Introduction

Lecture slides will be posted before each class.

This lecture is the exception.

15-362/662 | Computer Graphics

e Course Introduction
* Logistics

* History Of Graphics

15-362/662 | Computer Graphics

Course Staff

Oscar Dadfar

[odadfar] [minchenl]

15-362/662 | Computer Graphics

Little About Minchen
* PhD: UPenn, CIS

* Research interests: Physics-based Animation
* Deformable/rigid bodies
e Cloth
e Fluids

e Teachings:
* 15-362/662: Computer Graphics
e 15-769: Physics-based Animation of Solids and Fluids

15-362/662 | Computer Graphics

Course Staff

A
Oscar Dadfar Minchen Li
[odadfar] [minchenl]

et)« ,
Lucas Hurley Divya Kartik David Krajewski Ria Manathkar
[Imhurley] [dkartik] [dkrajews] [rmanathk]

15-362/662 | Computer Graphics

Course Staff

,'.n—-

B

TN
Oscar Dadfar

Minchen Li
[odadfar] [minchenl]

Hojicha

[tuxie]

Lucas Hurley Divya Kartik David Krajewski Ria Manathkar
[Imhurley] [dkartik] [dkrajews]

[rmanathk]

Undergrad: BCSA at CMU
Masters: MSCS at CMU

Research interests: Video

Teachings:

Little About Oscar

Video understanding
Video segmentation
Video propagation
Video generation
Video HCI

* Alot of video!

15-473/673: Visual Computing Systems
98-331: Animation & Video Editing
98-177: Building Personal Websites

Adobe Research

Little About Oscar

Before Ray Tracing

* Lighting and shadows were “baked” into the scene
* Key ldea: Lights do not move
* Treat all lights as ambient, compute
light/shadow maps
* Render as texture on top of scene

« If light moves, overlay lights over scene
* Shadows don’t move with light anymore

* Reflections/Refractions precomputed as textures
« Alternatively, have a camera at the site of
reflection and rasterize a second view to a
texture (we call this the stencil buffer)
* Sample from texture for reflection

Ratchet & Clank: Rift Apart (2021) Insomniac Games

Teachings:

15-473/673: Visual Computing Systems

Nintendo 64 (1996)
4.5MB RD_RAM or 4.5 MB NEC VR4300
2 T°""| Lt RIDW cmfms) 93.75 MHz 64-bit processor
e * Games generally used faster and more

Disk Drive video Encoder || compact 32-bit data-operations

Connector Reality Signal Processor

— Reallty Display Processor Video DAC * 4 Mb unified memory subsystem
Flash Memory Parlel Bus =—— ‘:,vm = * First of its kind
Mask ROM e Baraal s, Bmaless)) * Shared by CPU, audio, and video
cic p
Game Pak| V

Rodrigo Copetti

” '!'l

Aooessoryj AOG@SSOW

» Coursetntroduction
* Logistics

* History Of Graphics

15-362/662 | Computer Graphics

Important Links

Course Web Site: http://15362.courses.cs.cmu.edu/fall2024
Course Piazza: Check Email for link
Course Slack: Check Piazza for link

Course Gradescope: Check Piazza for link

Course Autolab: Check Piazza for link

Course OH Queue: https://ohq.eberly.cmu.edu/#/student
e Office Hours? Let’s figure that out!
* https://tinyurl.com/362-officehours

If you are having trouble accessing any of the links,
please speak to a TA

5% A0: Math/Code Review
15%: Al: Rasterization
15%: A2: MeshEdit

15%: A3: PathTracing

15%: A4: Animation

10% Writtens

20% Exams

5% Participation

+2.5% Recitation

Grading

Why does this course exist?

15-362/662 | Computer Graphics

4 Components Of Graphics

Al: Rasterization A2: MeshEdit

A3: PathTracing A4d: Animation

15-362/662 | Computer Graphics

4 Components Of Graphics

“Lotso Poses” by Daniel Arriaga
Toy Story 3,2010
Pencil on paper

Floor Planning (2020) IKEA

Graphics In Movies

Graphics In Video Games
: & 2 : :m; v

'l"%

Graphlcs In Technology

RS
&\%\\\'Q\\\

that’s a lot of graphics...
and we’re here to learn how to draw them all

15-362/662 | Computer Graphics

math s havd, bw You don't have 10 do W alome!

15-362/662 | Computer Graphics

maﬂ\ 1S "iavd_

15-362/662 | Computer Graphics

maﬂ\ 15 art

15-362/662 | Computer Graphics

Why Math?

