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Lecture slides will be posted before each class.

This lecture is the exception.
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• Course Introduction

• Logistics

• History Of Graphics

15-362/662 | Computer Graphics



Lecture 01 | Introduction
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Little About Minchen
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• PhD: UPenn, CIS

• Research interests: Physics-based Animation
• Deformable/rigid bodies
• Cloth
• Fluids

• Teachings:
• 15-362/662: Computer Graphics
• 15-769: Physics-based Animation of Solids and Fluids
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Little About Oscar
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• Undergrad: BCSA at CMU
• Masters: MSCS at CMU

• Research interests: Video
• Video understanding
• Video segmentation
• Video propagation
• Video generation
• Video HCI

• A lot of video!

• Teachings:
• 15-473/673: Visual Computing Systems
• 98-331: Animation & Video Editing
• 98-177: Building Personal Websites
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Important Links

• Course Web Site:          http://15362.courses.cs.cmu.edu/fall2024

• Course Piazza:               Check Email for link

• Course Slack:                Check Piazza for link

• Course Gradescope:     Check Piazza for link

• Course Autolab:            Check Piazza for link

• Course OH Queue:        https://ohq.eberly.cmu.edu/#/student
• Office Hours? Let’s figure that out!
• https://tinyurl.com/362-officehours

If you are having trouble accessing any of the links, 
please speak to a TA
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Grading

• 5% A0: Math/Code Review

• 15%: A1: Rasterization

• 15%: A2: MeshEdit

• 15%: A3: PathTracing

• 15%: A4: Animation

• 10% Writtens

• 20% Exams

• 5% Participation

• +2.5% Recitation
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Why does this course exist?
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4 Components Of Graphics

A1: Rasterization

A4: AnimationA3: PathTracing

A2: MeshEdit
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4 Components Of Graphics

Batman (1956) DC Comics

God of War: Ragnarok (2022) Santa Monica StudioFloor Planning (2020) IKEA

Toy Story 3 (2010) Pixar
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Graphics In Movies
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Graphics In Video Games
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Graphics In Technology
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that’s a lot of graphics…

and we’re here to learn how to draw them all
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Why Math?

The New Yorker Collection (2001) Jack Ziegler

• Lot of graphics concepts use math:
• Coordinate systems
• Transforms
• Ray-casting
• Color conversions
• Intersection tests
• Geometric queries
• Physical simulations

• And much more!

• Graphics is about converting data into simulations & 
experiences
• Math helps us get there

• It is okay if you are not good at math!
• But by the end of this course you will be : )
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The Math Behind Graphics

< Vector, Calculus >[ Linear … Algebra ]
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Assignments

• 65% Assignments
• [05%] A0: Math Review
• [15%] A1: Rasterization
• [15%] A2: MeshEdit
• [15%] A3: PathTracing
• [15%] A4: Animation

• Solutions must be your own (you may not collaborate)

• A1 – A4 will have checkpoints! (Ex: A1.0, A1.5) Please submit on time

• Total of 5 late days for all assignments. Cannot use late days on A4.5!
• After late days, 10% deduction in grade per day

• Submit to Autolab
• Build checks run to make sure correct files submitted
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Assignment 0.0: Math Review

• [2.5%] A0.0: 
• Linear Algebra

• Linear Maps
• Span
• Orthonormal Bases
• Matrices

• Vector Calculus
• Functions as Vectors
• Inner/Cross Product
• Determinant
• Gradient

• Everyone has a unique assignment
• Numbers (and solutions) are different for each student

• Submissions autograded by Autolab
• Unlimited submissions
• You do not need to answer all problems

• Extra credit for anything extra answered
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Assignment 0.5: Code Review

• [2.5%] A0.5: 
• Setting Up Scotty3D

• Cloning Repo
• Setting Up Environment
• Building Code

• C++ Tests
• Running Test Cases
• Learning C++ Syntax

• Goal is to get you familiar with coding 
practices and syntax needed to 
complete coding assignment

• What is Scotty3D?
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Assignments 1-4: Scotty3D

