into the GPU’s spec
• For large graphics systems (think video games) with a

common architecture (PS5, Xbox, etc.), shaders will be
compiled before being shipped
• Known as pre-compiled shaders

• PCs on the other hand need to compile shaders when game
first start since GPUs vary per PC

15-362/662 | Computer Graphics

Lecture 01 | Introduction

3D Graphics Systems Stack

scene.glb vertices fragmentsprimitives image.png

Converting data into … well, more data
But this data is pretty!

15-362/662 | Computer Graphics

Lecture 01 | Introduction

Much More Computer Graphics To Learn!

Make sure to come to lecture!
Credit: Mia Tang

15-362/662 | Computer Graphics

	Slide 1: Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