* Lot of graphics concepts use math:
 Coordinate systems
* Transforms
* Ray-casting
e Color conversions
* Intersection tests
* Geometric queries
e Physical simulations
* And much more!

[L

-y
[
o
o
00
i

The New Yorker Collection (2001) Jack Ziegler

e Graphicsis about converting data into simulations &
experiences
 Math helps us get there

lecir
* Itis okay if you are not good at math!

* But by the end of this course you will be :)

The Math Behind Graphics

4
1 2 n
Llai1 a9 A1n
2 a1 ao Ao
3| as1 as2 A3n
m{@mi @m2 ... Gmn
[Linear ... Algebra] < Vector, Calculus >

15-362/662 | Computer Graphics

Assignments

* 65% Assignments
e [05%] AO: Math Review
* [15%] A1l: Rasterization
 [15%] A2: MeshEdit
* [15%] A3: PathTracing
 [15%] A4: Animation

e Solutions must be your own (you may not collaborate)
* Al- A4 will have checkpoints! (Ex: A1.0, A1.5) Please submit on time

» Total of 5 late days for all assignments. Cannot use late days on A4.5!
» After late days, 10% deduction in grade per day

e Submit to Autolab
e Build checks run to make sure correct files submitted

Assignment 0.0: Math Review

[2.5%] A0.0:
Linear Algebra

Linear Maps

Span

Orthonormal Bases
Matrices

Vector Calculus

Functions as Vectors
Inner/Cross Product
Determinant
Gradient

Everyone has a unique assignment
Numbers (and solutions) are different for each student

Submissions autograded by Autolab
Unlimited submissions
You do not need to answer all problems

Extra credit for anything extra answered

1 Linear Algebra

1.1 Basic Vector Operations

Exercise 1. Letting u := (4,3), v:= (4,3), a := 7 and b := 7, calculate the following quantities:
(@) u+v
(b) bu

(c) au—bv

Exercise 2. Letting u := (8,2,7) and v := (8,7,3), calculate the following quantities:
l.u—v

2. u+6v

Exercise 3. So far we have been working with vectors in R? and R®, but it is important to remember that
other objects, like functions, also behave like vectors in the sense that we can add them, subtract them, multiply
them by scalars, etc. Calculate the following quantities for the two polynomials p(x) := 8x% +2x + 7 and
q(x) := 8x% + 7x + 3, and evaluate the result at the point x = 7:

1. p(x) —q(x)
2. p(x) +6q(x)

Assignment 0.5: Code Review

[2.5%] A0.5:
e Setting Up Scotty3D
e Cloning Repo

Assignment O: Scotty3D

o Sett| n g U p E nV| ronme nt :?;i!?nnm;?icg;gj;{n?:j ::Zig(;:rllent is constructed in three parts to help you get used to our custom graphics package and learn basic

* Building Code

g AOT1: Build Your Scotty3D
e C++ Tests
. 1. Clone
* Running Test Cases > Genoral Sat
. beneral setup
* Learning C++ Syntax 3. Build

4. Run GUI

Goal is to get you familiar with coding 5. Run test cases

practices and syntax needed to Sl
0 o « Note that we have .vscode folder included at the root of our workplace directory. Included in this folder are json files to help you use
complete coding assignment vecode's debugging tools.

 Learn shortcuts in your IDE.

What is Scotty3D?

Assignments 1-4: Scotty3D

We will give you a fully-working 3D graphics
application with a working GUI that can rasterize, edit
geometry, render scenes, and create animations
* The catch: we removed all the core graphics
operations from the application

Goal: take what you’ve learned during lectures to
build back the application
* Note: there is not one correct solution! There
are many ways to solve these graphics problems.
We call them “algorithms” :)

You will use the same codebase for all 4 assignments
e Assignments are designed to be independent:
bugs in A2 should not impact your A4
submission

Assignments 1-4: Scotty3D

[A3: PathTracer] [A4: Animation]

15-362/662 | Computer Graphics

Assignment 1: Rasterization

e A1.0: Rasterization Checkpoint
* Transformations
* Lines
* Triangles
* Depth + Blending

e Al.5: Rasterization Final
* Interpolation
* Mip-Maps
* Supersampling

e Goal: write a rasterizer that converts geometry into
rasterized images
* If you do not know the difference between a
raster and render, you will learn :)

15-362/662 | Computer Graphics

Assignment 2: MeshEdit

* A2.0: MeshEdit Checkpoint
* Local Geometry Ops
* Flip Edge
* Split Edge
e Collapse Edge
e Extrude Face

* A2.5: MeshEdit Final
* Global Geometry Ops
* Triangulation
* Linear Subdivision
* Catmull-Clark Subdivision