• We will give you a fully-working 3D graphics 
application with a working GUI that can rasterize, edit 
geometry, render scenes, and create animations
• The catch: we removed all the core graphics 

operations from the application

• Goal: take what you’ve learned during lectures to 
build back the application
• Note: there is not one correct solution! There 

are many ways to solve these graphics problems. 
We call them “algorithms” : )

• You will use the same codebase for all 4 assignments
• Assignments are designed to be independent: 

bugs in A2 should not impact your A4 
submission
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Assignments 1-4: Scotty3D

[ A1: Rasterization ] [ A2: MeshEdit ]

[ A3: PathTracer ] [ A4: Animation ]
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Assignment 1: Rasterization

• A1.0: Rasterization Checkpoint
• Transformations
• Lines
• Triangles
• Depth + Blending

• A1.5: Rasterization Final
• Interpolation
• Mip-Maps
• Supersampling

• Goal: write a rasterizer that converts geometry into 
rasterized images
• If you do not know the difference between a 

raster and render, you will learn : )
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Assignment 2: MeshEdit

• A2.0: MeshEdit Checkpoint
• Local Geometry Ops

• Flip Edge
• Split Edge
• Collapse Edge
• Extrude Face

• A2.5: MeshEdit Final
• Global Geometry Ops

• Triangulation
• Linear Subdivision
• Catmull-Clark Subdivision

• Goal: be able to create and manipulate geometry to 
model new 3D characters and scenes
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Assignment 3: PathTracer

• A3.0: PathTracer Checkpoint
• Camera Rays
• Intersection Tests
• BVH

• A3.5: PathTracer Final
• Path Tracing
• Materials
• Direct Lighting
• Environment Lighting

• Goal: create a render engine that can take any scene 
and create a photorealistic rendering out of it
• We will learn ‘non-photorealistic’ styles in this 

class too
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Assignment 4: Animation

• A4.0: Animation Checkpoint
• Spline Interpolation
• Skeleton Kinematics

• A4.5: Animation Final
• Linear Blend Skinning
• Particle Simulation

• Goal: make a platform for users to create animations 
out of geometry and scene files
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Eating Your Own Dogfood

• At the end of each assignment, you will use your 
working Scotty3D implementation to create a:
• A1: Rasterized Artwork
• A2: Character/Object model
• A3: Rendered Environment
• A4: Animation

• A guest panel of judges will vote on the results of 
each assignment creation
• Votes will be added across assignments
• Top 3 students with the most votes win a prize
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A1 Past Creations
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A2 Past Creations
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A3 Past Creations
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A4 Past Creations
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Is this entire class programming?
Hint: no
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Writtens

• 10% Writtens
• Each class has an associated written assignment worth 100pts

• Posted on the course website 
• Due the week after

• Can work in groups of up to 3

• No late days, but you may skip up to 2 writtens

• Submit to Gradescope
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Exams

• 20% Exams
• [10%] Midterm
• [10%] Final

• Exam content will come from lectures, not just assignments.
• Please attend class : )

• Final is cumulative.

• Standard 3”x 3” handwritten sticky note is allowed (front and back)

• We will provide practice exams closer to the exam date
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Participation

• 5% Participations
• Asking/Answering questions on piazza

• Asking/Answering question on course slides

• Attending lecture

• We will have a quick poll sometime 
during the lecture to track attendance
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Recitations

• +2.5% Recitation Attendance
• Extra credit, just for showing up!
• TAs will take attendance
• Linearly scales

• Attend half of recitations, get +1.25%

• 4 Recitation Slots [Fridays]:
• A (362) (9am) SH 234
• A (662) (9am) SH 234

• B (362) (10am) GHC 4102 GHC 4301
• B (662) (10am) GHC 4301

• C (362) (11am) PH 226C
• C (662) (11am) WEH 6403

15-362/662 | Computer Graphics



Lecture 01 | Introduction

What We Really Want From You

• We want you to be good programmers + have programming maturity
• At the level of 15-122 is the bare minimum.

• We want you to not be afraid of large codebases
• The essence of Computer Graphics is large codebases and how to work with them.