* Goal: be able to create and manipulate geometry to
model new 3D characters and scenes

15-362/662 | Computer Graphics

Assignment 3: PathTracer

e A3.0: PathTracer Checkpoint
* (Camera Rays

* |ntersection Tests
 BVH

e A3.5: PathTracer Final
* Path Tracing
* Materials
e Direct Lighting
* Environment Lighting

e Goal: create a render engine that can take any scene
and create a photorealistic rendering out of it
* We will learn ‘non-photorealistic’ styles in this
class too

15-362/662 | Computer Graphics

Assignment 4: Animation

A4.0: Animation Checkpoint
* Spline Interpolation
e Skeleton Kinematics

. Keyframes
A4.5: Animation Final .
* Linear Blend Skinning /
e Particle Simulation .

S

Interpolations

Goal: make a platform for users to create animations
out of geometry and scene files

Eating Your Own Dogfood

At the end of each assignment, you will use your
working Scotty3D implementation to create a:

* A1l: Rasterized Artwork

* A2: Character/Object model

* A3: Rendered Environment "!W
* A4: Animation %/

A guest panel of judges will vote on the results of ! .
each assignment creation |
* Votes will be added across assignments

e Top 3 students with the most votes win a prize

A1l Past Creations

Naweo) % Displacement Mapping

%
z
:
;

A2 Past Creations

3

O ;’

A3 Past Creations

A4 Past Creations

Is this entire class programming?

Hint: no

15-362/662 | Computer Graphics

Writtens

* 10% Writtens
* Each class has an associated written assignment worth 100pts

 Posted on the course website

e Due the week after
Mini HW 2: Sampling and Aliasing

A major theme of Monday's lecture, and a major theme of our class, is how poor sampling and reconstruction can lead to

e Can work in groups of up to 3 alasin.

Aliasing means, roughly speaking, when something appears to be what it is not. (In English, an "alias" essentially just
means a false name or identity.) In computer graphics and signal processing, aliasing occurs because of a mismatch
between sampling and reconstruction: the rate or manner in which a signal is sampled is insufficient to provide a faithful

* No late days, but you may skip up to 2 writtens reconsiruction of the original signal.

For this exercise we will be looking at how various sampling methods and resolutions can affect the reconstruction of the
image. We will be using supersampling to compute the value of the same pixel. For each cell, the red triangle takes up
exactly half of the pixel. If the sample is being taken at the edge of the triangle, it is counted as being inside the
triangle in this example.

° .
S u bm It to G ra d eS Co p e 1) What is the percent red for each supersampled pixel? Please compute this for each of the 4 images below.

2) Plot a graph of the relative sampling error as we increase the supersample rate from 1 to 4. Recall that the relative error
is abs(samplePercent - truePercent) / truePercent.

3) Based on your graph, what do you notice about the error? Does it increase or decrease in this case? What does that tell
you about the pixel accuracy as we increase the supersample rate?

15-362/662 | Computer Graphics

Exams

* 20% Exams
* [10%] Midterm O
* [10%] Final
* Exam content will come from lectures, not just assignments.
* Please attend class :)
* Final is cumulative.

* Standard 3”x 3” handwritten sticky note is allowed (front and back)

* We will provide practice exams closer to the exam date

15-362/662 | Computer Graphics

Participation

* 5% Participations
» Asking/Answering questions on piazza

* Asking/Answering question on course slides
e Attending lecture

* We will have a quick poll sometime
during the lecture to track attendance

Recitations

+2.5% Recitation Attendance For obvious reasons | will not be using a
* Extra credit, just for showing up! laser pointer for todays lecture...
* TAs will take attendance
e Linearly scales
» Attend half of recitations, get +1.25%

e 4 Recitation Slots [Fridays]: "
e A(362)(9am) SH 234
e A(662) (9am) SH 234

]
3
o

« B (362) (10am) GHE4102 GHC 4301
. B (662) (10am) GHC 4301

* C(362) (11am) PH 226C
* C(662) (11am) WEH 6403

What We Really Want From You

We want you to be good programmers + have programming maturity
e At the level of 15-122 is the bare minimum.

We want you to not be afraid of large codebases
* The essence of Computer Graphics is large codebases and how to work with them.

We want you to be able to read docs and language specs
 There are large ReadMe docs for every assignment. Make sure you understand them before coding.

We do NOT want you to have the relevant skills from day one.
 We instead ask that you take the time to develop these skills while in this course, as they are
common in industry and research.

We want you to have fun
e This is a creative class, make sure to learn, and you’ll be proud of what you learn to make.

= Course-ntroduction
L oaict
* History Of Graphics

15-362/662 | Computer Graphics

Before that,

15-362/662 | Computer Graphics

What is Computer Graphics

comeputeer grapheics /kom'pyoodar 'grafiks/ .
The use of computers to synthesize visual information.

computer vision computer graphics

) 1 10120000000

What is Computer Graphics

Image credit: Henrik Wann Jensen

Input: description of a scene Output: image
3D surface geometry (e.g., triangle meshes)
surface materials
lights
camera

Drawing an image requires doing millions of the same operations
across millions of triangles, lights, pixels, etc.

15-362/662 | Computer Graphics

The CPU

Generic hardware
* Can do many things
* Schedule/synchronize threads
* Run dynamic loops

* Compile code 4y

* Execute web scripts %&X& \

* Order a package off Amazon \ "x}:‘ i
-

X
A few cores ’{‘«}"‘:" "Jz&
* Tens of cores, each with several threads] 3 3 R
e Can do parallel processing, but not much §§§‘. ==
* Heterogeneous cores, not every core has the same § %&\t}‘}{g X
performance ﬁ % e
* High performance cores
* Energy-efficient cores Core i7 (2008) Intel
Small data

* Few proprietary registers
 Small (if any) caches
* Needs to spill into larger shared caches/DRAM

The CPU

* Generic bz ‘—:ai\
* PBgEmany things \
A ad$

Schedule/synchronize thre
%\° Execute web scripts ’g;%\
‘ R

Run dynamic loops
Compile code * X
-' e
/ {tg’i §§§ S
- b
: . \ 2322
: rionality’ Eti R - R
_ g all this func tr & i . 'ti‘zi
e Y W Some 3 AL 23 g’ 3

1
O

W
MW ;x‘% %‘g: N
i g%%?‘i%%

Core i7 (2008) Intel

The GPU

* Specialized hardware
* Really good at doing a few operations
* Catalogue of operations kept small
e Easy to fetch smaller list of ops

* Thousands of cores
* Can run the same operation on hundreds of thousands
of data points at once
 Good when the same code runs on data
* Bad when divergence occurs

CI-ASS'C g‘:fglrce 256

= |

,,,,,

e Large data
* Many registers for each core
* Large GPU memory
* Modern systems have shared memory with CPU
» Easy for scheduling/data transfer

Geforce 256 (1999) Nvidia

* “why buy a fireplace when you can buy a gpu” — nvidia ceo,
probably

15-362/662 | Computer Graphics

The GPGPU

‘General Purpose’ Graphics Processing Unit
e Also known as the ‘modern GPU’
» Sacrifices specialized hardware components for more
general operations

GPUs originally used for rendering
* Data scientists ‘hacked’ GPUs by using the vertex
shader to perform compute on large data systems
* Led to the creation of compute shaders
* GPUs now contain many more programmable stages
and can be used in data science and machine learning

Paradigm shift: sacrifice fixed function for more Data Centers (2020) Nvidia
programmability

The GPU

Tessellate Tessellate
Cowe [e [e [e | T
GPU
Clip/Cull Clip/Cull —
Rasterize Rasterize Memory

Clip/Cull Clip/Cull

15-362/662 | Computer Graphics

The Graphics Pipeline

Vertiexindex buffer

l 2 * Sometimes called the:
. VAR * 3D Graphics Pipeline
l . * Rasterization Pipeline
\Verexshader 4 * GPU P|pe||ne
J, ; GPU was designed specifically to run this pipeline fast

Tessellation //.|
gt |

l

Entire pipeline was fixed-function

R <V3 * You provide the data, a vertex shader, and a
T fragment shader, and the GPU does the rest
J, T * Fixed-function == fast!
Rasfterization # * By limiting what an architecture can do, that
J’ L makes the architecture really good at what it
I can do
flagmentshader HME e In graphics, we need to run the same
l operations over millions of datapoints

Color blending

l Graphics Pipeline Tutorial (2019) Vulkan
Framebuffer

Change Of Space

Vertex Generation

{ VertexProcessing 1 * Half the pipelineisin 3D, halfisin 2D
——— e« Remember: we start with a 3D scene

descriptor and end with a 2D image
Primitives

. : : e Moving from 3D to 2D scene provides man
it Procesng Object/world/camera space g P y

Vertices

benefits:
Rasterization * Higher preC|5|on.operatlons
(Fragment Generation) screen space * Faster computations

Fragments * Easier paraIIeIism

Fragment Processing e Less data to manage
* Lessoperations overall

Pixels Frame-Buffer Ops

 Output image buffer

15-362/662 | Computer Graphics

Side Note: What Is A Shader?