• We want you to be able to read docs and language specs
• There are large ReadMe docs for every assignment. Make sure you understand them before coding.

• We do NOT want you to have the relevant skills from day one. 
• We instead ask that you take the time to develop these skills while in this course, as they are 

common in industry and research.

• We want you to have fun
• This is a creative class, make sure to learn, and you’ll be proud of what you learn to make.
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• Course Introduction

• Logistics

• History Of Graphics
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Before that,
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What is Computer Graphics

computer vision computer graphics
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What is Computer Graphics

Drawing an image requires doing millions of the same operations 
across millions of triangles, lights, pixels, etc.
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The CPU
• Generic hardware

• Can do many things
• Schedule/synchronize threads
• Run dynamic loops
• Compile code
• Execute web scripts
• Order a package off Amazon

• A few cores
• Tens of cores, each with several threads
• Can do parallel processing, but not much
• Heterogeneous cores, not every core has the same 

performance
• High performance cores
• Energy-efficient cores

• Small data
• Few proprietary registers
• Small (if any) caches
• Needs to spill into larger shared caches/DRAM

Core i7 (2008) Intel
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The GPU
• Specialized hardware

• Really good at doing a few operations
• Catalogue of operations kept small

• Easy to fetch smaller list of ops

• Thousands of cores
• Can run the same operation on hundreds of thousands 

of data points at once
• Good when the same code runs on data
• Bad when divergence occurs

• Large data
• Many registers for each core
• Large GPU memory
• Modern systems have shared memory with CPU

• Easy for scheduling/data transfer 

• “why buy a fireplace when you can buy a gpu” – nvidia ceo, 
probably

Geforce 256 (1999) Nvidia
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The GPGPU

• ‘General Purpose’ Graphics Processing Unit
• Also known as the ‘modern GPU’
• Sacrifices specialized hardware components for more 

general operations

• GPUs originally used for rendering
• Data scientists ‘hacked’ GPUs by using the vertex 

shader to perform compute on large data systems
• Led to the creation of compute shaders

• GPUs now contain many more programmable stages 
and can be used in data science and machine learning

• Paradigm shift: sacrifice fixed function for more 
programmability 

Data Centers (2020) Nvidia
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The GPU
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The Graphics Pipeline

• Sometimes called the:
• 3D Graphics Pipeline
• Rasterization Pipeline
• GPU Pipeline

• GPU was designed specifically to run this pipeline fast

• Entire pipeline was fixed-function
• You provide the data, a vertex shader, and a 

fragment shader, and the GPU does the rest
• Fixed-function == fast!

• By limiting what an architecture can do, that 
makes the architecture really good at what it 
can do
• In graphics, we need to run the same 

operations over millions of datapoints 

Graphics Pipeline Tutorial (2019) Vulkan
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Change Of Space

• Half the pipeline is in 3D, half is in 2D
• Remember: we start with a 3D scene 

descriptor and end with a 2D image

• Moving from 3D to 2D scene provides many 
benefits:
• Higher precision operations
• Faster computations
• Easier parallelism
• Less data to manage
• Less operations overall
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Side Note: What Is A Shader?

• Shaders are any string of code run on the GPU
• Not specific to graphics, any GPU code is shader code

• Ex: Compute shaders

• Most shader code looks like it was written in C
• Perfect for C++ graphics developers

• The term was originally created to refer to the user-defined 
portion of the Graphics Pipeline

• Every system’s GPU is different, therefore the CPU needs to 
compile (translate) the code into the GPU’s spec
• For large graphics systems (think video games) with a 

common architecture (PS5, Xbox, etc.), shaders will be 
compiled before being shipped
• Known as pre-compiled shaders

• PCs on the other hand need to compile shaders when game 
first start since GPUs vary per PC
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3D Graphics Systems Stack

scene.glb vertices fragmentsprimitives image.png

Converting data into … well, more data
But this data is pretty!
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Much More Computer Graphics To Learn!

Make sure to come to lecture!
Credit: Mia Tang
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