Shaders are any string of code run on the GPU
* Not specific to graphics, any GPU code is shader code
 Ex: Compute shaders
Edit Search
Most shader code looks like it was written in C render_mode double_sided,blend_add;
* Perfect for C++ graphics developers uniforn vecd modulz

uniform sampler2
uniform float opacity : range(0,1);

The term was originally created to refer to the user-defined
portion of the Graphics Pipeline

void fragment() {

ALBEDD = texture(albedo_tex,UV).
ALPHA = opacity;

Every system’s GPU is different, therefore the CPU needs to
compile (translate) the code into the GPU’s spec
* For large graphics systems (think video games) with a
common architecture (PS5, Xbox, etc.), shaders will be
compiled before being shipped
* Known as pre-compiled shaders
* PCson the other hand need to compile shaders when game
first start since GPUs vary per PC

scene.glb

ol

o3

o2

vertices

o4

3D Graphics Systems Stack

primitives

B]
I L]
I_IE DEED
Sl
10]
[]
fragments

Converting data into ... well, more data

But this data is pretty!

image.png

15-362/662 | Computer Graphics

Much More Computer Graphics To Learn!

When doing

. . . . Texture Ma in & MIP Ma o Problem with Minification: |Texture Region| > |Pixels|
Rasterization Pipeline 5 | PpIng Pl e
|] . [;:::: ;:: I-':\:hc Uh... But just choosing
Renn) : rst task i ., camera really Q{ [xv] ane of you will give me 7 i

oy matters,
Different subdivision surface
: o : \I-Clark - = =
algorithms utilize varied CatmuKobbelt Ray Tracl ng Dl rectl ons
refinement schemes. op Butt, erfly D°°’Sabin 1 , & -
2 1O > ~
/./ 2 1. Constructs 3p object Simulating rays is not e
Py One way to categorize 4 fromits descriptions I cheap. Our computer ”
s refinement schemes is by the works very hard! Y
$————————————— type of shape they work on: @
triangle versus quads.
s the For example, to jazz up a cube, ahen the
o A P ven the cam
2. -‘::j::ft Eer vart ouf ::::’a::: map mz;.m toits6 Vhen | ’ cam
5= region of textut = 2. F d
i late th We are just - Forwars
Overview of s Refinement L

\ - Schemes

Second way is by whether if original vertex positions get altered.

Rays that matter the GPU cry. (Emitter'based) I —
ant o store prefiltered texture] & A\ _] Now we can map textures
& A If we shoot out rays from onto far away abjects nicely!
ﬁﬂ' emitter like in the real

. _m ply_‘w‘k — Q Q world, we c_reate many
l Fhere is no (G2l ﬂ : OIS I S |1
without U/ RE= '

3. Backward

A nice consequence of th
representation is that any
mesh must be manifold a

This is costing me Wy We are different
way too much... [colorspaces!

Basic Steps of Ray Tra¢

interpolation: fixed positions 1. Shoot Rays = = (Sensor- based)
Manifold Mesh Def 2 Find Hits
We send each ray from the . Looks for “edges”in Since we know what rays
imaginary eye through a pixel in We find the closest object geometry level based o matter, we can instead
avirtual screen into the scene. scene hit by the ray by do idea that geometry alias ”

the primary form of alia: send rays backward into
the scene from the sensor.

intersection tests.

L I wonder what
object(s) this
ray will hit!

// \ y store luminance with high
2 L | o precision since our eyes are more
m sensitive to luminance than color.
> EEERCIL

~

1 2.
every edge is incident to faces incid
one or two faces form a single cl

We don't matter

S | :, Multisampling Anti-Aliasing el c h ro m a
T u Subsampling
-3 ~' &

ate of deptn

Optimizes SSAA by generating
one fragment for each pixel if all Faile to fix specular aliasing sinoe
samples are covered, otherwise ok

specular highlights happen at
generate one fragment for each the shadinglevel, which s ater Furthermore, we can

covered sample goometrio queries take less samples aka
subsample the chroma

‘ ’/ WV% : \ components, further

3. Compute Color

Non-Manifold Mesh Examples

We use information such as
incoming light in the scene

and the object’s material to
calculate the pixel's final color.

e depth o the object of the.
ample color, and i is loser

reducing the size of the
data we are storing.

®
o Semintang 203

O 4:2:0 Subsampling

We collect1Cr,1Cbh, -
and 4 Luma samples \
for a 2 by 2 pixel block.

-\

2y
35
Liooes Make sure to come to lecture!
Credit: Mia Tang

	Slide 1: Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

